Merge remote-tracking branch 'asoc/topic/simple' into asoc-next
[deliverable/linux.git] / arch / x86 / events / intel / cqm.c
1 /*
2 * Intel Cache Quality-of-Service Monitoring (CQM) support.
3 *
4 * Based very, very heavily on work by Peter Zijlstra.
5 */
6
7 #include <linux/perf_event.h>
8 #include <linux/slab.h>
9 #include <asm/cpu_device_id.h>
10 #include "../perf_event.h"
11
12 #define MSR_IA32_PQR_ASSOC 0x0c8f
13 #define MSR_IA32_QM_CTR 0x0c8e
14 #define MSR_IA32_QM_EVTSEL 0x0c8d
15
16 #define MBM_CNTR_WIDTH 24
17 /*
18 * Guaranteed time in ms as per SDM where MBM counters will not overflow.
19 */
20 #define MBM_CTR_OVERFLOW_TIME 1000
21
22 static u32 cqm_max_rmid = -1;
23 static unsigned int cqm_l3_scale; /* supposedly cacheline size */
24 static bool cqm_enabled, mbm_enabled;
25 unsigned int mbm_socket_max;
26
27 /**
28 * struct intel_pqr_state - State cache for the PQR MSR
29 * @rmid: The cached Resource Monitoring ID
30 * @closid: The cached Class Of Service ID
31 * @rmid_usecnt: The usage counter for rmid
32 *
33 * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
34 * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
35 * contains both parts, so we need to cache them.
36 *
37 * The cache also helps to avoid pointless updates if the value does
38 * not change.
39 */
40 struct intel_pqr_state {
41 u32 rmid;
42 u32 closid;
43 int rmid_usecnt;
44 };
45
46 /*
47 * The cached intel_pqr_state is strictly per CPU and can never be
48 * updated from a remote CPU. Both functions which modify the state
49 * (intel_cqm_event_start and intel_cqm_event_stop) are called with
50 * interrupts disabled, which is sufficient for the protection.
51 */
52 static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
53 static struct hrtimer *mbm_timers;
54 /**
55 * struct sample - mbm event's (local or total) data
56 * @total_bytes #bytes since we began monitoring
57 * @prev_msr previous value of MSR
58 */
59 struct sample {
60 u64 total_bytes;
61 u64 prev_msr;
62 };
63
64 /*
65 * samples profiled for total memory bandwidth type events
66 */
67 static struct sample *mbm_total;
68 /*
69 * samples profiled for local memory bandwidth type events
70 */
71 static struct sample *mbm_local;
72
73 #define pkg_id topology_physical_package_id(smp_processor_id())
74 /*
75 * rmid_2_index returns the index for the rmid in mbm_local/mbm_total array.
76 * mbm_total[] and mbm_local[] are linearly indexed by socket# * max number of
77 * rmids per socket, an example is given below
78 * RMID1 of Socket0: vrmid = 1
79 * RMID1 of Socket1: vrmid = 1 * (cqm_max_rmid + 1) + 1
80 * RMID1 of Socket2: vrmid = 2 * (cqm_max_rmid + 1) + 1
81 */
82 #define rmid_2_index(rmid) ((pkg_id * (cqm_max_rmid + 1)) + rmid)
83 /*
84 * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
85 * Also protects event->hw.cqm_rmid
86 *
87 * Hold either for stability, both for modification of ->hw.cqm_rmid.
88 */
89 static DEFINE_MUTEX(cache_mutex);
90 static DEFINE_RAW_SPINLOCK(cache_lock);
91
92 /*
93 * Groups of events that have the same target(s), one RMID per group.
94 */
95 static LIST_HEAD(cache_groups);
96
97 /*
98 * Mask of CPUs for reading CQM values. We only need one per-socket.
