x86/nmi/64: Fix a paravirt stack-clobbering bug in the NMI code
[deliverable/linux.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <linux/err.h>
39
40 /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41 #include <linux/elf-em.h>
42 #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43 #define __AUDIT_ARCH_64BIT 0x80000000
44 #define __AUDIT_ARCH_LE 0x40000000
45
46 .code64
47 .section .entry.text, "ax"
48
49 #ifdef CONFIG_PARAVIRT
50 ENTRY(native_usergs_sysret64)
51 swapgs
52 sysretq
53 ENDPROC(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
55
56 .macro TRACE_IRQS_IRETQ
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
61 1:
62 #endif
63 .endm
64
65 /*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78 .macro TRACE_IRQS_OFF_DEBUG
79 call debug_stack_set_zero
80 TRACE_IRQS_OFF
81 call debug_stack_reset
82 .endm
83
84 .macro TRACE_IRQS_ON_DEBUG
85 call debug_stack_set_zero
86 TRACE_IRQS_ON
87 call debug_stack_reset
88 .endm
89
90 .macro TRACE_IRQS_IRETQ_DEBUG
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
93 TRACE_IRQS_ON_DEBUG
94 1:
95 .endm
96
97 #else
98 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
101 #endif
102
103 /*
104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
105 *
106 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
107 * then loads new ss, cs, and rip from previously programmed MSRs.
108 * rflags gets masked by a value from another MSR (so CLD and CLAC
109 * are not needed). SYSCALL does not save anything on the stack
110 * and does not change rsp.
111 *
112 * Registers on entry:
113 * rax system call number
114 * rcx return address
115 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
116 * rdi arg0
117 * rsi arg1
118 * rdx arg2
119 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
120 * r8 arg4
121 * r9 arg5
122 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
123 *
124 * Only called from user space.
125 *
126 * When user can change pt_regs->foo always force IRET. That is because
127 * it deals with uncanonical addresses better. SYSRET has trouble
128 * with them due to bugs in both AMD and Intel CPUs.
129 */
130
131 ENTRY(entry_SYSCALL_64)
132 /*
133 * Interrupts are off on entry.
134 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
135 * it is too small to ever cause noticeable irq latency.
136 */
137 SWAPGS_UNSAFE_STACK
138 /*
139 * A hypervisor implementation might want to use a label
140 * after the swapgs, so that it can do the swapgs
141 * for the guest and jump here on syscall.
142 */
143 GLOBAL(entry_SYSCALL_64_after_swapgs)
144
145 movq %rsp, PER_CPU_VAR(rsp_scratch)
146 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
147
148 /* Construct struct pt_regs on stack */
149 pushq $__USER_DS /* pt_regs->ss */
150 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
151 /*
152 * Re-enable interrupts.
153 * We use 'rsp_scratch' as a scratch space, hence irq-off block above
154 * must execute atomically in the face of possible interrupt-driven
155 * task preemption. We must enable interrupts only after we're done
156 * with using rsp_scratch:
157 */
158 ENABLE_INTERRUPTS(CLBR_NONE)
159 pushq %r11 /* pt_regs->flags */
160 pushq $__USER_CS /* pt_regs->cs */
161 pushq %rcx /* pt_regs->ip */
162 pushq %rax /* pt_regs->orig_ax */
163 pushq %rdi /* pt_regs->di */
164 pushq %rsi /* pt_regs->si */
165 pushq %rdx /* pt_regs->dx */
166 pushq %rcx /* pt_regs->cx */
167 pushq $-ENOSYS /* pt_regs->ax */
168 pushq %r8 /* pt_regs->r8 */
169 pushq %r9 /* pt_regs->r9 */
170 pushq %r10 /* pt_regs->r10 */
171 pushq %r11 /* pt_regs->r11 */
172 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
173
174 testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
175 jnz tracesys
176 entry_SYSCALL_64_fastpath:
177 #if __SYSCALL_MASK == ~0
178 cmpq $__NR_syscall_max, %rax
179 #else
180 andl $__SYSCALL_MASK, %eax
181 cmpl $__NR_syscall_max, %eax
182 #endif
183 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
184 movq %r10, %rcx
185 call *sys_call_table(, %rax, 8)
186 movq %rax, RAX(%rsp)
187 1:
188 /*
189 * Syscall return path ending with SYSRET (fast path).
190 * Has incompletely filled pt_regs.
191 */
192 LOCKDEP_SYS_EXIT
193 /*
194 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
195 * it is too small to ever cause noticeable irq latency.
196 */
197 DISABLE_INTERRUPTS(CLBR_NONE)
198
199 /*
200 * We must check ti flags with interrupts (or at least preemption)
201 * off because we must *never* return to userspace without
202 * processing exit work that is enqueued if we're preempted here.
203 * In particular, returning to userspace with any of the one-shot
204 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
205 * very bad.
206 */
207 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
208 jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */
209
210 RESTORE_C_REGS_EXCEPT_RCX_R11
211 movq RIP(%rsp), %rcx
212 movq EFLAGS(%rsp), %r11
213 movq RSP(%rsp), %rsp
214 /*
215 * 64-bit SYSRET restores rip from rcx,
216 * rflags from r11 (but RF and VM bits are forced to 0),
217 * cs and ss are loaded from MSRs.
218 * Restoration of rflags re-enables interrupts.
219 *
220 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
221 * descriptor is not reinitialized. This means that we should
222 * avoid SYSRET with SS == NULL, which could happen if we schedule,
223 * exit the kernel, and re-enter using an interrupt vector. (All
224 * interrupt entries on x86_64 set SS to NULL.) We prevent that
225 * from happening by reloading SS in __switch_to. (Actually
226 * detecting the failure in 64-bit userspace is tricky but can be
227 * done.)
