Merge tag 'media/v4.5-5' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <linux/err.h>
39
40 /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41 #include <linux/elf-em.h>
42 #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43 #define __AUDIT_ARCH_64BIT 0x80000000
44 #define __AUDIT_ARCH_LE 0x40000000
45
46 .code64
47 .section .entry.text, "ax"
48
49 #ifdef CONFIG_PARAVIRT
50 ENTRY(native_usergs_sysret64)
51 swapgs
52 sysretq
53 ENDPROC(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
55
56 .macro TRACE_IRQS_IRETQ
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
61 1:
62 #endif
63 .endm
64
65 /*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78 .macro TRACE_IRQS_OFF_DEBUG
79 call debug_stack_set_zero
80 TRACE_IRQS_OFF
81 call debug_stack_reset
82 .endm
83
84 .macro TRACE_IRQS_ON_DEBUG
85 call debug_stack_set_zero
86 TRACE_IRQS_ON
87 call debug_stack_reset
88 .endm
89
90 .macro TRACE_IRQS_IRETQ_DEBUG
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
93 TRACE_IRQS_ON_DEBUG
94 1:
95 .endm
96
97 #else
98 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
101 #endif
102
103 /*
104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
105 *
106 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
107 * then loads new ss, cs, and rip from previously programmed MSRs.
108 * rflags gets masked by a value from another MSR (so CLD and CLAC
109 * are not needed). SYSCALL does not save anything on the stack
110 * and does not change rsp.
111 *
112 * Registers on entry:
113 * rax system call number
114 * rcx return address
115 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
116 * rdi arg0
117 * rsi arg1
118 * rdx arg2
119 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
120 * r8 arg4
121 * r9 arg5
122 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
123 *
124 * Only called from user space.
125 *
126 * When user can change pt_regs->foo always force IRET. That is because
127 * it deals with uncanonical addresses better. SYSRET has trouble
128 * with them due to bugs in both AMD and Intel CPUs.
129 */
130
131 ENTRY(entry_SYSCALL_64)
132 /*
133 * Interrupts are off on entry.
134 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
135 * it is too small to ever cause noticeable irq latency.
136 */
137 SWAPGS_UNSAFE_STACK
138 /*
139 * A hypervisor implementation might want to use a label
140 * after the swapgs, so that it can do the swapgs
141 * for the guest and jump here on syscall.
142 */
143 GLOBAL(entry_SYSCALL_64_after_swapgs)
144
145 movq %rsp, PER_CPU_VAR(rsp_scratch)
146 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
147
148 /* Construct struct pt_regs on stack */
149 pushq $__USER_DS /* pt_regs->ss */
150 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
151 /*
152 * Re-enable interrupts.
153 * We use 'rsp_scratch' as a scratch space, hence irq-off block above
154 * must execute atomically in the face of possible interrupt-driven
155 * task preemption. We must enable interrupts only after we're done
156 * with using rsp_scratch:
157 */
158 ENABLE_INTERRUPTS(CLBR_NONE)
159 pushq %r11 /* pt_regs->flags */
160 pushq $__USER_CS /* pt_regs->cs */
161 pushq %rcx /* pt_regs->ip */
162 pushq %rax /* pt_regs->orig_ax */
163 pushq %rdi /* pt_regs->di */
164 pushq %rsi /* pt_regs->si */
165 pushq %rdx /* pt_regs->dx */
166 pushq %rcx /* pt_regs->cx */
167 pushq $-ENOSYS /* pt_regs->ax */
168 pushq %r8 /* pt_regs->r8 */
169 pushq %r9 /* pt_regs->r9 */
170 pushq %r10 /* pt_regs->r10 */
171 pushq %r11 /* pt_regs->r11 */
172 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
173
174 testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
175 jnz tracesys
176 entry_SYSCALL_64_fastpath:
177 #if __SYSCALL_MASK == ~0
178 cmpq $__NR_syscall_max, %rax
179 #else
180 andl $__SYSCALL_MASK, %eax
181 cmpl $__NR_syscall_max, %eax
182 #endif
183 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
184 movq %r10, %rcx
185 call *sys_call_table(, %rax, 8)
186 movq %rax, RAX(%rsp)
187 1:
188 /*
189 * Syscall return path ending with SYSRET (fast path).
190 * Has incompletely filled pt_regs.
191 */
192 LOCKDEP_SYS_EXIT
193 /*
194 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
195 * it is too small to ever cause noticeable irq latency.
196 */
197 DISABLE_INTERRUPTS(CLBR_NONE)
198
199 /*
200 * We must check ti flags with interrupts (or at least preemption)
201 * off because we must *never* return to userspace without
202 * processing exit work that is enqueued if we're preempted here.
203 * In particular, returning to userspace with any of the one-shot
204 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
205 * very bad.
206 */
207 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
208 jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */
209
210 RESTORE_C_REGS_EXCEPT_RCX_R11
211 movq RIP(%rsp), %rcx
212 movq EFLAGS(%rsp), %r11
213 movq RSP(%rsp), %rsp
214 /*
215 * 64-bit SYSRET restores rip from rcx,
216 * rflags from r11 (but RF and VM bits are forced to 0),
217 * cs and ss are loaded from MSRs.
218 * Restoration of rflags re-enables interrupts.
219 *
220 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
221 * descriptor is not reinitialized. This means that we should
222 * avoid SYSRET with SS == NULL, which could happen if we schedule,
223 * exit the kernel, and re-enter using an interrupt vector. (All
224 * interrupt entries on x86_64 set SS to NULL.) We prevent that
225 * from happening by reloading SS in __switch_to. (Actually
226 * detecting the failure in 64-bit userspace is tricky but can be
227 * done.)