99 */
100 static cpumask_t cqm_cpumask;
101
102 #define RMID_VAL_ERROR (1ULL << 63)
103 #define RMID_VAL_UNAVAIL (1ULL << 62)
104
105 /*
106 * Event IDs are used to program IA32_QM_EVTSEL before reading event
107 * counter from IA32_QM_CTR
108 */
109 #define QOS_L3_OCCUP_EVENT_ID 0x01
110 #define QOS_MBM_TOTAL_EVENT_ID 0x02
111 #define QOS_MBM_LOCAL_EVENT_ID 0x03
112
113 /*
114 * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
115 *
116 * This rmid is always free and is guaranteed to have an associated
117 * near-zero occupancy value, i.e. no cachelines are tagged with this
118 * RMID, once __intel_cqm_rmid_rotate() returns.
119 */
120 static u32 intel_cqm_rotation_rmid;
121
122 #define INVALID_RMID (-1)
123
124 /*
125 * Is @rmid valid for programming the hardware?
126 *
127 * rmid 0 is reserved by the hardware for all non-monitored tasks, which
128 * means that we should never come across an rmid with that value.
129 * Likewise, an rmid value of -1 is used to indicate "no rmid currently
130 * assigned" and is used as part of the rotation code.
131 */
132 static inline bool __rmid_valid(u32 rmid)
133 {
134 if (!rmid || rmid == INVALID_RMID)
135 return false;
136
137 return true;
138 }
139
140 static u64 __rmid_read(u32 rmid)
141 {
142 u64 val;
143
144 /*
145 * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
146 * it just says that to increase confusion.
147 */
148 wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
149 rdmsrl(MSR_IA32_QM_CTR, val);
150
151 /*
152 * Aside from the ERROR and UNAVAIL bits, assume this thing returns
153 * the number of cachelines tagged with @rmid.
154 */
155 return val;
156 }
157
158 enum rmid_recycle_state {
159 RMID_YOUNG = 0,
160 RMID_AVAILABLE,
161 RMID_DIRTY,
162 };
163
164 struct cqm_rmid_entry {
165 u32 rmid;
166 enum rmid_recycle_state state;
167 struct list_head list;
168 unsigned long queue_time;
169 };
170
171 /*
172 * cqm_rmid_free_lru - A least recently used list of RMIDs.
173 *
174 * Oldest entry at the head, newest (most recently used) entry at the
175 * tail. This list is never traversed, it's only used to keep track of
176 * the lru order. That is, we only pick entries of the head or insert
177 * them on the tail.
178 *
179 * All entries on the list are 'free', and their RMIDs are not currently
180 * in use. To mark an RMID as in use, remove its entry from the lru
181 * list.
182 *
183 *
184 * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
185 *
186 * This list is contains RMIDs that no one is currently using but that
187 * may have a non-zero occupancy value associated with them. The
188 * rotation worker moves RMIDs from the limbo list to the free list once
189 * the occupancy value drops below __intel_cqm_threshold.
190 *
191 * Both lists are protected by cache_mutex.
192 */
193 static LIST_HEAD(cqm_rmid_free_lru);
194 static LIST_HEAD(cqm_rmid_limbo_lru);
195
196 /*
197 * We use a simple array of pointers so that we can lookup a struct
198 * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
199 * and __put_rmid() from having to worry about dealing with struct
200 * cqm_rmid_entry - they just deal with rmids, i.e. integers.
201 *
202 * Once this array is initialized it is read-only. No locks are required
203 * to access it.
204 *
205 * All entries for all RMIDs can be looked up in the this array at all
206 * times.
207 */
208 static struct cqm_rmid_entry **cqm_rmid_ptrs;
209
210 static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
211 {
212 struct cqm_rmid_entry *entry;
213
214 entry = cqm_rmid_ptrs[rmid];
215 WARN_ON(entry->rmid != rmid);
216
217 return entry;
218 }
219
220 /*
221 * Returns < 0 on fail.
222 *
223 * We expect to be called with cache_mutex held.
