x86/fpu, crypto x86/sha1_mb: Remove FPU internal headers from sha1_mb.c
[deliverable/linux.git] / arch / x86 / crypto / sha-mb / sha1_mb.c
1 /*
2 * Multi buffer SHA1 algorithm Glue Code
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * Copyright(c) 2014 Intel Corporation.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * Contact Information:
21 * Tim Chen <tim.c.chen@linux.intel.com>
22 *
23 * BSD LICENSE
24 *
25 * Copyright(c) 2014 Intel Corporation.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 *
31 * * Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * * Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in
35 * the documentation and/or other materials provided with the
36 * distribution.
37 * * Neither the name of Intel Corporation nor the names of its
38 * contributors may be used to endorse or promote products derived
39 * from this software without specific prior written permission.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
52 */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <crypto/internal/hash.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/mm.h>
60 #include <linux/cryptohash.h>
61 #include <linux/types.h>
62 #include <linux/list.h>
63 #include <crypto/scatterwalk.h>
64 #include <crypto/sha.h>
65 #include <crypto/mcryptd.h>
66 #include <crypto/crypto_wq.h>
67 #include <asm/byteorder.h>
68 #include <linux/hardirq.h>
69 #include <asm/fpu/api.h>
70 #include "sha_mb_ctx.h"
71
72 #define FLUSH_INTERVAL 1000 /* in usec */
73
74 static struct mcryptd_alg_state sha1_mb_alg_state;
75
76 struct sha1_mb_ctx {
77 struct mcryptd_ahash *mcryptd_tfm;
78 };
79
80 static inline struct mcryptd_hash_request_ctx *cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx)
81 {
82 struct shash_desc *desc;
83
84 desc = container_of((void *) hash_ctx, struct shash_desc, __ctx);
85 return container_of(desc, struct mcryptd_hash_request_ctx, desc);
86 }
87
88 static inline struct ahash_request *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
89 {
90 return container_of((void *) ctx, struct ahash_request, __ctx);
91 }
92
93 static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
94 struct shash_desc *desc)
95 {
96 rctx->flag = HASH_UPDATE;
97 }
98
99 static asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state);
100 static asmlinkage struct job_sha1* (*sha1_job_mgr_submit)(struct sha1_mb_mgr *state,
101 struct job_sha1 *job);
102 static asmlinkage struct job_sha1* (*sha1_job_mgr_flush)(struct sha1_mb_mgr *state);
103 static asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)(struct sha1_mb_mgr *state);
104
105 inline void sha1_init_digest(uint32_t *digest)
106 {
107 static const uint32_t initial_digest[SHA1_DIGEST_LENGTH] = {SHA1_H0,
108 SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 };
109 memcpy(digest, initial_digest, sizeof(initial_digest));
110 }
111
112 inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2],
113 uint32_t total_len)
114 {
115 uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1);
116
117 memset(&padblock[i], 0, SHA1_BLOCK_SIZE);
118 padblock[i] = 0x80;
119
120 i += ((SHA1_BLOCK_SIZE - 1) &
121 (0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1)))
122 + 1 + SHA1_PADLENGTHFIELD_SIZE;
123
124 #if SHA1_PADLENGTHFIELD_SIZE == 16
125 *((uint64_t *) &padblock[i - 16]) = 0;
126 #endif
127
128 *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);
129
130 /* Number of extra blocks to hash */
131 return i >> SHA1_LOG2_BLOCK_SIZE;
132 }
133
134 static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr, struct sha1_hash_ctx *ctx)
135 {
136 while (ctx) {
137 if (ctx->status & HASH_CTX_STS_COMPLETE) {
138 /* Clear PROCESSING bit */
139 ctx->status = HASH_CTX_STS_COMPLETE;
140 return ctx;
141 }
142
143 /*
144 * If the extra blocks are empty, begin hashing what remains
145 * in the user's buffer.