228 */
229 USERGS_SYSRET64
230
231 GLOBAL(int_ret_from_sys_call_irqs_off)
232 TRACE_IRQS_ON
233 ENABLE_INTERRUPTS(CLBR_NONE)
234 jmp int_ret_from_sys_call
235
236 /* Do syscall entry tracing */
237 tracesys:
238 movq %rsp, %rdi
239 movl $AUDIT_ARCH_X86_64, %esi
240 call syscall_trace_enter_phase1
241 test %rax, %rax
242 jnz tracesys_phase2 /* if needed, run the slow path */
243 RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */
244 movq ORIG_RAX(%rsp), %rax
245 jmp entry_SYSCALL_64_fastpath /* and return to the fast path */
246
247 tracesys_phase2:
248 SAVE_EXTRA_REGS
249 movq %rsp, %rdi
250 movl $AUDIT_ARCH_X86_64, %esi
251 movq %rax, %rdx
252 call syscall_trace_enter_phase2
253
254 /*
255 * Reload registers from stack in case ptrace changed them.
256 * We don't reload %rax because syscall_trace_entry_phase2() returned
257 * the value it wants us to use in the table lookup.
258 */
259 RESTORE_C_REGS_EXCEPT_RAX
260 RESTORE_EXTRA_REGS
261 #if __SYSCALL_MASK == ~0
262 cmpq $__NR_syscall_max, %rax
263 #else
264 andl $__SYSCALL_MASK, %eax
265 cmpl $__NR_syscall_max, %eax
266 #endif
267 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
268 movq %r10, %rcx /* fixup for C */
269 call *sys_call_table(, %rax, 8)
270 movq %rax, RAX(%rsp)
271 1:
272 /* Use IRET because user could have changed pt_regs->foo */
273
274 /*
275 * Syscall return path ending with IRET.
276 * Has correct iret frame.
277 */
278 GLOBAL(int_ret_from_sys_call)
279 SAVE_EXTRA_REGS
280 movq %rsp, %rdi
281 call syscall_return_slowpath /* returns with IRQs disabled */
282 RESTORE_EXTRA_REGS
283 TRACE_IRQS_IRETQ /* we're about to change IF */
284
285 /*
286 * Try to use SYSRET instead of IRET if we're returning to
287 * a completely clean 64-bit userspace context.
288 */
289 movq RCX(%rsp), %rcx
290 movq RIP(%rsp), %r11
291 cmpq %rcx, %r11 /* RCX == RIP */
292 jne opportunistic_sysret_failed
293
294 /*
295 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
296 * in kernel space. This essentially lets the user take over
297 * the kernel, since userspace controls RSP.
298 *
299 * If width of "canonical tail" ever becomes variable, this will need
300 * to be updated to remain correct on both old and new CPUs.
301 */
302 .ifne __VIRTUAL_MASK_SHIFT - 47
303 .error "virtual address width changed -- SYSRET checks need update"
304 .endif
305
306 /* Change top 16 bits to be the sign-extension of 47th bit */
307 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
308 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
309
310 /* If this changed %rcx, it was not canonical */
311 cmpq %rcx, %r11
312 jne opportunistic_sysret_failed
313
314 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
315 jne opportunistic_sysret_failed
316
317 movq R11(%rsp), %r11
318 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
319 jne opportunistic_sysret_failed
320
321 /*
322 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
323 * restoring TF results in a trap from userspace immediately after
324 * SYSRET. This would cause an infinite loop whenever #DB happens
325 * with register state that satisfies the opportunistic SYSRET
326 * conditions. For example, single-stepping this user code:
327 *
328 * movq $stuck_here, %rcx
329 * pushfq
330 * popq %r11
331 * stuck_here:
332 *
333 * would never get past 'stuck_here'.
334 */
335 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
336 jnz opportunistic_sysret_failed
337
338 /* nothing to check for RSP */
339
340 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
341 jne opportunistic_sysret_failed
342
343 /*
344 * We win! This label is here just for ease of understanding
345 * perf profiles. Nothing jumps here.
346 */
347 syscall_return_via_sysret:
348 /* rcx and r11 are already restored (see code above) */
349 RESTORE_C_REGS_EXCEPT_RCX_R11
350 movq RSP(%rsp), %rsp
351 USERGS_SYSRET64
352
353 opportunistic_sysret_failed:
354 SWAPGS
355 jmp restore_c_regs_and_iret
356 END(entry_SYSCALL_64)
357
358
359 .macro FORK_LIKE func
360 ENTRY(stub_\func)
361 SAVE_EXTRA_REGS 8
362 jmp sys_\func
363 END(stub_\func)
364 .endm
365
366 FORK_LIKE clone
367 FORK_LIKE fork
368 FORK_LIKE vfork
369
370 ENTRY(stub_execve)
371 call sys_execve
372 return_from_execve:
373 testl %eax, %eax
374 jz 1f
375 /* exec failed, can use fast SYSRET code path in this case */
376 ret
377 1:
378 /* must use IRET code path (pt_regs->cs may have changed) */
379 addq $8, %rsp
380 ZERO_EXTRA_REGS
381 movq %rax, RAX(%rsp)
382 jmp int_ret_from_sys_call
383 END(stub_execve)
384 /*
385 * Remaining execve stubs are only 7 bytes long.
386 * ENTRY() often aligns to 16 bytes, which in this case has no benefits.
387 */
388 .align 8
389 GLOBAL(stub_execveat)
390 call sys_execveat
391 jmp return_from_execve
392 END(stub_execveat)
393
394 #if defined(CONFIG_X86_X32_ABI)
395 .align 8
396 GLOBAL(stub_x32_execve)
397 call compat_sys_execve
398 jmp return_from_execve
399 END(stub_x32_execve)
400 .align 8
401 GLOBAL(stub_x32_execveat)
402 call compat_sys_execveat
403 jmp return_from_execve
404 END(stub_x32_execveat)
405 #endif
406
407 /*
408 * sigreturn is special because it needs to restore all registers on return.
409 * This cannot be done with SYSRET, so use the IRET return path instead.
410 */
411 ENTRY(stub_rt_sigreturn)
412 /*
413 * SAVE_EXTRA_REGS result is not normally needed:
414 * sigreturn overwrites all pt_regs->GPREGS.
415 * But sigreturn can fail (!), and there is no easy way to detect that.
416 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
417 * we SAVE_EXTRA_REGS here.