224 */
225 static u32 __get_rmid(void)
226 {
227 struct cqm_rmid_entry *entry;
228
229 lockdep_assert_held(&cache_mutex);
230
231 if (list_empty(&cqm_rmid_free_lru))
232 return INVALID_RMID;
233
234 entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
235 list_del(&entry->list);
236
237 return entry->rmid;
238 }
239
240 static void __put_rmid(u32 rmid)
241 {
242 struct cqm_rmid_entry *entry;
243
244 lockdep_assert_held(&cache_mutex);
245
246 WARN_ON(!__rmid_valid(rmid));
247 entry = __rmid_entry(rmid);
248
249 entry->queue_time = jiffies;
250 entry->state = RMID_YOUNG;
251
252 list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
253 }
254
255 static void cqm_cleanup(void)
256 {
257 int i;
258
259 if (!cqm_rmid_ptrs)
260 return;
261
262 for (i = 0; i < cqm_max_rmid; i++)
263 kfree(cqm_rmid_ptrs[i]);
264
265 kfree(cqm_rmid_ptrs);
266 cqm_rmid_ptrs = NULL;
267 cqm_enabled = false;
268 }
269
270 static int intel_cqm_setup_rmid_cache(void)
271 {
272 struct cqm_rmid_entry *entry;
273 unsigned int nr_rmids;
274 int r = 0;
275
276 nr_rmids = cqm_max_rmid + 1;
277 cqm_rmid_ptrs = kzalloc(sizeof(struct cqm_rmid_entry *) *
278 nr_rmids, GFP_KERNEL);
279 if (!cqm_rmid_ptrs)
280 return -ENOMEM;
281
282 for (; r <= cqm_max_rmid; r++) {
283 struct cqm_rmid_entry *entry;
284
285 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
286 if (!entry)
287 goto fail;
288
289 INIT_LIST_HEAD(&entry->list);
290 entry->rmid = r;
291 cqm_rmid_ptrs[r] = entry;
292
293 list_add_tail(&entry->list, &cqm_rmid_free_lru);
294 }
295
296 /*
297 * RMID 0 is special and is always allocated. It's used for all
298 * tasks that are not monitored.
299 */
300 entry = __rmid_entry(0);
301 list_del(&entry->list);
302
303 mutex_lock(&cache_mutex);
304 intel_cqm_rotation_rmid = __get_rmid();
305 mutex_unlock(&cache_mutex);
306
307 return 0;
308
309 fail:
310 cqm_cleanup();
311 return -ENOMEM;
312 }
313
314 /*
315 * Determine if @a and @b measure the same set of tasks.
316 *
317 * If @a and @b measure the same set of tasks then we want to share a
318 * single RMID.
319 */
320 static bool __match_event(struct perf_event *a, struct perf_event *b)
321 {
322 /* Per-cpu and task events don't mix */
323 if ((a->attach_state & PERF_ATTACH_TASK) !=
324 (b->attach_state & PERF_ATTACH_TASK))
325 return false;
326
327 #ifdef CONFIG_CGROUP_PERF
328 if (a->cgrp != b->cgrp)
329 return false;
330 #endif
331
332 /* If not task event, we're machine wide */
333 if (!(b->attach_state & PERF_ATTACH_TASK))
334 return true;
335
336 /*
337 * Events that target same task are placed into the same cache group.
338 * Mark it as a multi event group, so that we update ->count
339 * for every event rather than just the group leader later.
340 */
341 if (a->hw.target == b->hw.target) {
342 b->hw.is_group_event = true;
343 return true;
344 }
345
346 /*
347 * Are we an inherited event?
348 */
349 if (b->parent == a)
350 return true;
351
352 return false;
353 }
354
355 #ifdef CONFIG_CGROUP_PERF
356 static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
357 {
358 if (event->attach_state & PERF_ATTACH_TASK)
359 return perf_cgroup_from_task(event->hw.target, event->ctx);
360
361 return event->cgrp;
362 }
363 #endif
364
365 /*
366 * Determine if @a's tasks intersect with @b's tasks
367 *
368 * There are combinations of events that we explicitly prohibit,
369 *
370 * PROHIBITS
371 * system-wide -> cgroup and task
372 * cgroup -> system-wide
373 * -> task in cgroup
374 * task -> system-wide
375 * -> task in cgroup
376 *
377 * Call this function before allocating an RMID.
378 */
379 static bool __conflict_event(struct perf_event *a, struct perf_event *b)
380 {
381 #ifdef CONFIG_CGROUP_PERF
382 /*
383 * We can have any number of cgroups but only one system-wide
384 * event at a time.