146 */
147 if (ctx->partial_block_buffer_length == 0 &&
148 ctx->incoming_buffer_length) {
149
150 const void *buffer = ctx->incoming_buffer;
151 uint32_t len = ctx->incoming_buffer_length;
152 uint32_t copy_len;
153
154 /*
155 * Only entire blocks can be hashed.
156 * Copy remainder to extra blocks buffer.
157 */
158 copy_len = len & (SHA1_BLOCK_SIZE-1);
159
160 if (copy_len) {
161 len -= copy_len;
162 memcpy(ctx->partial_block_buffer,
163 ((const char *) buffer + len),
164 copy_len);
165 ctx->partial_block_buffer_length = copy_len;
166 }
167
168 ctx->incoming_buffer_length = 0;
169
170 /* len should be a multiple of the block size now */
171 assert((len % SHA1_BLOCK_SIZE) == 0);
172
173 /* Set len to the number of blocks to be hashed */
174 len >>= SHA1_LOG2_BLOCK_SIZE;
175
176 if (len) {
177
178 ctx->job.buffer = (uint8_t *) buffer;
179 ctx->job.len = len;
180 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr,
181 &ctx->job);
182 continue;
183 }
184 }
185
186 /*
187 * If the extra blocks are not empty, then we are
188 * either on the last block(s) or we need more
189 * user input before continuing.
190 */
191 if (ctx->status & HASH_CTX_STS_LAST) {
192
193 uint8_t *buf = ctx->partial_block_buffer;
194 uint32_t n_extra_blocks = sha1_pad(buf, ctx->total_length);
195
196 ctx->status = (HASH_CTX_STS_PROCESSING |
197 HASH_CTX_STS_COMPLETE);
198 ctx->job.buffer = buf;
199 ctx->job.len = (uint32_t) n_extra_blocks;
200 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
201 continue;
202 }
203
204 ctx->status = HASH_CTX_STS_IDLE;
205 return ctx;
206 }
207
208 return NULL;
209 }
210
211 static struct sha1_hash_ctx *sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr)
212 {
213 /*
214 * If get_comp_job returns NULL, there are no jobs complete.
215 * If get_comp_job returns a job, verify that it is safe to return to the user.
216 * If it is not ready, resubmit the job to finish processing.
217 * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
218 * Otherwise, all jobs currently being managed by the hash_ctx_mgr still need processing.
219 */
220 struct sha1_hash_ctx *ctx;
221
222 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr);
223 return sha1_ctx_mgr_resubmit(mgr, ctx);
224 }
225
226 static void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr)
227 {
228 sha1_job_mgr_init(&mgr->mgr);
229 }
230
231 static struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr,
232 struct sha1_hash_ctx *ctx,
233 const void *buffer,
234 uint32_t len,
235 int flags)
236 {
237 if (flags & (~HASH_ENTIRE)) {
238 /* User should not pass anything other than FIRST, UPDATE, or LAST */
239 ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
240 return ctx;
241 }
242
243 if (ctx->status & HASH_CTX_STS_PROCESSING) {
244 /* Cannot submit to a currently processing job. */
245 ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
246 return ctx;
247 }
248
249 if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) {
250 /* Cannot update a finished job. */
251 ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
252 return ctx;
253 }
254
255
256 if (flags & HASH_FIRST) {
257 /* Init digest */
258 sha1_init_digest(ctx->job.result_digest);
259
260 /* Reset byte counter */
261 ctx->total_length = 0;
262
263 /* Clear extra blocks */
264 ctx->partial_block_buffer_length = 0;
265 }
266
267 /* If we made it here, there were no errors during this call to submit */
268 ctx->error = HASH_CTX_ERROR_NONE;
269
270 /* Store buffer ptr info from user */
271 ctx->incoming_buffer = buffer;
272 ctx->incoming_buffer_length = len;
273
274 /* Store the user's request flags and mark this ctx as currently being processed. */
275 ctx->status = (flags & HASH_LAST) ?
276 (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
277 HASH_CTX_STS_PROCESSING;
278
279 /* Advance byte counter */
280 ctx->total_length += len;
281
282 /*
283 * If there is anything currently buffered in the extra blocks,
284 * append to it until it contains a whole block.