228 */
229 USERGS_SYSRET64
230
231 GLOBAL(int_ret_from_sys_call_irqs_off)
232 TRACE_IRQS_ON
233 ENABLE_INTERRUPTS(CLBR_NONE)
234 jmp int_ret_from_sys_call
235
236 /* Do syscall entry tracing */
237 tracesys:
238 movq %rsp, %rdi
239 movl $AUDIT_ARCH_X86_64, %esi
240 call syscall_trace_enter_phase1
241 test %rax, %rax
242 jnz tracesys_phase2 /* if needed, run the slow path */
243 RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */
244 movq ORIG_RAX(%rsp), %rax
245 jmp entry_SYSCALL_64_fastpath /* and return to the fast path */
246
247 tracesys_phase2:
248 SAVE_EXTRA_REGS
249 movq %rsp, %rdi
250 movl $AUDIT_ARCH_X86_64, %esi
251 movq %rax, %rdx
252 call syscall_trace_enter_phase2
253
254 /*
255 * Reload registers from stack in case ptrace changed them.
256 * We don't reload %rax because syscall_trace_entry_phase2() returned
257 * the value it wants us to use in the table lookup.
258 */
259 RESTORE_C_REGS_EXCEPT_RAX
260 RESTORE_EXTRA_REGS
261 #if __SYSCALL_MASK == ~0
262 cmpq $__NR_syscall_max, %rax
263 #else
264 andl $__SYSCALL_MASK, %eax
265 cmpl $__NR_syscall_max, %eax
266 #endif
267 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
268 movq %r10, %rcx /* fixup for C */
269 call *sys_call_table(, %rax, 8)
270 movq %rax, RAX(%rsp)
271 1:
272 /* Use IRET because user could have changed pt_regs->foo */
273
274 /*
275 * Syscall return path ending with IRET.
276 * Has correct iret frame.
277 */
278 GLOBAL(int_ret_from_sys_call)
279 SAVE_EXTRA_REGS
280 movq %rsp, %rdi
281 call syscall_return_slowpath /* returns with IRQs disabled */
282 RESTORE_EXTRA_REGS
283 TRACE_IRQS_IRETQ /* we're about to change IF */
284
285 /*
286 * Try to use SYSRET instead of IRET if we're returning to
287 * a completely clean 64-bit userspace context.
288 */
289 movq RCX(%rsp), %rcx
290 movq RIP(%rsp), %r11
291 cmpq %rcx, %r11 /* RCX == RIP */
292 jne opportunistic_sysret_failed
293
294 /*
295 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
296 * in kernel space. This essentially lets the user take over
297 * the kernel, since userspace controls RSP.
298 *
299 * If width of "canonical tail" ever becomes variable, this will need
300 * to be updated to remain correct on both old and new CPUs.
301 */
302 .ifne __VIRTUAL_MASK_SHIFT - 47
303 .error "virtual address width changed -- SYSRET checks need update"
304 .endif
305
306 /* Change top 16 bits to be the sign-extension of 47th bit */
307 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
308 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
309
310 /* If this changed %rcx, it was not canonical */
311 cmpq %rcx, %r11
312 jne opportunistic_sysret_failed
313
314 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
315 jne opportunistic_sysret_failed
316
317 movq R11(%rsp), %r11
318 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
319 jne opportunistic_sysret_failed
320
321 /*
322 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
323 * restoring TF results in a trap from userspace immediately after
324 * SYSRET. This would cause an infinite loop whenever #DB happens
325 * with register state that satisfies the opportunistic SYSRET
326 * conditions. For example, single-stepping this user code:
327 *
328 * movq $stuck_here, %rcx
329 * pushfq
330 * popq %r11
331 * stuck_here:
332 *
333 * would never get past 'stuck_here'.
334 */
335 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
336 jnz opportunistic_sysret_failed
337
338 /* nothing to check for RSP */
339
340 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
341 jne opportunistic_sysret_failed
342
343 /*
344 * We win! This label is here just for ease of understanding
345 * perf profiles. Nothing jumps here.
346 */
347 syscall_return_via_sysret:
348 /* rcx and r11 are already restored (see code above) */
349 RESTORE_C_REGS_EXCEPT_RCX_R11
350 movq RSP(%rsp), %rsp
351 USERGS_SYSRET64
352
353 opportunistic_sysret_failed:
354 SWAPGS
355 jmp restore_c_regs_and_iret
356 END(entry_SYSCALL_64)
357
358
359 .macro FORK_LIKE func
360 ENTRY(stub_\func)
361 SAVE_EXTRA_REGS 8
362 jmp sys_\func
363 END(stub_\func)
364 .endm
365
366 FORK_LIKE clone
367 FORK_LIKE fork
368 FORK_LIKE vfork
369
370 ENTRY(stub_execve)
371 call sys_execve
372 return_from_execve:
373 testl %eax, %eax
374 jz 1f
375 /* exec failed, can use fast SYSRET code path in this case */
376 ret
377 1:
378 /* must use IRET code path (pt_regs->cs may have changed) */
379 addq $8, %rsp
380 ZERO_EXTRA_REGS
381 movq %rax, RAX(%rsp)
382 jmp int_ret_from_sys_call
383 END(stub_execve)
384 /*
385 * Remaining execve stubs are only 7 bytes long.
386 * ENTRY() often aligns to 16 bytes, which in this case has no benefits.
387 */
388 .align 8
389 GLOBAL(stub_execveat)
390 call sys_execveat
391 jmp return_from_execve
392 END(stub_execveat)
393
394 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
395 .align 8
396 GLOBAL(stub_x32_execve)
397 GLOBAL(stub32_execve)
398 call compat_sys_execve
399 jmp return_from_execve
400 END(stub32_execve)
401 END(stub_x32_execve)
402 .align 8
403 GLOBAL(stub_x32_execveat)
404 GLOBAL(stub32_execveat)
405 call compat_sys_execveat
406 jmp return_from_execve
407 END(stub32_execveat)
408 END(stub_x32_execveat)
409 #endif
410
411 /*
412 * sigreturn is special because it needs to restore all registers on return.
413 * This cannot be done with SYSRET, so use the IRET return path instead.
414 */
415 ENTRY(stub_rt_sigreturn)
416 /*
417 * SAVE_EXTRA_REGS result is not normally needed:
418 * sigreturn overwrites all pt_regs->GPREGS.