418 */
419 SAVE_EXTRA_REGS 8
420 call sys_rt_sigreturn
421 return_from_stub:
422 addq $8, %rsp
423 RESTORE_EXTRA_REGS
424 movq %rax, RAX(%rsp)
425 jmp int_ret_from_sys_call
426 END(stub_rt_sigreturn)
427
428 #ifdef CONFIG_X86_X32_ABI
429 ENTRY(stub_x32_rt_sigreturn)
430 SAVE_EXTRA_REGS 8
431 call sys32_x32_rt_sigreturn
432 jmp return_from_stub
433 END(stub_x32_rt_sigreturn)
434 #endif
435
436 /*
437 * A newly forked process directly context switches into this address.
438 *
439 * rdi: prev task we switched from
440 */
441 ENTRY(ret_from_fork)
442
443 LOCK ; btr $TIF_FORK, TI_flags(%r8)
444
445 pushq $0x0002
446 popfq /* reset kernel eflags */
447
448 call schedule_tail /* rdi: 'prev' task parameter */
449
450 RESTORE_EXTRA_REGS
451
452 testb $3, CS(%rsp) /* from kernel_thread? */
453
454 /*
455 * By the time we get here, we have no idea whether our pt_regs,
456 * ti flags, and ti status came from the 64-bit SYSCALL fast path,
457 * the slow path, or one of the 32-bit compat paths.
458 * Use IRET code path to return, since it can safely handle
459 * all of the above.
460 */
461 jnz int_ret_from_sys_call
462
463 /*
464 * We came from kernel_thread
465 * nb: we depend on RESTORE_EXTRA_REGS above
466 */
467 movq %rbp, %rdi
468 call *%rbx
469 movl $0, RAX(%rsp)
470 RESTORE_EXTRA_REGS
471 jmp int_ret_from_sys_call
472 END(ret_from_fork)
473
474 /*
475 * Build the entry stubs with some assembler magic.
476 * We pack 1 stub into every 8-byte block.
477 */
478 .align 8
479 ENTRY(irq_entries_start)
480 vector=FIRST_EXTERNAL_VECTOR
481 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
482 pushq $(~vector+0x80) /* Note: always in signed byte range */
483 vector=vector+1
484 jmp common_interrupt
485 .align 8
486 .endr
487 END(irq_entries_start)
488
489 /*
490 * Interrupt entry/exit.
491 *
492 * Interrupt entry points save only callee clobbered registers in fast path.
493 *
494 * Entry runs with interrupts off.
495 */
496
497 /* 0(%rsp): ~(interrupt number) */
498 .macro interrupt func
499 cld
500 ALLOC_PT_GPREGS_ON_STACK
501 SAVE_C_REGS
502 SAVE_EXTRA_REGS
503
504 testb $3, CS(%rsp)
505 jz 1f
506
507 /*
508 * IRQ from user mode. Switch to kernel gsbase and inform context
509 * tracking that we're in kernel mode.
510 */
511 SWAPGS
512
513 /*
514 * We need to tell lockdep that IRQs are off. We can't do this until
515 * we fix gsbase, and we should do it before enter_from_user_mode
516 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
517 * the simplest way to handle it is to just call it twice if
518 * we enter from user mode. There's no reason to optimize this since
519 * TRACE_IRQS_OFF is a no-op if lockdep is off.
520 */
521 TRACE_IRQS_OFF
522
523 CALL_enter_from_user_mode
524
525 1:
526 /*
527 * Save previous stack pointer, optionally switch to interrupt stack.
528 * irq_count is used to check if a CPU is already on an interrupt stack
529 * or not. While this is essentially redundant with preempt_count it is
530 * a little cheaper to use a separate counter in the PDA (short of
531 * moving irq_enter into assembly, which would be too much work)
532 */
533 movq %rsp, %rdi
534 incl PER_CPU_VAR(irq_count)
535 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
536 pushq %rdi
537 /* We entered an interrupt context - irqs are off: */
538 TRACE_IRQS_OFF
539
540 call \func /* rdi points to pt_regs */
541 .endm
542
543 /*
544 * The interrupt stubs push (~vector+0x80) onto the stack and
545 * then jump to common_interrupt.
546 */
547 .p2align CONFIG_X86_L1_CACHE_SHIFT
548 common_interrupt:
549 ASM_CLAC
550 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
551 interrupt do_IRQ
552 /* 0(%rsp): old RSP */
553 ret_from_intr:
554 DISABLE_INTERRUPTS(CLBR_NONE)
555 TRACE_IRQS_OFF
556 decl PER_CPU_VAR(irq_count)
557
558 /* Restore saved previous stack */
559 popq %rsp
560
561 testb $3, CS(%rsp)
562 jz retint_kernel
563
564 /* Interrupt came from user space */
565 GLOBAL(retint_user)
566 mov %rsp,%rdi
567 call prepare_exit_to_usermode
568 TRACE_IRQS_IRETQ
569 SWAPGS
570 jmp restore_regs_and_iret
571
572 /* Returning to kernel space */
573 retint_kernel:
574 #ifdef CONFIG_PREEMPT
575 /* Interrupts are off */
576 /* Check if we need preemption */
577 bt $9, EFLAGS(%rsp) /* were interrupts off? */
578 jnc 1f
579 0: cmpl $0, PER_CPU_VAR(__preempt_count)
580 jnz 1f
581 call preempt_schedule_irq
582 jmp 0b
583 1:
584 #endif
585 /*
586 * The iretq could re-enable interrupts:
587 */
588 TRACE_IRQS_IRETQ
589
590 /*
591 * At this label, code paths which return to kernel and to user,
592 * which come from interrupts/exception and from syscalls, merge.
593 */
594 GLOBAL(restore_regs_and_iret)
595 RESTORE_EXTRA_REGS
596 restore_c_regs_and_iret:
597 RESTORE_C_REGS
598 REMOVE_PT_GPREGS_FROM_STACK 8
599 INTERRUPT_RETURN
600
601 ENTRY(native_iret)
602 /*
603 * Are we returning to a stack segment from the LDT? Note: in
604 * 64-bit mode SS:RSP on the exception stack is always valid.