385 */
386 if (a->cgrp && b->cgrp) {
387 struct perf_cgroup *ac = a->cgrp;
388 struct perf_cgroup *bc = b->cgrp;
389
390 /*
391 * This condition should have been caught in
392 * __match_event() and we should be sharing an RMID.
393 */
394 WARN_ON_ONCE(ac == bc);
395
396 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
397 cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
398 return true;
399
400 return false;
401 }
402
403 if (a->cgrp || b->cgrp) {
404 struct perf_cgroup *ac, *bc;
405
406 /*
407 * cgroup and system-wide events are mutually exclusive
408 */
409 if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
410 (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
411 return true;
412
413 /*
414 * Ensure neither event is part of the other's cgroup
415 */
416 ac = event_to_cgroup(a);
417 bc = event_to_cgroup(b);
418 if (ac == bc)
419 return true;
420
421 /*
422 * Must have cgroup and non-intersecting task events.
423 */
424 if (!ac || !bc)
425 return false;
426
427 /*
428 * We have cgroup and task events, and the task belongs
429 * to a cgroup. Check for for overlap.
430 */
431 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
432 cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
433 return true;
434
435 return false;
436 }
437 #endif
438 /*
439 * If one of them is not a task, same story as above with cgroups.
440 */
441 if (!(a->attach_state & PERF_ATTACH_TASK) ||
442 !(b->attach_state & PERF_ATTACH_TASK))
443 return true;
444
445 /*
446 * Must be non-overlapping.
447 */
448 return false;
449 }
450
451 struct rmid_read {
452 u32 rmid;
453 u32 evt_type;
454 atomic64_t value;
455 };
456
457 static void __intel_cqm_event_count(void *info);
458 static void init_mbm_sample(u32 rmid, u32 evt_type);
459 static void __intel_mbm_event_count(void *info);
460
461 static bool is_mbm_event(int e)
462 {
463 return (e >= QOS_MBM_TOTAL_EVENT_ID && e <= QOS_MBM_LOCAL_EVENT_ID);
464 }
465
466 static void cqm_mask_call(struct rmid_read *rr)
467 {
468 if (is_mbm_event(rr->evt_type))
469 on_each_cpu_mask(&cqm_cpumask, __intel_mbm_event_count, rr, 1);
470 else
471 on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, rr, 1);
472 }
473
474 /*
475 * Exchange the RMID of a group of events.
476 */
477 static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
478 {
479 struct perf_event *event;
480 struct list_head *head = &group->hw.cqm_group_entry;
481 u32 old_rmid = group->hw.cqm_rmid;
482
483 lockdep_assert_held(&cache_mutex);
484
485 /*
486 * If our RMID is being deallocated, perform a read now.
487 */
488 if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
489 struct rmid_read rr = {
490 .rmid = old_rmid,
491 .evt_type = group->attr.config,
492 .value = ATOMIC64_INIT(0),
493 };
494
495 cqm_mask_call(&rr);
496 local64_set(&group->count, atomic64_read(&rr.value));
497 }
498
499 raw_spin_lock_irq(&cache_lock);
500
501 group->hw.cqm_rmid = rmid;
502 list_for_each_entry(event, head, hw.cqm_group_entry)
503 event->hw.cqm_rmid = rmid;
504
505 raw_spin_unlock_irq(&cache_lock);
506
507 /*
508 * If the allocation is for mbm, init the mbm stats.
509 * Need to check if each event in the group is mbm event
510 * because there could be multiple type of events in the same group.
511 */
512 if (__rmid_valid(rmid)) {
513 event = group;
514 if (is_mbm_event(event->attr.config))
515 init_mbm_sample(rmid, event->attr.config);
516
517 list_for_each_entry(event, head, hw.cqm_group_entry) {
518 if (is_mbm_event(event->attr.config))
519 init_mbm_sample(rmid, event->attr.config);
520 }
521 }
522
523 return old_rmid;
524 }
525
526 /*
527 * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
528 * cachelines are still tagged with RMIDs in limbo, we progressively
529 * increment the threshold until we find an RMID in limbo with <=
530 * __intel_cqm_threshold lines tagged. This is designed to mitigate the
531 * problem where cachelines tagged with an RMID are not steadily being
532 * evicted.