419 * But sigreturn can fail (!), and there is no easy way to detect that.
420 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
421 * we SAVE_EXTRA_REGS here.
422 */
423 SAVE_EXTRA_REGS 8
424 call sys_rt_sigreturn
425 return_from_stub:
426 addq $8, %rsp
427 RESTORE_EXTRA_REGS
428 movq %rax, RAX(%rsp)
429 jmp int_ret_from_sys_call
430 END(stub_rt_sigreturn)
431
432 #ifdef CONFIG_X86_X32_ABI
433 ENTRY(stub_x32_rt_sigreturn)
434 SAVE_EXTRA_REGS 8
435 call sys32_x32_rt_sigreturn
436 jmp return_from_stub
437 END(stub_x32_rt_sigreturn)
438 #endif
439
440 /*
441 * A newly forked process directly context switches into this address.
442 *
443 * rdi: prev task we switched from
444 */
445 ENTRY(ret_from_fork)
446
447 LOCK ; btr $TIF_FORK, TI_flags(%r8)
448
449 pushq $0x0002
450 popfq /* reset kernel eflags */
451
452 call schedule_tail /* rdi: 'prev' task parameter */
453
454 RESTORE_EXTRA_REGS
455
456 testb $3, CS(%rsp) /* from kernel_thread? */
457
458 /*
459 * By the time we get here, we have no idea whether our pt_regs,
460 * ti flags, and ti status came from the 64-bit SYSCALL fast path,
461 * the slow path, or one of the 32-bit compat paths.
462 * Use IRET code path to return, since it can safely handle
463 * all of the above.
464 */
465 jnz int_ret_from_sys_call
466
467 /*
468 * We came from kernel_thread
469 * nb: we depend on RESTORE_EXTRA_REGS above
470 */
471 movq %rbp, %rdi
472 call *%rbx
473 movl $0, RAX(%rsp)
474 RESTORE_EXTRA_REGS
475 jmp int_ret_from_sys_call
476 END(ret_from_fork)
477
478 /*
479 * Build the entry stubs with some assembler magic.
480 * We pack 1 stub into every 8-byte block.
481 */
482 .align 8
483 ENTRY(irq_entries_start)
484 vector=FIRST_EXTERNAL_VECTOR
485 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
486 pushq $(~vector+0x80) /* Note: always in signed byte range */
487 vector=vector+1
488 jmp common_interrupt
489 .align 8
490 .endr
491 END(irq_entries_start)
492
493 /*
494 * Interrupt entry/exit.
495 *
496 * Interrupt entry points save only callee clobbered registers in fast path.
497 *
498 * Entry runs with interrupts off.
499 */
500
501 /* 0(%rsp): ~(interrupt number) */
502 .macro interrupt func
503 cld
504 ALLOC_PT_GPREGS_ON_STACK
505 SAVE_C_REGS
506 SAVE_EXTRA_REGS
507
508 testb $3, CS(%rsp)
509 jz 1f
510
511 /*
512 * IRQ from user mode. Switch to kernel gsbase and inform context
513 * tracking that we're in kernel mode.
514 */
515 SWAPGS
516 #ifdef CONFIG_CONTEXT_TRACKING
517 call enter_from_user_mode
518 #endif
519
520 1:
521 /*
522 * Save previous stack pointer, optionally switch to interrupt stack.
523 * irq_count is used to check if a CPU is already on an interrupt stack
524 * or not. While this is essentially redundant with preempt_count it is
525 * a little cheaper to use a separate counter in the PDA (short of
526 * moving irq_enter into assembly, which would be too much work)
527 */
528 movq %rsp, %rdi
529 incl PER_CPU_VAR(irq_count)
530 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
531 pushq %rdi
532 /* We entered an interrupt context - irqs are off: */
533 TRACE_IRQS_OFF
534
535 call \func /* rdi points to pt_regs */
536 .endm
537
538 /*
539 * The interrupt stubs push (~vector+0x80) onto the stack and
540 * then jump to common_interrupt.
541 */
542 .p2align CONFIG_X86_L1_CACHE_SHIFT
543 common_interrupt:
544 ASM_CLAC
545 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
546 interrupt do_IRQ
547 /* 0(%rsp): old RSP */
548 ret_from_intr:
549 DISABLE_INTERRUPTS(CLBR_NONE)
550 TRACE_IRQS_OFF
551 decl PER_CPU_VAR(irq_count)
552
553 /* Restore saved previous stack */
554 popq %rsp
555
556 testb $3, CS(%rsp)
557 jz retint_kernel
558
559 /* Interrupt came from user space */
560 LOCKDEP_SYS_EXIT_IRQ
561 GLOBAL(retint_user)
562 mov %rsp,%rdi
563 call prepare_exit_to_usermode
564 TRACE_IRQS_IRETQ
565 SWAPGS
566 jmp restore_regs_and_iret
567
568 /* Returning to kernel space */
569 retint_kernel:
570 #ifdef CONFIG_PREEMPT
571 /* Interrupts are off */
572 /* Check if we need preemption */
573 bt $9, EFLAGS(%rsp) /* were interrupts off? */
574 jnc 1f
575 0: cmpl $0, PER_CPU_VAR(__preempt_count)
576 jnz 1f
577 call preempt_schedule_irq
578 jmp 0b
579 1:
580 #endif
581 /*
582 * The iretq could re-enable interrupts:
583 */
584 TRACE_IRQS_IRETQ
585
586 /*
587 * At this label, code paths which return to kernel and to user,
588 * which come from interrupts/exception and from syscalls, merge.
589 */
590 restore_regs_and_iret:
591 RESTORE_EXTRA_REGS
592 restore_c_regs_and_iret:
593 RESTORE_C_REGS
594 REMOVE_PT_GPREGS_FROM_STACK 8
595 INTERRUPT_RETURN
596
597 ENTRY(native_iret)
598 /*
599 * Are we returning to a stack segment from the LDT? Note: in
600 * 64-bit mode SS:RSP on the exception stack is always valid.