605 */
606 #ifdef CONFIG_X86_ESPFIX64
607 testb $4, (SS-RIP)(%rsp)
608 jnz native_irq_return_ldt
609 #endif
610
611 .global native_irq_return_iret
612 native_irq_return_iret:
613 /*
614 * This may fault. Non-paranoid faults on return to userspace are
615 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
616 * Double-faults due to espfix64 are handled in do_double_fault.
617 * Other faults here are fatal.
618 */
619 iretq
620
621 #ifdef CONFIG_X86_ESPFIX64
622 native_irq_return_ldt:
623 pushq %rax
624 pushq %rdi
625 SWAPGS
626 movq PER_CPU_VAR(espfix_waddr), %rdi
627 movq %rax, (0*8)(%rdi) /* RAX */
628 movq (2*8)(%rsp), %rax /* RIP */
629 movq %rax, (1*8)(%rdi)
630 movq (3*8)(%rsp), %rax /* CS */
631 movq %rax, (2*8)(%rdi)
632 movq (4*8)(%rsp), %rax /* RFLAGS */
633 movq %rax, (3*8)(%rdi)
634 movq (6*8)(%rsp), %rax /* SS */
635 movq %rax, (5*8)(%rdi)
636 movq (5*8)(%rsp), %rax /* RSP */
637 movq %rax, (4*8)(%rdi)
638 andl $0xffff0000, %eax
639 popq %rdi
640 orq PER_CPU_VAR(espfix_stack), %rax
641 SWAPGS
642 movq %rax, %rsp
643 popq %rax
644 jmp native_irq_return_iret
645 #endif
646 END(common_interrupt)
647
648 /*
649 * APIC interrupts.
650 */
651 .macro apicinterrupt3 num sym do_sym
652 ENTRY(\sym)
653 ASM_CLAC
654 pushq $~(\num)
655 .Lcommon_\sym:
656 interrupt \do_sym
657 jmp ret_from_intr
658 END(\sym)
659 .endm
660
661 #ifdef CONFIG_TRACING
662 #define trace(sym) trace_##sym
663 #define smp_trace(sym) smp_trace_##sym
664
665 .macro trace_apicinterrupt num sym
666 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
667 .endm
668 #else
669 .macro trace_apicinterrupt num sym do_sym
670 .endm
671 #endif
672
673 .macro apicinterrupt num sym do_sym
674 apicinterrupt3 \num \sym \do_sym
675 trace_apicinterrupt \num \sym
676 .endm
677
678 #ifdef CONFIG_SMP
679 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
680 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
681 #endif
682
683 #ifdef CONFIG_X86_UV
684 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
685 #endif
686
687 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
688 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
689
690 #ifdef CONFIG_HAVE_KVM
691 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
692 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
693 #endif
694
695 #ifdef CONFIG_X86_MCE_THRESHOLD
696 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
697 #endif
698
699 #ifdef CONFIG_X86_MCE_AMD
700 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
701 #endif
702
703 #ifdef CONFIG_X86_THERMAL_VECTOR
704 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
705 #endif
706
707 #ifdef CONFIG_SMP
708 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
709 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
710 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
711 #endif
712
713 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
714 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
715
716 #ifdef CONFIG_IRQ_WORK
717 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
718 #endif
719
720 /*
721 * Exception entry points.
722 */
723 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
724
725 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
726 ENTRY(\sym)
727 /* Sanity check */
728 .if \shift_ist != -1 && \paranoid == 0
729 .error "using shift_ist requires paranoid=1"
730 .endif
731
732 ASM_CLAC
733 PARAVIRT_ADJUST_EXCEPTION_FRAME
734
735 .ifeq \has_error_code
736 pushq $-1 /* ORIG_RAX: no syscall to restart */
737 .endif
738
739 ALLOC_PT_GPREGS_ON_STACK
740
741 .if \paranoid
742 .if \paranoid == 1
743 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
744 jnz 1f
745 .endif
746 call paranoid_entry
747 .else
748 call error_entry
749 .endif
750 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
751
752 .if \paranoid
753 .if \shift_ist != -1
754 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
755 .else
756 TRACE_IRQS_OFF
757 .endif
758 .endif
759
760 movq %rsp, %rdi /* pt_regs pointer */
761
762 .if \has_error_code
763 movq ORIG_RAX(%rsp), %rsi /* get error code */
764 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
765 .else
766 xorl %esi, %esi /* no error code */
767 .endif
768
769 .if \shift_ist != -1
770 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
771 .endif
772
773 call \do_sym
774
775 .if \shift_ist != -1
776 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
777 .endif
778
779 /* these procedures expect "no swapgs" flag in ebx */
780 .if \paranoid
781 jmp paranoid_exit
782 .else
783 jmp error_exit
784 .endif
785
786 .if \paranoid == 1
787 /*
788 * Paranoid entry from userspace. Switch stacks and treat it
789 * as a normal entry. This means that paranoid handlers
790 * run in real process context if user_mode(regs).