533 *
534 * On successful rotations we decrease the threshold back towards zero.
535 *
536 * __intel_cqm_max_threshold provides an upper bound on the threshold,
537 * and is measured in bytes because it's exposed to userland.
538 */
539 static unsigned int __intel_cqm_threshold;
540 static unsigned int __intel_cqm_max_threshold;
541
542 /*
543 * Test whether an RMID has a zero occupancy value on this cpu.
544 */
545 static void intel_cqm_stable(void *arg)
546 {
547 struct cqm_rmid_entry *entry;
548
549 list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
550 if (entry->state != RMID_AVAILABLE)
551 break;
552
553 if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
554 entry->state = RMID_DIRTY;
555 }
556 }
557
558 /*
559 * If we have group events waiting for an RMID that don't conflict with
560 * events already running, assign @rmid.
561 */
562 static bool intel_cqm_sched_in_event(u32 rmid)
563 {
564 struct perf_event *leader, *event;
565
566 lockdep_assert_held(&cache_mutex);
567
568 leader = list_first_entry(&cache_groups, struct perf_event,
569 hw.cqm_groups_entry);
570 event = leader;
571
572 list_for_each_entry_continue(event, &cache_groups,
573 hw.cqm_groups_entry) {
574 if (__rmid_valid(event->hw.cqm_rmid))
575 continue;
576
577 if (__conflict_event(event, leader))
578 continue;
579
580 intel_cqm_xchg_rmid(event, rmid);
581 return true;
582 }
583
584 return false;
585 }
586
587 /*
588 * Initially use this constant for both the limbo queue time and the
589 * rotation timer interval, pmu::hrtimer_interval_ms.
590 *
591 * They don't need to be the same, but the two are related since if you
592 * rotate faster than you recycle RMIDs, you may run out of available
593 * RMIDs.
594 */
595 #define RMID_DEFAULT_QUEUE_TIME 250 /* ms */
596
597 static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
598
599 /*
600 * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
601 * @nr_available: number of freeable RMIDs on the limbo list
602 *
603 * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
604 * cachelines are tagged with those RMIDs. After this we can reuse them
605 * and know that the current set of active RMIDs is stable.
606 *
607 * Return %true or %false depending on whether stabilization needs to be
608 * reattempted.
609 *
610 * If we return %true then @nr_available is updated to indicate the
611 * number of RMIDs on the limbo list that have been queued for the
612 * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
613 * are above __intel_cqm_threshold.
614 */
615 static bool intel_cqm_rmid_stabilize(unsigned int *available)
616 {
617 struct cqm_rmid_entry *entry, *tmp;
618
619 lockdep_assert_held(&cache_mutex);
620
621 *available = 0;
622 list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
623 unsigned long min_queue_time;
624 unsigned long now = jiffies;
625
626 /*
627 * We hold RMIDs placed into limbo for a minimum queue
628 * time. Before the minimum queue time has elapsed we do
629 * not recycle RMIDs.
630 *
631 * The reasoning is that until a sufficient time has
632 * passed since we stopped using an RMID, any RMID
633 * placed onto the limbo list will likely still have
634 * data tagged in the cache, which means we'll probably
635 * fail to recycle it anyway.
636 *
637 * We can save ourselves an expensive IPI by skipping
638 * any RMIDs that have not been queued for the minimum
639 * time.
640 */
641 min_queue_time = entry->queue_time +
642 msecs_to_jiffies(__rmid_queue_time_ms);
643
644 if (time_after(min_queue_time, now))
645 break;
646
647 entry->state = RMID_AVAILABLE;
648 (*available)++;
649 }
650
651 /*
652 * Fast return if none of the RMIDs on the limbo list have been
653 * sitting on the queue for the minimum queue time.
654 */
655 if (!*available)
656 return false;
657
658 /*
659 * Test whether an RMID is free for each package.