601 */
602 #ifdef CONFIG_X86_ESPFIX64
603 testb $4, (SS-RIP)(%rsp)
604 jnz native_irq_return_ldt
605 #endif
606
607 .global native_irq_return_iret
608 native_irq_return_iret:
609 /*
610 * This may fault. Non-paranoid faults on return to userspace are
611 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
612 * Double-faults due to espfix64 are handled in do_double_fault.
613 * Other faults here are fatal.
614 */
615 iretq
616
617 #ifdef CONFIG_X86_ESPFIX64
618 native_irq_return_ldt:
619 pushq %rax
620 pushq %rdi
621 SWAPGS
622 movq PER_CPU_VAR(espfix_waddr), %rdi
623 movq %rax, (0*8)(%rdi) /* RAX */
624 movq (2*8)(%rsp), %rax /* RIP */
625 movq %rax, (1*8)(%rdi)
626 movq (3*8)(%rsp), %rax /* CS */
627 movq %rax, (2*8)(%rdi)
628 movq (4*8)(%rsp), %rax /* RFLAGS */
629 movq %rax, (3*8)(%rdi)
630 movq (6*8)(%rsp), %rax /* SS */
631 movq %rax, (5*8)(%rdi)
632 movq (5*8)(%rsp), %rax /* RSP */
633 movq %rax, (4*8)(%rdi)
634 andl $0xffff0000, %eax
635 popq %rdi
636 orq PER_CPU_VAR(espfix_stack), %rax
637 SWAPGS
638 movq %rax, %rsp
639 popq %rax
640 jmp native_irq_return_iret
641 #endif
642 END(common_interrupt)
643
644 /*
645 * APIC interrupts.
646 */
647 .macro apicinterrupt3 num sym do_sym
648 ENTRY(\sym)
649 ASM_CLAC
650 pushq $~(\num)
651 .Lcommon_\sym:
652 interrupt \do_sym
653 jmp ret_from_intr
654 END(\sym)
655 .endm
656
657 #ifdef CONFIG_TRACING
658 #define trace(sym) trace_##sym
659 #define smp_trace(sym) smp_trace_##sym
660
661 .macro trace_apicinterrupt num sym
662 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
663 .endm
664 #else
665 .macro trace_apicinterrupt num sym do_sym
666 .endm
667 #endif
668
669 .macro apicinterrupt num sym do_sym
670 apicinterrupt3 \num \sym \do_sym
671 trace_apicinterrupt \num \sym
672 .endm
673
674 #ifdef CONFIG_SMP
675 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
676 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
677 #endif
678
679 #ifdef CONFIG_X86_UV
680 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
681 #endif
682
683 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
684 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
685
686 #ifdef CONFIG_HAVE_KVM
687 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
688 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
689 #endif
690
691 #ifdef CONFIG_X86_MCE_THRESHOLD
692 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
693 #endif
694
695 #ifdef CONFIG_X86_MCE_AMD
696 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
697 #endif
698
699 #ifdef CONFIG_X86_THERMAL_VECTOR
700 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
701 #endif
702
703 #ifdef CONFIG_SMP
704 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
705 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
706 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
707 #endif
708
709 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
710 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
711
712 #ifdef CONFIG_IRQ_WORK
713 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
714 #endif
715
716 /*
717 * Exception entry points.
718 */
719 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
720
721 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
722 ENTRY(\sym)
723 /* Sanity check */
724 .if \shift_ist != -1 && \paranoid == 0
725 .error "using shift_ist requires paranoid=1"
726 .endif
727
728 ASM_CLAC
729 PARAVIRT_ADJUST_EXCEPTION_FRAME
730
731 .ifeq \has_error_code
732 pushq $-1 /* ORIG_RAX: no syscall to restart */
733 .endif
734
735 ALLOC_PT_GPREGS_ON_STACK
736
737 .if \paranoid
738 .if \paranoid == 1
739 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
740 jnz 1f
741 .endif
742 call paranoid_entry
743 .else
744 call error_entry
745 .endif
746 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
747
748 .if \paranoid
749 .if \shift_ist != -1
750 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
751 .else
752 TRACE_IRQS_OFF
753 .endif
754 .endif
755
756 movq %rsp, %rdi /* pt_regs pointer */
757
758 .if \has_error_code
759 movq ORIG_RAX(%rsp), %rsi /* get error code */
760 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
761 .else
762 xorl %esi, %esi /* no error code */
763 .endif
764
765 .if \shift_ist != -1
766 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
767 .endif
768
769 call \do_sym
770
771 .if \shift_ist != -1
772 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
773 .endif
774
775 /* these procedures expect "no swapgs" flag in ebx */
776 .if \paranoid
777 jmp paranoid_exit
778 .else
779 jmp error_exit
780 .endif
781
782 .if \paranoid == 1
783 /*
784 * Paranoid entry from userspace. Switch stacks and treat it
785 * as a normal entry. This means that paranoid handlers
786 * run in real process context if user_mode(regs).