285 * Or if the user's buffer contains less than a whole block,
286 * append as much as possible to the extra block.
287 */
288 if ((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE)) {
289 /* Compute how many bytes to copy from user buffer into extra block */
290 uint32_t copy_len = SHA1_BLOCK_SIZE - ctx->partial_block_buffer_length;
291 if (len < copy_len)
292 copy_len = len;
293
294 if (copy_len) {
295 /* Copy and update relevant pointers and counters */
296 memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
297 buffer, copy_len);
298
299 ctx->partial_block_buffer_length += copy_len;
300 ctx->incoming_buffer = (const void *)((const char *)buffer + copy_len);
301 ctx->incoming_buffer_length = len - copy_len;
302 }
303
304 /* The extra block should never contain more than 1 block here */
305 assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE);
306
307 /* If the extra block buffer contains exactly 1 block, it can be hashed. */
308 if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) {
309 ctx->partial_block_buffer_length = 0;
310
311 ctx->job.buffer = ctx->partial_block_buffer;
312 ctx->job.len = 1;
313 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
314 }
315 }
316
317 return sha1_ctx_mgr_resubmit(mgr, ctx);
318 }
319
320 static struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr)
321 {
322 struct sha1_hash_ctx *ctx;
323
324 while (1) {
325 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr);
326
327 /* If flush returned 0, there are no more jobs in flight. */
328 if (!ctx)
329 return NULL;
330
331 /*
332 * If flush returned a job, resubmit the job to finish processing.
333 */
334 ctx = sha1_ctx_mgr_resubmit(mgr, ctx);
335
336 /*
337 * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
338 * Otherwise, all jobs currently being managed by the sha1_ctx_mgr
339 * still need processing. Loop.
340 */
341 if (ctx)
342 return ctx;
343 }
344 }
345
346 static int sha1_mb_init(struct shash_desc *desc)
347 {
348 struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
349
350 hash_ctx_init(sctx);
351 sctx->job.result_digest[0] = SHA1_H0;
352 sctx->job.result_digest[1] = SHA1_H1;
353 sctx->job.result_digest[2] = SHA1_H2;
354 sctx->job.result_digest[3] = SHA1_H3;
355 sctx->job.result_digest[4] = SHA1_H4;
356 sctx->total_length = 0;
357 sctx->partial_block_buffer_length = 0;
358 sctx->status = HASH_CTX_STS_IDLE;
359
360 return 0;
361 }
362
363 static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
364 {
365 int i;
366 struct sha1_hash_ctx *sctx = shash_desc_ctx(&rctx->desc);
367 __be32 *dst = (__be32 *) rctx->out;
368
369 for (i = 0; i < 5; ++i)
370 dst[i] = cpu_to_be32(sctx->job.result_digest[i]);
371
372 return 0;
373 }
374
375 static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
376 struct mcryptd_alg_cstate *cstate, bool flush)
377 {
378 int flag = HASH_UPDATE;
379 int nbytes, err = 0;
380 struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
381 struct sha1_hash_ctx *sha_ctx;
382
383 /* more work ? */
384 while (!(rctx->flag & HASH_DONE)) {
385 nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
386 if (nbytes < 0) {
387 err = nbytes;
388 goto out;
389 }
390 /* check if the walk is done */
391 if (crypto_ahash_walk_last(&rctx->walk)) {
392 rctx->flag |= HASH_DONE;
393 if (rctx->flag & HASH_FINAL)
394 flag |= HASH_LAST;
395
396 }
397 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(&rctx->desc);
398 kernel_fpu_begin();
399 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
400 if (!sha_ctx) {
401 if (flush)
402 sha_ctx = sha1_ctx_mgr_flush(cstate->mgr);
403 }
404 kernel_fpu_end();
405 if (sha_ctx)
406 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
407 else {
408 rctx = NULL;
409 goto out;
410 }
411 }
412
413 /* copy the results */
414 if (rctx->flag & HASH_FINAL)