660 */
661 on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
662
663 list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
664 /*
665 * Exhausted all RMIDs that have waited min queue time.
666 */
667 if (entry->state == RMID_YOUNG)
668 break;
669
670 if (entry->state == RMID_DIRTY)
671 continue;
672
673 list_del(&entry->list); /* remove from limbo */
674
675 /*
676 * The rotation RMID gets priority if it's
677 * currently invalid. In which case, skip adding
678 * the RMID to the the free lru.
679 */
680 if (!__rmid_valid(intel_cqm_rotation_rmid)) {
681 intel_cqm_rotation_rmid = entry->rmid;
682 continue;
683 }
684
685 /*
686 * If we have groups waiting for RMIDs, hand
687 * them one now provided they don't conflict.
688 */
689 if (intel_cqm_sched_in_event(entry->rmid))
690 continue;
691
692 /*
693 * Otherwise place it onto the free list.
694 */
695 list_add_tail(&entry->list, &cqm_rmid_free_lru);
696 }
697
698
699 return __rmid_valid(intel_cqm_rotation_rmid);
700 }
701
702 /*
703 * Pick a victim group and move it to the tail of the group list.
704 * @next: The first group without an RMID
705 */
706 static void __intel_cqm_pick_and_rotate(struct perf_event *next)
707 {
708 struct perf_event *rotor;
709 u32 rmid;
710
711 lockdep_assert_held(&cache_mutex);
712
713 rotor = list_first_entry(&cache_groups, struct perf_event,
714 hw.cqm_groups_entry);
715
716 /*
717 * The group at the front of the list should always have a valid
718 * RMID. If it doesn't then no groups have RMIDs assigned and we
719 * don't need to rotate the list.
720 */
721 if (next == rotor)
722 return;
723
724 rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
725 __put_rmid(rmid);
726
727 list_rotate_left(&cache_groups);
728 }
729
730 /*
731 * Deallocate the RMIDs from any events that conflict with @event, and
732 * place them on the back of the group list.
733 */
734 static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
735 {
736 struct perf_event *group, *g;
737 u32 rmid;
738
739 lockdep_assert_held(&cache_mutex);
740
741 list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
742 if (group == event)
743 continue;
744
745 rmid = group->hw.cqm_rmid;
746
747 /*
748 * Skip events that don't have a valid RMID.
749 */
750 if (!__rmid_valid(rmid))
751 continue;
752
753 /*
754 * No conflict? No problem! Leave the event alone.
755 */
756 if (!__conflict_event(group, event))
757 continue;
758
759 intel_cqm_xchg_rmid(group, INVALID_RMID);
760 __put_rmid(rmid);
761 }
762 }
763
764 /*
765 * Attempt to rotate the groups and assign new RMIDs.
766 *
767 * We rotate for two reasons,
768 * 1. To handle the scheduling of conflicting events
769 * 2. To recycle RMIDs
770 *
771 * Rotating RMIDs is complicated because the hardware doesn't give us
772 * any clues.
773 *
774 * There's problems with the hardware interface; when you change the
775 * task:RMID map cachelines retain their 'old' tags, giving a skewed
776 * picture. In order to work around this, we must always keep one free
777 * RMID - intel_cqm_rotation_rmid.
778 *
779 * Rotation works by taking away an RMID from a group (the old RMID),
780 * and assigning the free RMID to another group (the new RMID). We must
781 * then wait for the old RMID to not be used (no cachelines tagged).
782 * This ensure that all cachelines are tagged with 'active' RMIDs. At
783 * this point we can start reading values for the new RMID and treat the
784 * old RMID as the free RMID for the next rotation.
785 *
786 * Return %true or %false depending on whether we did any rotating.
787 */
788 static bool __intel_cqm_rmid_rotate(void)
789 {
790 struct perf_event *group, *start = NULL;
791 unsigned int threshold_limit;
792 unsigned int nr_needed = 0;
793 unsigned int nr_available;
794 bool rotated = false;
795
796 mutex_lock(&cache_mutex);
797
798 again:
799 /*
800 * Fast path through this function if there are no groups and no
801 * RMIDs that need cleaning.