787 */
788 1:
789 call error_entry
790
791
792 movq %rsp, %rdi /* pt_regs pointer */
793 call sync_regs
794 movq %rax, %rsp /* switch stack */
795
796 movq %rsp, %rdi /* pt_regs pointer */
797
798 .if \has_error_code
799 movq ORIG_RAX(%rsp), %rsi /* get error code */
800 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
801 .else
802 xorl %esi, %esi /* no error code */
803 .endif
804
805 call \do_sym
806
807 jmp error_exit /* %ebx: no swapgs flag */
808 .endif
809 END(\sym)
810 .endm
811
812 #ifdef CONFIG_TRACING
813 .macro trace_idtentry sym do_sym has_error_code:req
814 idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
815 idtentry \sym \do_sym has_error_code=\has_error_code
816 .endm
817 #else
818 .macro trace_idtentry sym do_sym has_error_code:req
819 idtentry \sym \do_sym has_error_code=\has_error_code
820 .endm
821 #endif
822
823 idtentry divide_error do_divide_error has_error_code=0
824 idtentry overflow do_overflow has_error_code=0
825 idtentry bounds do_bounds has_error_code=0
826 idtentry invalid_op do_invalid_op has_error_code=0
827 idtentry device_not_available do_device_not_available has_error_code=0
828 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
829 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
830 idtentry invalid_TSS do_invalid_TSS has_error_code=1
831 idtentry segment_not_present do_segment_not_present has_error_code=1
832 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
833 idtentry coprocessor_error do_coprocessor_error has_error_code=0
834 idtentry alignment_check do_alignment_check has_error_code=1
835 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
836
837
838 /*
839 * Reload gs selector with exception handling
840 * edi: new selector
841 */
842 ENTRY(native_load_gs_index)
843 pushfq
844 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
845 SWAPGS
846 gs_change:
847 movl %edi, %gs
848 2: mfence /* workaround */
849 SWAPGS
850 popfq
851 ret
852 END(native_load_gs_index)
853
854 _ASM_EXTABLE(gs_change, bad_gs)
855 .section .fixup, "ax"
856 /* running with kernelgs */
857 bad_gs:
858 SWAPGS /* switch back to user gs */
859 xorl %eax, %eax
860 movl %eax, %gs
861 jmp 2b
862 .previous
863
864 /* Call softirq on interrupt stack. Interrupts are off. */
865 ENTRY(do_softirq_own_stack)
866 pushq %rbp
867 mov %rsp, %rbp
868 incl PER_CPU_VAR(irq_count)
869 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
870 push %rbp /* frame pointer backlink */
871 call __do_softirq
872 leaveq
873 decl PER_CPU_VAR(irq_count)
874 ret
875 END(do_softirq_own_stack)
876
877 #ifdef CONFIG_XEN
878 idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
879
880 /*
881 * A note on the "critical region" in our callback handler.
882 * We want to avoid stacking callback handlers due to events occurring
883 * during handling of the last event. To do this, we keep events disabled
884 * until we've done all processing. HOWEVER, we must enable events before
885 * popping the stack frame (can't be done atomically) and so it would still
886 * be possible to get enough handler activations to overflow the stack.
887 * Although unlikely, bugs of that kind are hard to track down, so we'd
888 * like to avoid the possibility.
889 * So, on entry to the handler we detect whether we interrupted an
890 * existing activation in its critical region -- if so, we pop the current
891 * activation and restart the handler using the previous one.
892 */
893 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
894
895 /*
896 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
897 * see the correct pointer to the pt_regs
898 */
899 movq %rdi, %rsp /* we don't return, adjust the stack frame */
900 11: incl PER_CPU_VAR(irq_count)
901 movq %rsp, %rbp
902 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
903 pushq %rbp /* frame pointer backlink */
904 call xen_evtchn_do_upcall
905 popq %rsp
906 decl PER_CPU_VAR(irq_count)
907 #ifndef CONFIG_PREEMPT
908 call xen_maybe_preempt_hcall
909 #endif
910 jmp error_exit
911 END(xen_do_hypervisor_callback)
912
913 /*
914 * Hypervisor uses this for application faults while it executes.
915 * We get here for two reasons:
916 * 1. Fault while reloading DS, ES, FS or GS
917 * 2. Fault while executing IRET
918 * Category 1 we do not need to fix up as Xen has already reloaded all segment
919 * registers that could be reloaded and zeroed the others.
920 * Category 2 we fix up by killing the current process. We cannot use the
921 * normal Linux return path in this case because if we use the IRET hypercall
922 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
923 * We distinguish between categories by comparing each saved segment register
924 * with its current contents: any discrepancy means we in category 1.
925 */
926 ENTRY(xen_failsafe_callback)
927 movl %ds, %ecx
928 cmpw %cx, 0x10(%rsp)
929 jne 1f
930 movl %es, %ecx
931 cmpw %cx, 0x18(%rsp)
932 jne 1f
933 movl %fs, %ecx
934 cmpw %cx, 0x20(%rsp)
935 jne 1f
936 movl %gs, %ecx
937 cmpw %cx, 0x28(%rsp)
938 jne 1f
939 /* All segments match their saved values => Category 2 (Bad IRET). */
940 movq (%rsp), %rcx
941 movq 8(%rsp), %r11
942 addq $0x30, %rsp
943 pushq $0 /* RIP */
944 pushq %r11
945 pushq %rcx
946 jmp general_protection
947 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
948 movq (%rsp), %rcx
949 movq 8(%rsp), %r11
950 addq $0x30, %rsp
951 pushq $-1 /* orig_ax = -1 => not a system call */
952 ALLOC_PT_GPREGS_ON_STACK
953 SAVE_C_REGS
954 SAVE_EXTRA_REGS
955 jmp error_exit
956 END(xen_failsafe_callback)
957
958 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
959 xen_hvm_callback_vector xen_evtchn_do_upcall
960
961 #endif /* CONFIG_XEN */
962
963 #if IS_ENABLED(CONFIG_HYPERV)
964 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
965 hyperv_callback_vector hyperv_vector_handler
966 #endif /* CONFIG_HYPERV */
967
968 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
969 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
970 idtentry stack_segment do_stack_segment has_error_code=1
971
972 #ifdef CONFIG_XEN
973 idtentry xen_debug do_debug has_error_code=0
974 idtentry xen_int3 do_int3 has_error_code=0
975 idtentry xen_stack_segment do_stack_segment has_error_code=1
976 #endif
977
978 idtentry general_protection do_general_protection has_error_code=1
979 trace_idtentry page_fault do_page_fault has_error_code=1
980
981 #ifdef CONFIG_KVM_GUEST
982 idtentry async_page_fault do_async_page_fault has_error_code=1
983 #endif
984
985 #ifdef CONFIG_X86_MCE
986 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
987 #endif
988
989 /*
990 * Save all registers in pt_regs, and switch gs if needed.
991 * Use slow, but surefire "are we in kernel?" check.