415 sha1_mb_set_results(rctx);
416
417 out:
418 *ret_rctx = rctx;
419 return err;
420 }
421
422 static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
423 struct mcryptd_alg_cstate *cstate,
424 int err)
425 {
426 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
427 struct sha1_hash_ctx *sha_ctx;
428 struct mcryptd_hash_request_ctx *req_ctx;
429 int ret;
430
431 /* remove from work list */
432 spin_lock(&cstate->work_lock);
433 list_del(&rctx->waiter);
434 spin_unlock(&cstate->work_lock);
435
436 if (irqs_disabled())
437 rctx->complete(&req->base, err);
438 else {
439 local_bh_disable();
440 rctx->complete(&req->base, err);
441 local_bh_enable();
442 }
443
444 /* check to see if there are other jobs that are done */
445 sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
446 while (sha_ctx) {
447 req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
448 ret = sha_finish_walk(&req_ctx, cstate, false);
449 if (req_ctx) {
450 spin_lock(&cstate->work_lock);
451 list_del(&req_ctx->waiter);
452 spin_unlock(&cstate->work_lock);
453
454 req = cast_mcryptd_ctx_to_req(req_ctx);
455 if (irqs_disabled())
456 rctx->complete(&req->base, ret);
457 else {
458 local_bh_disable();
459 rctx->complete(&req->base, ret);
460 local_bh_enable();
461 }
462 }
463 sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
464 }
465
466 return 0;
467 }
468
469 static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
470 struct mcryptd_alg_cstate *cstate)
471 {
472 unsigned long next_flush;
473 unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);
474
475 /* initialize tag */
476 rctx->tag.arrival = jiffies; /* tag the arrival time */
477 rctx->tag.seq_num = cstate->next_seq_num++;
478 next_flush = rctx->tag.arrival + delay;
479 rctx->tag.expire = next_flush;
480
481 spin_lock(&cstate->work_lock);
482 list_add_tail(&rctx->waiter, &cstate->work_list);
483 spin_unlock(&cstate->work_lock);
484
485 mcryptd_arm_flusher(cstate, delay);
486 }
487
488 static int sha1_mb_update(struct shash_desc *desc, const u8 *data,
489 unsigned int len)
490 {
491 struct mcryptd_hash_request_ctx *rctx =
492 container_of(desc, struct mcryptd_hash_request_ctx, desc);
493 struct mcryptd_alg_cstate *cstate =
494 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
495
496 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
497 struct sha1_hash_ctx *sha_ctx;
498 int ret = 0, nbytes;
499
500
501 /* sanity check */
502 if (rctx->tag.cpu != smp_processor_id()) {
503 pr_err("mcryptd error: cpu clash\n");
504 goto done;
505 }
506
507 /* need to init context */
508 req_ctx_init(rctx, desc);
509
510 nbytes = crypto_ahash_walk_first(req, &rctx->walk);
511
512 if (nbytes < 0) {
513 ret = nbytes;
514 goto done;
515 }
516
517 if (crypto_ahash_walk_last(&rctx->walk))
518 rctx->flag |= HASH_DONE;
519
520 /* submit */
521 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
522 sha1_mb_add_list(rctx, cstate);
523 kernel_fpu_begin();
524 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, HASH_UPDATE);
525 kernel_fpu_end();
526
527 /* check if anything is returned */
528 if (!sha_ctx)
529 return -EINPROGRESS;
530
531 if (sha_ctx->error) {
532 ret = sha_ctx->error;
533 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
534 goto done;
535 }
536
537 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
538 ret = sha_finish_walk(&rctx, cstate, false);
539
540 if (!rctx)
541 return -EINPROGRESS;
542 done:
543 sha_complete_job(rctx, cstate, ret);
544 return ret;
545 }
546
547 static int sha1_mb_finup(struct shash_desc *desc, const u8 *data,
548 unsigned int len, u8 *out)
549 {
550 struct mcryptd_hash_request_ctx *rctx =
551 container_of(desc, struct mcryptd_hash_request_ctx, desc);
552 struct mcryptd_alg_cstate *cstate =
553 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