802 */
803 if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
804 goto out;
805
806 list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
807 if (!__rmid_valid(group->hw.cqm_rmid)) {
808 if (!start)
809 start = group;
810 nr_needed++;
811 }
812 }
813
814 /*
815 * We have some event groups, but they all have RMIDs assigned
816 * and no RMIDs need cleaning.
817 */
818 if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
819 goto out;
820
821 if (!nr_needed)
822 goto stabilize;
823
824 /*
825 * We have more event groups without RMIDs than available RMIDs,
826 * or we have event groups that conflict with the ones currently
827 * scheduled.
828 *
829 * We force deallocate the rmid of the group at the head of
830 * cache_groups. The first event group without an RMID then gets
831 * assigned intel_cqm_rotation_rmid. This ensures we always make
832 * forward progress.
833 *
834 * Rotate the cache_groups list so the previous head is now the
835 * tail.
836 */
837 __intel_cqm_pick_and_rotate(start);
838
839 /*
840 * If the rotation is going to succeed, reduce the threshold so
841 * that we don't needlessly reuse dirty RMIDs.
842 */
843 if (__rmid_valid(intel_cqm_rotation_rmid)) {
844 intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
845 intel_cqm_rotation_rmid = __get_rmid();
846
847 intel_cqm_sched_out_conflicting_events(start);
848
849 if (__intel_cqm_threshold)
850 __intel_cqm_threshold--;
851 }
852
853 rotated = true;
854
855 stabilize:
856 /*
857 * We now need to stablize the RMID we freed above (if any) to
858 * ensure that the next time we rotate we have an RMID with zero
859 * occupancy value.
860 *
861 * Alternatively, if we didn't need to perform any rotation,
862 * we'll have a bunch of RMIDs in limbo that need stabilizing.
863 */
864 threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
865
866 while (intel_cqm_rmid_stabilize(&nr_available) &&
867 __intel_cqm_threshold < threshold_limit) {
868 unsigned int steal_limit;
869
870 /*
871 * Don't spin if nobody is actively waiting for an RMID,
872 * the rotation worker will be kicked as soon as an
873 * event needs an RMID anyway.
874 */
875 if (!nr_needed)
876 break;
877
878 /* Allow max 25% of RMIDs to be in limbo. */
879 steal_limit = (cqm_max_rmid + 1) / 4;
880
881 /*
882 * We failed to stabilize any RMIDs so our rotation
883 * logic is now stuck. In order to make forward progress
884 * we have a few options:
885 *
886 * 1. rotate ("steal") another RMID
887 * 2. increase the threshold
888 * 3. do nothing
889 *
890 * We do both of 1. and 2. until we hit the steal limit.
891 *
892 * The steal limit prevents all RMIDs ending up on the
893 * limbo list. This can happen if every RMID has a
894 * non-zero occupancy above threshold_limit, and the
895 * occupancy values aren't dropping fast enough.
896 *
897 * Note that there is prioritisation at work here - we'd
898 * rather increase the number of RMIDs on the limbo list
899 * than increase the threshold, because increasing the
900 * threshold skews the event data (because we reuse
901 * dirty RMIDs) - threshold bumps are a last resort.
902 */
903 if (nr_available < steal_limit)
904 goto again;
905
906 __intel_cqm_threshold++;
907 }
908
909 out:
910 mutex_unlock(&cache_mutex);
911 return rotated;
912 }
913
914 static void intel_cqm_rmid_rotate(struct work_struct *work);
915
916 static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
917
918 static struct pmu intel_cqm_pmu;
919
920 static void intel_cqm_rmid_rotate(struct work_struct *work)
921 {
922 unsigned long delay;
923
924 __intel_cqm_rmid_rotate();
925
926 delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
927 schedule_delayed_work(&intel_cqm_rmid_work, delay);
928 }
929
930 static u64 update_sample(unsigned int rmid, u32 evt_type, int first)
931 {
932 struct sample *mbm_current;
933 u32 vrmid = rmid_2_index(rmid);
934 u64 val, bytes, shift;
935 u32 eventid;
936
937 if (evt_type == QOS_MBM_LOCAL_EVENT_ID) {
938 mbm_current = &mbm_local[vrmid];
939 eventid = QOS_MBM_LOCAL_EVENT_ID;
940 } else {
941 mbm_current = &mbm_total[vrmid];
942 eventid = QOS_MBM_TOTAL_EVENT_ID;
943 }
944
945 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
946 rdmsrl(MSR_IA32_QM_CTR, val);
947 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
948 return mbm_current->total_bytes;
949
950 if (first) {
951 mbm_current->prev_msr = val;
952 mbm_current->total_bytes = 0;
953 return mbm_current->total_bytes;
954 }
955
956 /*
957 * The h/w guarantees that counters will not overflow
958 * so long as we poll them at least once per second.