992 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
993 */
994 ENTRY(paranoid_entry)
995 cld
996 SAVE_C_REGS 8
997 SAVE_EXTRA_REGS 8
998 movl $1, %ebx
999 movl $MSR_GS_BASE, %ecx
1000 rdmsr
1001 testl %edx, %edx
1002 js 1f /* negative -> in kernel */
1003 SWAPGS
1004 xorl %ebx, %ebx
1005 1: ret
1006 END(paranoid_entry)
1007
1008 /*
1009 * "Paranoid" exit path from exception stack. This is invoked
1010 * only on return from non-NMI IST interrupts that came
1011 * from kernel space.
1012 *
1013 * We may be returning to very strange contexts (e.g. very early
1014 * in syscall entry), so checking for preemption here would
1015 * be complicated. Fortunately, we there's no good reason
1016 * to try to handle preemption here.
1017 *
1018 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1019 */
1020 ENTRY(paranoid_exit)
1021 DISABLE_INTERRUPTS(CLBR_NONE)
1022 TRACE_IRQS_OFF_DEBUG
1023 testl %ebx, %ebx /* swapgs needed? */
1024 jnz paranoid_exit_no_swapgs
1025 TRACE_IRQS_IRETQ
1026 SWAPGS_UNSAFE_STACK
1027 jmp paranoid_exit_restore
1028 paranoid_exit_no_swapgs:
1029 TRACE_IRQS_IRETQ_DEBUG
1030 paranoid_exit_restore:
1031 RESTORE_EXTRA_REGS
1032 RESTORE_C_REGS
1033 REMOVE_PT_GPREGS_FROM_STACK 8
1034 INTERRUPT_RETURN
1035 END(paranoid_exit)
1036
1037 /*
1038 * Save all registers in pt_regs, and switch gs if needed.
1039 * Return: EBX=0: came from user mode; EBX=1: otherwise
1040 */
1041 ENTRY(error_entry)
1042 cld
1043 SAVE_C_REGS 8
1044 SAVE_EXTRA_REGS 8
1045 xorl %ebx, %ebx
1046 testb $3, CS+8(%rsp)
1047 jz .Lerror_kernelspace
1048
1049 .Lerror_entry_from_usermode_swapgs:
1050 /*
1051 * We entered from user mode or we're pretending to have entered
1052 * from user mode due to an IRET fault.
1053 */
1054 SWAPGS
1055
1056 .Lerror_entry_from_usermode_after_swapgs:
1057 #ifdef CONFIG_CONTEXT_TRACKING
1058 call enter_from_user_mode
1059 #endif
1060
1061 .Lerror_entry_done:
1062
1063 TRACE_IRQS_OFF
1064 ret
1065
1066 /*
1067 * There are two places in the kernel that can potentially fault with
1068 * usergs. Handle them here. B stepping K8s sometimes report a
1069 * truncated RIP for IRET exceptions returning to compat mode. Check
1070 * for these here too.
1071 */
1072 .Lerror_kernelspace:
1073 incl %ebx
1074 leaq native_irq_return_iret(%rip), %rcx
1075 cmpq %rcx, RIP+8(%rsp)
1076 je .Lerror_bad_iret
1077 movl %ecx, %eax /* zero extend */
1078 cmpq %rax, RIP+8(%rsp)
1079 je .Lbstep_iret
1080 cmpq $gs_change, RIP+8(%rsp)
1081 jne .Lerror_entry_done
1082
1083 /*
1084 * hack: gs_change can fail with user gsbase. If this happens, fix up
1085 * gsbase and proceed. We'll fix up the exception and land in
1086 * gs_change's error handler with kernel gsbase.
1087 */
1088 jmp .Lerror_entry_from_usermode_swapgs
1089
1090 .Lbstep_iret:
1091 /* Fix truncated RIP */
1092 movq %rcx, RIP+8(%rsp)
1093 /* fall through */
1094
1095 .Lerror_bad_iret:
1096 /*
1097 * We came from an IRET to user mode, so we have user gsbase.
1098 * Switch to kernel gsbase:
1099 */
1100 SWAPGS
1101
1102 /*
1103 * Pretend that the exception came from user mode: set up pt_regs
1104 * as if we faulted immediately after IRET and clear EBX so that
1105 * error_exit knows that we will be returning to user mode.
1106 */
1107 mov %rsp, %rdi
1108 call fixup_bad_iret
1109 mov %rax, %rsp
1110 decl %ebx
1111 jmp .Lerror_entry_from_usermode_after_swapgs
1112 END(error_entry)
1113
1114
1115 /*
1116 * On entry, EBS is a "return to kernel mode" flag:
1117 * 1: already in kernel mode, don't need SWAPGS
1118 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1119 */
1120 ENTRY(error_exit)
1121 movl %ebx, %eax
1122 DISABLE_INTERRUPTS(CLBR_NONE)
1123 TRACE_IRQS_OFF
1124 testl %eax, %eax
1125 jnz retint_kernel
1126 jmp retint_user
1127 END(error_exit)
1128
1129 /* Runs on exception stack */
1130 ENTRY(nmi)
1131 /*
1132 * Fix up the exception frame if we're on Xen.
1133 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1134 * one value to the stack on native, so it may clobber the rdx
1135 * scratch slot, but it won't clobber any of the important
1136 * slots past it.
1137 *
1138 * Xen is a different story, because the Xen frame itself overlaps
1139 * the "NMI executing" variable.
1140 */
1141 PARAVIRT_ADJUST_EXCEPTION_FRAME
1142
1143 /*
1144 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1145 * the iretq it performs will take us out of NMI context.
1146 * This means that we can have nested NMIs where the next
1147 * NMI is using the top of the stack of the previous NMI. We
1148 * can't let it execute because the nested NMI will corrupt the
1149 * stack of the previous NMI. NMI handlers are not re-entrant
1150 * anyway.
1151 *
1152 * To handle this case we do the following:
1153 * Check the a special location on the stack that contains
1154 * a variable that is set when NMIs are executing.
1155 * The interrupted task's stack is also checked to see if it
1156 * is an NMI stack.