554
555 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
556 struct sha1_hash_ctx *sha_ctx;
557 int ret = 0, flag = HASH_UPDATE, nbytes;
558
559 /* sanity check */
560 if (rctx->tag.cpu != smp_processor_id()) {
561 pr_err("mcryptd error: cpu clash\n");
562 goto done;
563 }
564
565 /* need to init context */
566 req_ctx_init(rctx, desc);
567
568 nbytes = crypto_ahash_walk_first(req, &rctx->walk);
569
570 if (nbytes < 0) {
571 ret = nbytes;
572 goto done;
573 }
574
575 if (crypto_ahash_walk_last(&rctx->walk)) {
576 rctx->flag |= HASH_DONE;
577 flag = HASH_LAST;
578 }
579 rctx->out = out;
580
581 /* submit */
582 rctx->flag |= HASH_FINAL;
583 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
584 sha1_mb_add_list(rctx, cstate);
585
586 kernel_fpu_begin();
587 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
588 kernel_fpu_end();
589
590 /* check if anything is returned */
591 if (!sha_ctx)
592 return -EINPROGRESS;
593
594 if (sha_ctx->error) {
595 ret = sha_ctx->error;
596 goto done;
597 }
598
599 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
600 ret = sha_finish_walk(&rctx, cstate, false);
601 if (!rctx)
602 return -EINPROGRESS;
603 done:
604 sha_complete_job(rctx, cstate, ret);
605 return ret;
606 }
607
608 static int sha1_mb_final(struct shash_desc *desc, u8 *out)
609 {
610 struct mcryptd_hash_request_ctx *rctx =
611 container_of(desc, struct mcryptd_hash_request_ctx, desc);
612 struct mcryptd_alg_cstate *cstate =
613 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
614
615 struct sha1_hash_ctx *sha_ctx;
616 int ret = 0;
617 u8 data;
618
619 /* sanity check */
620 if (rctx->tag.cpu != smp_processor_id()) {
621 pr_err("mcryptd error: cpu clash\n");
622 goto done;
623 }
624
625 /* need to init context */
626 req_ctx_init(rctx, desc);
627
628 rctx->out = out;
629 rctx->flag |= HASH_DONE | HASH_FINAL;
630
631 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
632 /* flag HASH_FINAL and 0 data size */
633 sha1_mb_add_list(rctx, cstate);
634 kernel_fpu_begin();
635 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0, HASH_LAST);
636 kernel_fpu_end();
637
638 /* check if anything is returned */
639 if (!sha_ctx)
640 return -EINPROGRESS;
641
642 if (sha_ctx->error) {
643 ret = sha_ctx->error;
644 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
645 goto done;
646 }
647
648 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
649 ret = sha_finish_walk(&rctx, cstate, false);
650 if (!rctx)
651 return -EINPROGRESS;
652 done:
653 sha_complete_job(rctx, cstate, ret);
654 return ret;
655 }
656
657 static int sha1_mb_export(struct shash_desc *desc, void *out)
658 {
659 struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
660
661 memcpy(out, sctx, sizeof(*sctx));
662
663 return 0;
664 }
665
666 static int sha1_mb_import(struct shash_desc *desc, const void *in)
667 {
668 struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
669
670 memcpy(sctx, in, sizeof(*sctx));
671
672 return 0;
673 }
674
675
676 static struct shash_alg sha1_mb_shash_alg = {
677 .digestsize = SHA1_DIGEST_SIZE,
678 .init = sha1_mb_init,
679 .update = sha1_mb_update,
680 .final = sha1_mb_final,
681 .finup = sha1_mb_finup,
682 .export = sha1_mb_export,
683 .import = sha1_mb_import,
684 .descsize = sizeof(struct sha1_hash_ctx),
685 .statesize = sizeof(struct sha1_hash_ctx),
686 .base = {
687 .cra_name = "__sha1-mb",
688 .cra_driver_name = "__intel_sha1-mb",
689 .cra_priority = 100,
690 /*
691 * use ASYNC flag as some buffers in multi-buffer
692 * algo may not have completed before hashing thread sleep
693 */
694 .cra_flags = CRYPTO_ALG_TYPE_SHASH | CRYPTO_ALG_ASYNC |
695 CRYPTO_ALG_INTERNAL,
696 .cra_blocksize = SHA1_BLOCK_SIZE,
697 .cra_module = THIS_MODULE,
698 .cra_list = LIST_HEAD_INIT(sha1_mb_shash_alg.base.cra_list),