791 */
792 1:
793 call error_entry
794
795
796 movq %rsp, %rdi /* pt_regs pointer */
797 call sync_regs
798 movq %rax, %rsp /* switch stack */
799
800 movq %rsp, %rdi /* pt_regs pointer */
801
802 .if \has_error_code
803 movq ORIG_RAX(%rsp), %rsi /* get error code */
804 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
805 .else
806 xorl %esi, %esi /* no error code */
807 .endif
808
809 call \do_sym
810
811 jmp error_exit /* %ebx: no swapgs flag */
812 .endif
813 END(\sym)
814 .endm
815
816 #ifdef CONFIG_TRACING
817 .macro trace_idtentry sym do_sym has_error_code:req
818 idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
819 idtentry \sym \do_sym has_error_code=\has_error_code
820 .endm
821 #else
822 .macro trace_idtentry sym do_sym has_error_code:req
823 idtentry \sym \do_sym has_error_code=\has_error_code
824 .endm
825 #endif
826
827 idtentry divide_error do_divide_error has_error_code=0
828 idtentry overflow do_overflow has_error_code=0
829 idtentry bounds do_bounds has_error_code=0
830 idtentry invalid_op do_invalid_op has_error_code=0
831 idtentry device_not_available do_device_not_available has_error_code=0
832 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
833 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
834 idtentry invalid_TSS do_invalid_TSS has_error_code=1
835 idtentry segment_not_present do_segment_not_present has_error_code=1
836 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
837 idtentry coprocessor_error do_coprocessor_error has_error_code=0
838 idtentry alignment_check do_alignment_check has_error_code=1
839 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
840
841
842 /*
843 * Reload gs selector with exception handling
844 * edi: new selector
845 */
846 ENTRY(native_load_gs_index)
847 pushfq
848 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
849 SWAPGS
850 gs_change:
851 movl %edi, %gs
852 2: mfence /* workaround */
853 SWAPGS
854 popfq
855 ret
856 END(native_load_gs_index)
857
858 _ASM_EXTABLE(gs_change, bad_gs)
859 .section .fixup, "ax"
860 /* running with kernelgs */
861 bad_gs:
862 SWAPGS /* switch back to user gs */
863 xorl %eax, %eax
864 movl %eax, %gs
865 jmp 2b
866 .previous
867
868 /* Call softirq on interrupt stack. Interrupts are off. */
869 ENTRY(do_softirq_own_stack)
870 pushq %rbp
871 mov %rsp, %rbp
872 incl PER_CPU_VAR(irq_count)
873 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
874 push %rbp /* frame pointer backlink */
875 call __do_softirq
876 leaveq
877 decl PER_CPU_VAR(irq_count)
878 ret
879 END(do_softirq_own_stack)
880
881 #ifdef CONFIG_XEN
882 idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
883
884 /*
885 * A note on the "critical region" in our callback handler.
886 * We want to avoid stacking callback handlers due to events occurring
887 * during handling of the last event. To do this, we keep events disabled
888 * until we've done all processing. HOWEVER, we must enable events before
889 * popping the stack frame (can't be done atomically) and so it would still
890 * be possible to get enough handler activations to overflow the stack.
891 * Although unlikely, bugs of that kind are hard to track down, so we'd
892 * like to avoid the possibility.
893 * So, on entry to the handler we detect whether we interrupted an
894 * existing activation in its critical region -- if so, we pop the current
895 * activation and restart the handler using the previous one.
896 */
897 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
898
899 /*
900 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
901 * see the correct pointer to the pt_regs
902 */
903 movq %rdi, %rsp /* we don't return, adjust the stack frame */
904 11: incl PER_CPU_VAR(irq_count)
905 movq %rsp, %rbp
906 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
907 pushq %rbp /* frame pointer backlink */
908 call xen_evtchn_do_upcall
909 popq %rsp
910 decl PER_CPU_VAR(irq_count)
911 #ifndef CONFIG_PREEMPT
912 call xen_maybe_preempt_hcall
913 #endif
914 jmp error_exit
915 END(xen_do_hypervisor_callback)
916
917 /*
918 * Hypervisor uses this for application faults while it executes.
919 * We get here for two reasons:
920 * 1. Fault while reloading DS, ES, FS or GS
921 * 2. Fault while executing IRET
922 * Category 1 we do not need to fix up as Xen has already reloaded all segment
923 * registers that could be reloaded and zeroed the others.
924 * Category 2 we fix up by killing the current process. We cannot use the
925 * normal Linux return path in this case because if we use the IRET hypercall
926 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
927 * We distinguish between categories by comparing each saved segment register
928 * with its current contents: any discrepancy means we in category 1.
929 */
930 ENTRY(xen_failsafe_callback)
931 movl %ds, %ecx
932 cmpw %cx, 0x10(%rsp)
933 jne 1f
934 movl %es, %ecx
935 cmpw %cx, 0x18(%rsp)
936 jne 1f
937 movl %fs, %ecx
938 cmpw %cx, 0x20(%rsp)
939 jne 1f
940 movl %gs, %ecx
941 cmpw %cx, 0x28(%rsp)
942 jne 1f
943 /* All segments match their saved values => Category 2 (Bad IRET). */
944 movq (%rsp), %rcx
945 movq 8(%rsp), %r11
946 addq $0x30, %rsp
947 pushq $0 /* RIP */
948 pushq %r11
949 pushq %rcx
950 jmp general_protection
951 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
952 movq (%rsp), %rcx
953 movq 8(%rsp), %r11
954 addq $0x30, %rsp
955 pushq $-1 /* orig_ax = -1 => not a system call */
956 ALLOC_PT_GPREGS_ON_STACK
957 SAVE_C_REGS
958 SAVE_EXTRA_REGS
959 jmp error_exit
960 END(xen_failsafe_callback)
961
962 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
963 xen_hvm_callback_vector xen_evtchn_do_upcall
964
965 #endif /* CONFIG_XEN */
966
967 #if IS_ENABLED(CONFIG_HYPERV)
968 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
969 hyperv_callback_vector hyperv_vector_handler
970 #endif /* CONFIG_HYPERV */
971
972 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
973 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
974 idtentry stack_segment do_stack_segment has_error_code=1
975
976 #ifdef CONFIG_XEN
977 idtentry xen_debug do_debug has_error_code=0
978 idtentry xen_int3 do_int3 has_error_code=0
979 idtentry xen_stack_segment do_stack_segment has_error_code=1
980 #endif
981
982 idtentry general_protection do_general_protection has_error_code=1
983 trace_idtentry page_fault do_page_fault has_error_code=1
984
985 #ifdef CONFIG_KVM_GUEST
986 idtentry async_page_fault do_async_page_fault has_error_code=1
987 #endif
988
989 #ifdef CONFIG_X86_MCE
990 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
991 #endif
992
993 /*
994 * Save all registers in pt_regs, and switch gs if needed.
995 * Use slow, but surefire "are we in kernel?" check.
996 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
997 */
998 ENTRY(paranoid_entry)
999 cld
1000 SAVE_C_REGS 8
1001 SAVE_EXTRA_REGS 8
1002 movl $1, %ebx
1003 movl $MSR_GS_BASE, %ecx
1004 rdmsr
1005 testl %edx, %edx
1006 js 1f /* negative -> in kernel */
1007 SWAPGS
1008 xorl %ebx, %ebx
1009 1: ret
1010 END(paranoid_entry)
1011
1012 /*
1013 * "Paranoid" exit path from exception stack. This is invoked
1014 * only on return from non-NMI IST interrupts that came
1015 * from kernel space.