1157 * If the variable is not set and the stack is not the NMI
1158 * stack then:
1159 * o Set the special variable on the stack
1160 * o Copy the interrupt frame into an "outermost" location on the
1161 * stack
1162 * o Copy the interrupt frame into an "iret" location on the stack
1163 * o Continue processing the NMI
1164 * If the variable is set or the previous stack is the NMI stack:
1165 * o Modify the "iret" location to jump to the repeat_nmi
1166 * o return back to the first NMI
1167 *
1168 * Now on exit of the first NMI, we first clear the stack variable
1169 * The NMI stack will tell any nested NMIs at that point that it is
1170 * nested. Then we pop the stack normally with iret, and if there was
1171 * a nested NMI that updated the copy interrupt stack frame, a
1172 * jump will be made to the repeat_nmi code that will handle the second
1173 * NMI.
1174 *
1175 * However, espfix prevents us from directly returning to userspace
1176 * with a single IRET instruction. Similarly, IRET to user mode
1177 * can fault. We therefore handle NMIs from user space like
1178 * other IST entries.
1179 */
1180
1181 /* Use %rdx as our temp variable throughout */
1182 pushq %rdx
1183
1184 testb $3, CS-RIP+8(%rsp)
1185 jz .Lnmi_from_kernel
1186
1187 /*
1188 * NMI from user mode. We need to run on the thread stack, but we
1189 * can't go through the normal entry paths: NMIs are masked, and
1190 * we don't want to enable interrupts, because then we'll end
1191 * up in an awkward situation in which IRQs are on but NMIs
1192 * are off.
1193 *
1194 * We also must not push anything to the stack before switching
1195 * stacks lest we corrupt the "NMI executing" variable.
1196 */
1197
1198 SWAPGS_UNSAFE_STACK
1199 cld
1200 movq %rsp, %rdx
1201 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1202 pushq 5*8(%rdx) /* pt_regs->ss */
1203 pushq 4*8(%rdx) /* pt_regs->rsp */
1204 pushq 3*8(%rdx) /* pt_regs->flags */
1205 pushq 2*8(%rdx) /* pt_regs->cs */
1206 pushq 1*8(%rdx) /* pt_regs->rip */
1207 pushq $-1 /* pt_regs->orig_ax */
1208 pushq %rdi /* pt_regs->di */
1209 pushq %rsi /* pt_regs->si */
1210 pushq (%rdx) /* pt_regs->dx */
1211 pushq %rcx /* pt_regs->cx */
1212 pushq %rax /* pt_regs->ax */
1213 pushq %r8 /* pt_regs->r8 */
1214 pushq %r9 /* pt_regs->r9 */
1215 pushq %r10 /* pt_regs->r10 */
1216 pushq %r11 /* pt_regs->r11 */
1217 pushq %rbx /* pt_regs->rbx */
1218 pushq %rbp /* pt_regs->rbp */
1219 pushq %r12 /* pt_regs->r12 */
1220 pushq %r13 /* pt_regs->r13 */
1221 pushq %r14 /* pt_regs->r14 */
1222 pushq %r15 /* pt_regs->r15 */
1223
1224 /*
1225 * At this point we no longer need to worry about stack damage
1226 * due to nesting -- we're on the normal thread stack and we're
1227 * done with the NMI stack.
1228 */
1229
1230 movq %rsp, %rdi
1231 movq $-1, %rsi
1232 call do_nmi
1233
1234 /*
1235 * Return back to user mode. We must *not* do the normal exit
1236 * work, because we don't want to enable interrupts. Fortunately,
1237 * do_nmi doesn't modify pt_regs.
1238 */
1239 SWAPGS
1240 jmp restore_c_regs_and_iret
1241
1242 .Lnmi_from_kernel:
1243 /*
1244 * Here's what our stack frame will look like:
1245 * +---------------------------------------------------------+
1246 * | original SS |
1247 * | original Return RSP |
1248 * | original RFLAGS |
1249 * | original CS |
1250 * | original RIP |
1251 * +---------------------------------------------------------+
1252 * | temp storage for rdx |
1253 * +---------------------------------------------------------+
1254 * | "NMI executing" variable |
1255 * +---------------------------------------------------------+
1256 * | iret SS } Copied from "outermost" frame |
1257 * | iret Return RSP } on each loop iteration; overwritten |
1258 * | iret RFLAGS } by a nested NMI to force another |
1259 * | iret CS } iteration if needed. |
1260 * | iret RIP } |
1261 * +---------------------------------------------------------+
1262 * | outermost SS } initialized in first_nmi; |
1263 * | outermost Return RSP } will not be changed before |
1264 * | outermost RFLAGS } NMI processing is done. |
1265 * | outermost CS } Copied to "iret" frame on each |
1266 * | outermost RIP } iteration. |
1267 * +---------------------------------------------------------+
1268 * | pt_regs |
1269 * +---------------------------------------------------------+
1270 *
1271 * The "original" frame is used by hardware. Before re-enabling
1272 * NMIs, we need to be done with it, and we need to leave enough
1273 * space for the asm code here.
1274 *
1275 * We return by executing IRET while RSP points to the "iret" frame.
1276 * That will either return for real or it will loop back into NMI
1277 * processing.
1278 *
1279 * The "outermost" frame is copied to the "iret" frame on each
1280 * iteration of the loop, so each iteration starts with the "iret"
1281 * frame pointing to the final return target.
1282 */
1283
1284 /*
1285 * Determine whether we're a nested NMI.
1286 *
1287 * If we interrupted kernel code between repeat_nmi and
1288 * end_repeat_nmi, then we are a nested NMI. We must not
1289 * modify the "iret" frame because it's being written by
1290 * the outer NMI. That's okay; the outer NMI handler is
1291 * about to about to call do_nmi anyway, so we can just
1292 * resume the outer NMI.
1293 */
1294
1295 movq $repeat_nmi, %rdx
1296 cmpq 8(%rsp), %rdx
1297 ja 1f
1298 movq $end_repeat_nmi, %rdx
1299 cmpq 8(%rsp), %rdx
1300 ja nested_nmi_out
1301 1:
1302
1303 /*
1304 * Now check "NMI executing". If it's set, then we're nested.
1305 * This will not detect if we interrupted an outer NMI just
1306 * before IRET.