699 }
700 };
701
702 static int sha1_mb_async_init(struct ahash_request *req)
703 {
704 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
705 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
706 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
707 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
708
709 memcpy(mcryptd_req, req, sizeof(*req));
710 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
711 return crypto_ahash_init(mcryptd_req);
712 }
713
714 static int sha1_mb_async_update(struct ahash_request *req)
715 {
716 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
717
718 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
719 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
720 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
721
722 memcpy(mcryptd_req, req, sizeof(*req));
723 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
724 return crypto_ahash_update(mcryptd_req);
725 }
726
727 static int sha1_mb_async_finup(struct ahash_request *req)
728 {
729 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
730
731 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
732 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
733 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
734
735 memcpy(mcryptd_req, req, sizeof(*req));
736 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
737 return crypto_ahash_finup(mcryptd_req);
738 }
739
740 static int sha1_mb_async_final(struct ahash_request *req)
741 {
742 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
743
744 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
745 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
746 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
747
748 memcpy(mcryptd_req, req, sizeof(*req));
749 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
750 return crypto_ahash_final(mcryptd_req);
751 }
752
753 static int sha1_mb_async_digest(struct ahash_request *req)
754 {
755 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
756 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
757 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
758 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
759
760 memcpy(mcryptd_req, req, sizeof(*req));
761 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
762 return crypto_ahash_digest(mcryptd_req);
763 }
764
765 static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm)
766 {
767 struct mcryptd_ahash *mcryptd_tfm;
768 struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
769 struct mcryptd_hash_ctx *mctx;
770
771 mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb",
772 CRYPTO_ALG_INTERNAL,
773 CRYPTO_ALG_INTERNAL);
774 if (IS_ERR(mcryptd_tfm))
775 return PTR_ERR(mcryptd_tfm);
776 mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
777 mctx->alg_state = &sha1_mb_alg_state;
778 ctx->mcryptd_tfm = mcryptd_tfm;
779 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
780 sizeof(struct ahash_request) +
781 crypto_ahash_reqsize(&mcryptd_tfm->base));
782
783 return 0;
784 }
785
786 static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm)
787 {
788 struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
789
790 mcryptd_free_ahash(ctx->mcryptd_tfm);
791 }
792
793 static struct ahash_alg sha1_mb_async_alg = {
794 .init = sha1_mb_async_init,
795 .update = sha1_mb_async_update,
796 .final = sha1_mb_async_final,
797 .finup = sha1_mb_async_finup,
798 .digest = sha1_mb_async_digest,
799 .halg = {
800 .digestsize = SHA1_DIGEST_SIZE,
801 .base = {
802 .cra_name = "sha1",
803 .cra_driver_name = "sha1_mb",
804 .cra_priority = 200,
805 .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
806 .cra_blocksize = SHA1_BLOCK_SIZE,
807 .cra_type = &crypto_ahash_type,
808 .cra_module = THIS_MODULE,
809 .cra_list = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list),