1016 *
1017 * We may be returning to very strange contexts (e.g. very early
1018 * in syscall entry), so checking for preemption here would
1019 * be complicated. Fortunately, we there's no good reason
1020 * to try to handle preemption here.
1021 *
1022 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1023 */
1024 ENTRY(paranoid_exit)
1025 DISABLE_INTERRUPTS(CLBR_NONE)
1026 TRACE_IRQS_OFF_DEBUG
1027 testl %ebx, %ebx /* swapgs needed? */
1028 jnz paranoid_exit_no_swapgs
1029 TRACE_IRQS_IRETQ
1030 SWAPGS_UNSAFE_STACK
1031 jmp paranoid_exit_restore
1032 paranoid_exit_no_swapgs:
1033 TRACE_IRQS_IRETQ_DEBUG
1034 paranoid_exit_restore:
1035 RESTORE_EXTRA_REGS
1036 RESTORE_C_REGS
1037 REMOVE_PT_GPREGS_FROM_STACK 8
1038 INTERRUPT_RETURN
1039 END(paranoid_exit)
1040
1041 /*
1042 * Save all registers in pt_regs, and switch gs if needed.
1043 * Return: EBX=0: came from user mode; EBX=1: otherwise
1044 */
1045 ENTRY(error_entry)
1046 cld
1047 SAVE_C_REGS 8
1048 SAVE_EXTRA_REGS 8
1049 xorl %ebx, %ebx
1050 testb $3, CS+8(%rsp)
1051 jz .Lerror_kernelspace
1052
1053 .Lerror_entry_from_usermode_swapgs:
1054 /*
1055 * We entered from user mode or we're pretending to have entered
1056 * from user mode due to an IRET fault.
1057 */
1058 SWAPGS
1059
1060 .Lerror_entry_from_usermode_after_swapgs:
1061 /*
1062 * We need to tell lockdep that IRQs are off. We can't do this until
1063 * we fix gsbase, and we should do it before enter_from_user_mode
1064 * (which can take locks).
1065 */
1066 TRACE_IRQS_OFF
1067 CALL_enter_from_user_mode
1068 ret
1069
1070 .Lerror_entry_done:
1071 TRACE_IRQS_OFF
1072 ret
1073
1074 /*
1075 * There are two places in the kernel that can potentially fault with
1076 * usergs. Handle them here. B stepping K8s sometimes report a
1077 * truncated RIP for IRET exceptions returning to compat mode. Check
1078 * for these here too.
1079 */
1080 .Lerror_kernelspace:
1081 incl %ebx
1082 leaq native_irq_return_iret(%rip), %rcx
1083 cmpq %rcx, RIP+8(%rsp)
1084 je .Lerror_bad_iret
1085 movl %ecx, %eax /* zero extend */
1086 cmpq %rax, RIP+8(%rsp)
1087 je .Lbstep_iret
1088 cmpq $gs_change, RIP+8(%rsp)
1089 jne .Lerror_entry_done
1090
1091 /*
1092 * hack: gs_change can fail with user gsbase. If this happens, fix up
1093 * gsbase and proceed. We'll fix up the exception and land in
1094 * gs_change's error handler with kernel gsbase.
1095 */
1096 jmp .Lerror_entry_from_usermode_swapgs
1097
1098 .Lbstep_iret:
1099 /* Fix truncated RIP */
1100 movq %rcx, RIP+8(%rsp)
1101 /* fall through */
1102
1103 .Lerror_bad_iret:
1104 /*
1105 * We came from an IRET to user mode, so we have user gsbase.
1106 * Switch to kernel gsbase:
1107 */
1108 SWAPGS
1109
1110 /*
1111 * Pretend that the exception came from user mode: set up pt_regs
1112 * as if we faulted immediately after IRET and clear EBX so that
1113 * error_exit knows that we will be returning to user mode.
1114 */
1115 mov %rsp, %rdi
1116 call fixup_bad_iret
1117 mov %rax, %rsp
1118 decl %ebx
1119 jmp .Lerror_entry_from_usermode_after_swapgs
1120 END(error_entry)
1121
1122
1123 /*
1124 * On entry, EBS is a "return to kernel mode" flag:
1125 * 1: already in kernel mode, don't need SWAPGS
1126 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1127 */
1128 ENTRY(error_exit)
1129 movl %ebx, %eax
1130 DISABLE_INTERRUPTS(CLBR_NONE)
1131 TRACE_IRQS_OFF
1132 testl %eax, %eax
1133 jnz retint_kernel
1134 jmp retint_user
1135 END(error_exit)
1136
1137 /* Runs on exception stack */
1138 ENTRY(nmi)
1139 /*
1140 * Fix up the exception frame if we're on Xen.
1141 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1142 * one value to the stack on native, so it may clobber the rdx
1143 * scratch slot, but it won't clobber any of the important
1144 * slots past it.
1145 *
1146 * Xen is a different story, because the Xen frame itself overlaps
1147 * the "NMI executing" variable.
1148 */
1149 PARAVIRT_ADJUST_EXCEPTION_FRAME
1150
1151 /*
1152 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1153 * the iretq it performs will take us out of NMI context.
1154 * This means that we can have nested NMIs where the next
1155 * NMI is using the top of the stack of the previous NMI. We
1156 * can't let it execute because the nested NMI will corrupt the
1157 * stack of the previous NMI. NMI handlers are not re-entrant
1158 * anyway.
1159 *
1160 * To handle this case we do the following:
1161 * Check the a special location on the stack that contains
1162 * a variable that is set when NMIs are executing.
1163 * The interrupted task's stack is also checked to see if it
1164 * is an NMI stack.