1307 */
1308 cmpl $1, -8(%rsp)
1309 je nested_nmi
1310
1311 /*
1312 * Now test if the previous stack was an NMI stack. This covers
1313 * the case where we interrupt an outer NMI after it clears
1314 * "NMI executing" but before IRET. We need to be careful, though:
1315 * there is one case in which RSP could point to the NMI stack
1316 * despite there being no NMI active: naughty userspace controls
1317 * RSP at the very beginning of the SYSCALL targets. We can
1318 * pull a fast one on naughty userspace, though: we program
1319 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1320 * if it controls the kernel's RSP. We set DF before we clear
1321 * "NMI executing".
1322 */
1323 lea 6*8(%rsp), %rdx
1324 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1325 cmpq %rdx, 4*8(%rsp)
1326 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1327 ja first_nmi
1328
1329 subq $EXCEPTION_STKSZ, %rdx
1330 cmpq %rdx, 4*8(%rsp)
1331 /* If it is below the NMI stack, it is a normal NMI */
1332 jb first_nmi
1333
1334 /* Ah, it is within the NMI stack. */
1335
1336 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1337 jz first_nmi /* RSP was user controlled. */
1338
1339 /* This is a nested NMI. */
1340
1341 nested_nmi:
1342 /*
1343 * Modify the "iret" frame to point to repeat_nmi, forcing another
1344 * iteration of NMI handling.
1345 */
1346 subq $8, %rsp
1347 leaq -10*8(%rsp), %rdx
1348 pushq $__KERNEL_DS
1349 pushq %rdx
1350 pushfq
1351 pushq $__KERNEL_CS
1352 pushq $repeat_nmi
1353
1354 /* Put stack back */
1355 addq $(6*8), %rsp
1356
1357 nested_nmi_out:
1358 popq %rdx
1359
1360 /* We are returning to kernel mode, so this cannot result in a fault. */
1361 INTERRUPT_RETURN
1362
1363 first_nmi:
1364 /* Restore rdx. */
1365 movq (%rsp), %rdx
1366
1367 /* Make room for "NMI executing". */
1368 pushq $0
1369
1370 /* Leave room for the "iret" frame */
1371 subq $(5*8), %rsp
1372
1373 /* Copy the "original" frame to the "outermost" frame */
1374 .rept 5
1375 pushq 11*8(%rsp)
1376 .endr
1377
1378 /* Everything up to here is safe from nested NMIs */
1379
1380 #ifdef CONFIG_DEBUG_ENTRY
1381 /*
1382 * For ease of testing, unmask NMIs right away. Disabled by
1383 * default because IRET is very expensive.
1384 */
1385 pushq $0 /* SS */
1386 pushq %rsp /* RSP (minus 8 because of the previous push) */
1387 addq $8, (%rsp) /* Fix up RSP */
1388 pushfq /* RFLAGS */
1389 pushq $__KERNEL_CS /* CS */
1390 pushq $1f /* RIP */
1391 INTERRUPT_RETURN /* continues at repeat_nmi below */
1392 1:
1393 #endif
1394
1395 repeat_nmi:
1396 /*
1397 * If there was a nested NMI, the first NMI's iret will return
1398 * here. But NMIs are still enabled and we can take another
1399 * nested NMI. The nested NMI checks the interrupted RIP to see
1400 * if it is between repeat_nmi and end_repeat_nmi, and if so
1401 * it will just return, as we are about to repeat an NMI anyway.
1402 * This makes it safe to copy to the stack frame that a nested
1403 * NMI will update.
1404 *
1405 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1406 * we're repeating an NMI, gsbase has the same value that it had on
1407 * the first iteration. paranoid_entry will load the kernel
1408 * gsbase if needed before we call do_nmi. "NMI executing"
1409 * is zero.
1410 */
1411 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1412
1413 /*
1414 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1415 * here must not modify the "iret" frame while we're writing to
1416 * it or it will end up containing garbage.
1417 */
1418 addq $(10*8), %rsp
1419 .rept 5
1420 pushq -6*8(%rsp)
1421 .endr
1422 subq $(5*8), %rsp
1423 end_repeat_nmi:
1424
1425 /*
1426 * Everything below this point can be preempted by a nested NMI.
1427 * If this happens, then the inner NMI will change the "iret"
1428 * frame to point back to repeat_nmi.
1429 */
1430 pushq $-1 /* ORIG_RAX: no syscall to restart */
1431 ALLOC_PT_GPREGS_ON_STACK
1432
1433 /*
1434 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1435 * as we should not be calling schedule in NMI context.
1436 * Even with normal interrupts enabled. An NMI should not be
1437 * setting NEED_RESCHED or anything that normal interrupts and
1438 * exceptions might do.
1439 */
1440 call paranoid_entry
1441
1442 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1443 movq %rsp, %rdi
1444 movq $-1, %rsi
1445 call do_nmi
1446
1447 testl %ebx, %ebx /* swapgs needed? */
1448 jnz nmi_restore
1449 nmi_swapgs:
1450 SWAPGS_UNSAFE_STACK
1451 nmi_restore:
1452 RESTORE_EXTRA_REGS
1453 RESTORE_C_REGS
1454
1455 /* Point RSP at the "iret" frame. */
1456 REMOVE_PT_GPREGS_FROM_STACK 6*8
1457
1458 /*
1459 * Clear "NMI executing". Set DF first so that we can easily
1460 * distinguish the remaining code between here and IRET from
1461 * the SYSCALL entry and exit paths. On a native kernel, we
1462 * could just inspect RIP, but, on paravirt kernels,
1463 * INTERRUPT_RETURN can translate into a jump into a
1464 * hypercall page.
1465 */
1466 std
1467 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1468
1469 /*
1470 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1471 * stack in a single instruction. We are returning to kernel
1472 * mode, so this cannot result in a fault.
1473 */
1474 INTERRUPT_RETURN
1475 END(nmi)
1476
1477 ENTRY(ignore_sysret)
1478 mov $-ENOSYS, %eax
1479 sysret
1480 END(ignore_sysret)
This page took 0.062223 seconds and 5 git commands to generate.