810 .cra_init = sha1_mb_async_init_tfm,
811 .cra_exit = sha1_mb_async_exit_tfm,
812 .cra_ctxsize = sizeof(struct sha1_mb_ctx),
813 .cra_alignmask = 0,
814 },
815 },
816 };
817
818 static unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate)
819 {
820 struct mcryptd_hash_request_ctx *rctx;
821 unsigned long cur_time;
822 unsigned long next_flush = 0;
823 struct sha1_hash_ctx *sha_ctx;
824
825
826 cur_time = jiffies;
827
828 while (!list_empty(&cstate->work_list)) {
829 rctx = list_entry(cstate->work_list.next,
830 struct mcryptd_hash_request_ctx, waiter);
831 if (time_before(cur_time, rctx->tag.expire))
832 break;
833 kernel_fpu_begin();
834 sha_ctx = (struct sha1_hash_ctx *) sha1_ctx_mgr_flush(cstate->mgr);
835 kernel_fpu_end();
836 if (!sha_ctx) {
837 pr_err("sha1_mb error: nothing got flushed for non-empty list\n");
838 break;
839 }
840 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
841 sha_finish_walk(&rctx, cstate, true);
842 sha_complete_job(rctx, cstate, 0);
843 }
844
845 if (!list_empty(&cstate->work_list)) {
846 rctx = list_entry(cstate->work_list.next,
847 struct mcryptd_hash_request_ctx, waiter);
848 /* get the hash context and then flush time */
849 next_flush = rctx->tag.expire;
850 mcryptd_arm_flusher(cstate, get_delay(next_flush));
851 }
852 return next_flush;
853 }
854
855 static int __init sha1_mb_mod_init(void)
856 {
857
858 int cpu;
859 int err;
860 struct mcryptd_alg_cstate *cpu_state;
861
862 /* check for dependent cpu features */
863 if (!boot_cpu_has(X86_FEATURE_AVX2) ||
864 !boot_cpu_has(X86_FEATURE_BMI2))
865 return -ENODEV;
866
867 /* initialize multibuffer structures */
868 sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate);
869
870 sha1_job_mgr_init = sha1_mb_mgr_init_avx2;
871 sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2;
872 sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2;
873 sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2;
874
875 if (!sha1_mb_alg_state.alg_cstate)
876 return -ENOMEM;
877 for_each_possible_cpu(cpu) {
878 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
879 cpu_state->next_flush = 0;
880 cpu_state->next_seq_num = 0;
881 cpu_state->flusher_engaged = false;
882 INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
883 cpu_state->cpu = cpu;
884 cpu_state->alg_state = &sha1_mb_alg_state;
885 cpu_state->mgr = (struct sha1_ctx_mgr *) kzalloc(sizeof(struct sha1_ctx_mgr), GFP_KERNEL);
886 if (!cpu_state->mgr)
887 goto err2;
888 sha1_ctx_mgr_init(cpu_state->mgr);
889 INIT_LIST_HEAD(&cpu_state->work_list);
890 spin_lock_init(&cpu_state->work_lock);
891 }
892 sha1_mb_alg_state.flusher = &sha1_mb_flusher;
893
894 err = crypto_register_shash(&sha1_mb_shash_alg);
895 if (err)
896 goto err2;
897 err = crypto_register_ahash(&sha1_mb_async_alg);
898 if (err)
899 goto err1;
900
901
902 return 0;
903 err1:
904 crypto_unregister_shash(&sha1_mb_shash_alg);
905 err2:
906 for_each_possible_cpu(cpu) {
907 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
908 kfree(cpu_state->mgr);
909 }
910 free_percpu(sha1_mb_alg_state.alg_cstate);
911 return -ENODEV;
912 }
913
914 static void __exit sha1_mb_mod_fini(void)
915 {
916 int cpu;
917 struct mcryptd_alg_cstate *cpu_state;
918
919 crypto_unregister_ahash(&sha1_mb_async_alg);
920 crypto_unregister_shash(&sha1_mb_shash_alg);
921 for_each_possible_cpu(cpu) {
922 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
923 kfree(cpu_state->mgr);
924 }
925 free_percpu(sha1_mb_alg_state.alg_cstate);
926 }
927
928 module_init(sha1_mb_mod_init);
929 module_exit(sha1_mb_mod_fini);
930
931 MODULE_LICENSE("GPL");
932 MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated");
933
934 MODULE_ALIAS_CRYPTO("sha1");
This page took 0.091933 seconds and 5 git commands to generate.