1165 * If the variable is not set and the stack is not the NMI
1166 * stack then:
1167 * o Set the special variable on the stack
1168 * o Copy the interrupt frame into an "outermost" location on the
1169 * stack
1170 * o Copy the interrupt frame into an "iret" location on the stack
1171 * o Continue processing the NMI
1172 * If the variable is set or the previous stack is the NMI stack:
1173 * o Modify the "iret" location to jump to the repeat_nmi
1174 * o return back to the first NMI
1175 *
1176 * Now on exit of the first NMI, we first clear the stack variable
1177 * The NMI stack will tell any nested NMIs at that point that it is
1178 * nested. Then we pop the stack normally with iret, and if there was
1179 * a nested NMI that updated the copy interrupt stack frame, a
1180 * jump will be made to the repeat_nmi code that will handle the second
1181 * NMI.
1182 *
1183 * However, espfix prevents us from directly returning to userspace
1184 * with a single IRET instruction. Similarly, IRET to user mode
1185 * can fault. We therefore handle NMIs from user space like
1186 * other IST entries.
1187 */
1188
1189 /* Use %rdx as our temp variable throughout */
1190 pushq %rdx
1191
1192 testb $3, CS-RIP+8(%rsp)
1193 jz .Lnmi_from_kernel
1194
1195 /*
1196 * NMI from user mode. We need to run on the thread stack, but we
1197 * can't go through the normal entry paths: NMIs are masked, and
1198 * we don't want to enable interrupts, because then we'll end
1199 * up in an awkward situation in which IRQs are on but NMIs
1200 * are off.
1201 *
1202 * We also must not push anything to the stack before switching
1203 * stacks lest we corrupt the "NMI executing" variable.
1204 */
1205
1206 SWAPGS_UNSAFE_STACK
1207 cld
1208 movq %rsp, %rdx
1209 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1210 pushq 5*8(%rdx) /* pt_regs->ss */
1211 pushq 4*8(%rdx) /* pt_regs->rsp */
1212 pushq 3*8(%rdx) /* pt_regs->flags */
1213 pushq 2*8(%rdx) /* pt_regs->cs */
1214 pushq 1*8(%rdx) /* pt_regs->rip */
1215 pushq $-1 /* pt_regs->orig_ax */
1216 pushq %rdi /* pt_regs->di */
1217 pushq %rsi /* pt_regs->si */
1218 pushq (%rdx) /* pt_regs->dx */
1219 pushq %rcx /* pt_regs->cx */
1220 pushq %rax /* pt_regs->ax */
1221 pushq %r8 /* pt_regs->r8 */
1222 pushq %r9 /* pt_regs->r9 */
1223 pushq %r10 /* pt_regs->r10 */
1224 pushq %r11 /* pt_regs->r11 */
1225 pushq %rbx /* pt_regs->rbx */
1226 pushq %rbp /* pt_regs->rbp */
1227 pushq %r12 /* pt_regs->r12 */
1228 pushq %r13 /* pt_regs->r13 */
1229 pushq %r14 /* pt_regs->r14 */
1230 pushq %r15 /* pt_regs->r15 */
1231
1232 /*
1233 * At this point we no longer need to worry about stack damage
1234 * due to nesting -- we're on the normal thread stack and we're
1235 * done with the NMI stack.
1236 */
1237
1238 movq %rsp, %rdi
1239 movq $-1, %rsi
1240 call do_nmi
1241
1242 /*
1243 * Return back to user mode. We must *not* do the normal exit
1244 * work, because we don't want to enable interrupts. Fortunately,
1245 * do_nmi doesn't modify pt_regs.
1246 */
1247 SWAPGS
1248 jmp restore_c_regs_and_iret
1249
1250 .Lnmi_from_kernel:
1251 /*
1252 * Here's what our stack frame will look like:
1253 * +---------------------------------------------------------+
1254 * | original SS |
1255 * | original Return RSP |
1256 * | original RFLAGS |
1257 * | original CS |
1258 * | original RIP |
1259 * +---------------------------------------------------------+
1260 * | temp storage for rdx |
1261 * +---------------------------------------------------------+
1262 * | "NMI executing" variable |
1263 * +---------------------------------------------------------+
1264 * | iret SS } Copied from "outermost" frame |
1265 * | iret Return RSP } on each loop iteration; overwritten |
1266 * | iret RFLAGS } by a nested NMI to force another |
1267 * | iret CS } iteration if needed. |
1268 * | iret RIP } |
1269 * +---------------------------------------------------------+
1270 * | outermost SS } initialized in first_nmi; |
1271 * | outermost Return RSP } will not be changed before |
1272 * | outermost RFLAGS } NMI processing is done. |
1273 * | outermost CS } Copied to "iret" frame on each |
1274 * | outermost RIP } iteration. |
1275 * +---------------------------------------------------------+
1276 * | pt_regs |
1277 * +---------------------------------------------------------+
1278 *
1279 * The "original" frame is used by hardware. Before re-enabling
1280 * NMIs, we need to be done with it, and we need to leave enough
1281 * space for the asm code here.
1282 *
1283 * We return by executing IRET while RSP points to the "iret" frame.
1284 * That will either return for real or it will loop back into NMI
1285 * processing.
1286 *
1287 * The "outermost" frame is copied to the "iret" frame on each
1288 * iteration of the loop, so each iteration starts with the "iret"
1289 * frame pointing to the final return target.
1290 */
1291
1292 /*
1293 * Determine whether we're a nested NMI.
1294 *
1295 * If we interrupted kernel code between repeat_nmi and
1296 * end_repeat_nmi, then we are a nested NMI. We must not
1297 * modify the "iret" frame because it's being written by
1298 * the outer NMI. That's okay; the outer NMI handler is
1299 * about to about to call do_nmi anyway, so we can just
1300 * resume the outer NMI.
1301 */
1302
1303 movq $repeat_nmi, %rdx
1304 cmpq 8(%rsp), %rdx
1305 ja 1f
1306 movq $end_repeat_nmi, %rdx
1307 cmpq 8(%rsp), %rdx
1308 ja nested_nmi_out
1309 1:
1310
1311 /*
1312 * Now check "NMI executing". If it's set, then we're nested.
1313 * This will not detect if we interrupted an outer NMI just
1314 * before IRET.
1315 */
1316 cmpl $1, -8(%rsp)
1317 je nested_nmi
1318
1319 /*
1320 * Now test if the previous stack was an NMI stack. This covers
1321 * the case where we interrupt an outer NMI after it clears
1322 * "NMI executing" but before IRET. We need to be careful, though:
1323 * there is one case in which RSP could point to the NMI stack
1324 * despite there being no NMI active: naughty userspace controls
1325 * RSP at the very beginning of the SYSCALL targets. We can
1326 * pull a fast one on naughty userspace, though: we program
1327 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1328 * if it controls the kernel's RSP. We set DF before we clear
1329 * "NMI executing".
1330 */
1331 lea 6*8(%rsp), %rdx
1332 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1333 cmpq %rdx, 4*8(%rsp)
1334 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1335 ja first_nmi
1336
1337 subq $EXCEPTION_STKSZ, %rdx
1338 cmpq %rdx, 4*8(%rsp)
1339 /* If it is below the NMI stack, it is a normal NMI */
1340 jb first_nmi
1341
1342 /* Ah, it is within the NMI stack. */
1343
1344 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1345 jz first_nmi /* RSP was user controlled. */
1346
1347 /* This is a nested NMI. */
1348
1349 nested_nmi:
1350 /*
1351 * Modify the "iret" frame to point to repeat_nmi, forcing another
1352 * iteration of NMI handling.
1353 */
1354 subq $8, %rsp
1355 leaq -10*8(%rsp), %rdx
1356 pushq $__KERNEL_DS
1357 pushq %rdx
1358 pushfq
1359 pushq $__KERNEL_CS
1360 pushq $repeat_nmi
1361
1362 /* Put stack back */
1363 addq $(6*8), %rsp
1364
1365 nested_nmi_out:
1366 popq %rdx
1367
1368 /* We are returning to kernel mode, so this cannot result in a fault. */
1369 INTERRUPT_RETURN
1370
1371 first_nmi:
1372 /* Restore rdx. */
1373 movq (%rsp), %rdx
1374
1375 /* Make room for "NMI executing". */
1376 pushq $0
1377
1378 /* Leave room for the "iret" frame */
1379 subq $(5*8), %rsp
1380
1381 /* Copy the "original" frame to the "outermost" frame */
1382 .rept 5
1383 pushq 11*8(%rsp)
1384 .endr
1385
1386 /* Everything up to here is safe from nested NMIs */
1387
1388 #ifdef CONFIG_DEBUG_ENTRY
1389 /*
1390 * For ease of testing, unmask NMIs right away. Disabled by
1391 * default because IRET is very expensive.
1392 */
1393 pushq $0 /* SS */
1394 pushq %rsp /* RSP (minus 8 because of the previous push) */
1395 addq $8, (%rsp) /* Fix up RSP */
1396 pushfq /* RFLAGS */
1397 pushq $__KERNEL_CS /* CS */
1398 pushq $1f /* RIP */
1399 INTERRUPT_RETURN /* continues at repeat_nmi below */
1400 1:
1401 #endif
1402
1403 repeat_nmi:
1404 /*
1405 * If there was a nested NMI, the first NMI's iret will return
1406 * here. But NMIs are still enabled and we can take another
1407 * nested NMI. The nested NMI checks the interrupted RIP to see
1408 * if it is between repeat_nmi and end_repeat_nmi, and if so
1409 * it will just return, as we are about to repeat an NMI anyway.
1410 * This makes it safe to copy to the stack frame that a nested
1411 * NMI will update.
1412 *
1413 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1414 * we're repeating an NMI, gsbase has the same value that it had on
1415 * the first iteration. paranoid_entry will load the kernel
1416 * gsbase if needed before we call do_nmi. "NMI executing"
1417 * is zero.
1418 */
1419 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1420
1421 /*
1422 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1423 * here must not modify the "iret" frame while we're writing to
1424 * it or it will end up containing garbage.
1425 */
1426 addq $(10*8), %rsp
1427 .rept 5
1428 pushq -6*8(%rsp)
1429 .endr
1430 subq $(5*8), %rsp
1431 end_repeat_nmi:
1432
1433 /*
1434 * Everything below this point can be preempted by a nested NMI.
1435 * If this happens, then the inner NMI will change the "iret"
1436 * frame to point back to repeat_nmi.
1437 */
1438 pushq $-1 /* ORIG_RAX: no syscall to restart */
1439 ALLOC_PT_GPREGS_ON_STACK
1440
1441 /*
1442 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1443 * as we should not be calling schedule in NMI context.
1444 * Even with normal interrupts enabled. An NMI should not be
1445 * setting NEED_RESCHED or anything that normal interrupts and
1446 * exceptions might do.
1447 */
1448 call paranoid_entry
1449
1450 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1451 movq %rsp, %rdi
1452 movq $-1, %rsi
1453 call do_nmi
1454
1455 testl %ebx, %ebx /* swapgs needed? */
1456 jnz nmi_restore
1457 nmi_swapgs:
1458 SWAPGS_UNSAFE_STACK
1459 nmi_restore:
1460 RESTORE_EXTRA_REGS
1461 RESTORE_C_REGS
1462
1463 /* Point RSP at the "iret" frame. */
1464 REMOVE_PT_GPREGS_FROM_STACK 6*8
1465
1466 /*
1467 * Clear "NMI executing". Set DF first so that we can easily
1468 * distinguish the remaining code between here and IRET from
1469 * the SYSCALL entry and exit paths. On a native kernel, we
1470 * could just inspect RIP, but, on paravirt kernels,
1471 * INTERRUPT_RETURN can translate into a jump into a
1472 * hypercall page.
1473 */
1474 std
1475 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1476
1477 /*
1478 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1479 * stack in a single instruction. We are returning to kernel
1480 * mode, so this cannot result in a fault.
1481 */
1482 INTERRUPT_RETURN
1483 END(nmi)
1484
1485 ENTRY(ignore_sysret)
1486 mov $-ENOSYS, %eax
1487 sysret
1488 END(ignore_sysret)
This page took 0.094535 seconds and 5 git commands to generate.