959 */
960 shift = 64 - MBM_CNTR_WIDTH;
961 bytes = (val << shift) - (mbm_current->prev_msr << shift);
962 bytes >>= shift;
963
964 bytes *= cqm_l3_scale;
965
966 mbm_current->total_bytes += bytes;
967 mbm_current->prev_msr = val;
968
969 return mbm_current->total_bytes;
970 }
971
972 static u64 rmid_read_mbm(unsigned int rmid, u32 evt_type)
973 {
974 return update_sample(rmid, evt_type, 0);
975 }
976
977 static void __intel_mbm_event_init(void *info)
978 {
979 struct rmid_read *rr = info;
980
981 update_sample(rr->rmid, rr->evt_type, 1);
982 }
983
984 static void init_mbm_sample(u32 rmid, u32 evt_type)
985 {
986 struct rmid_read rr = {
987 .rmid = rmid,
988 .evt_type = evt_type,
989 .value = ATOMIC64_INIT(0),
990 };
991
992 /* on each socket, init sample */
993 on_each_cpu_mask(&cqm_cpumask, __intel_mbm_event_init, &rr, 1);
994 }
995
996 /*
997 * Find a group and setup RMID.
998 *
999 * If we're part of a group, we use the group's RMID.
1000 */
1001 static void intel_cqm_setup_event(struct perf_event *event,
1002 struct perf_event **group)
1003 {
1004 struct perf_event *iter;
1005 bool conflict = false;
1006 u32 rmid;
1007
1008 event->hw.is_group_event = false;
1009 list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
1010 rmid = iter->hw.cqm_rmid;
1011
1012 if (__match_event(iter, event)) {
1013 /* All tasks in a group share an RMID */
1014 event->hw.cqm_rmid = rmid;
1015 *group = iter;
1016 if (is_mbm_event(event->attr.config) && __rmid_valid(rmid))
1017 init_mbm_sample(rmid, event->attr.config);
1018 return;
1019 }
1020
1021 /*
1022 * We only care about conflicts for events that are
1023 * actually scheduled in (and hence have a valid RMID).
1024 */
1025 if (__conflict_event(iter, event) && __rmid_valid(rmid))
1026 conflict = true;
1027 }
1028
1029 if (conflict)
1030 rmid = INVALID_RMID;
1031 else
1032 rmid = __get_rmid();
1033
1034 if (is_mbm_event(event->attr.config) && __rmid_valid(rmid))
1035 init_mbm_sample(rmid, event->attr.config);
1036
1037 event->hw.cqm_rmid = rmid;
1038 }
1039
1040 static void intel_cqm_event_read(struct perf_event *event)
1041 {
1042 unsigned long flags;
1043 u32 rmid;
1044 u64 val;
1045
1046 /*
1047 * Task events are handled by intel_cqm_event_count().
1048 */
1049 if (event->cpu == -1)
1050 return;
1051
1052 raw_spin_lock_irqsave(&cache_lock, flags);
1053 rmid = event->hw.cqm_rmid;
1054
1055 if (!__rmid_valid(rmid))
1056 goto out;
1057
1058 if (is_mbm_event(event->attr.config))
1059 val = rmid_read_mbm(rmid, event->attr.config);
1060 else
1061 val = __rmid_read(rmid);
1062
1063 /*
1064 * Ignore this reading on error states and do not update the value.
1065 */
1066 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
1067 goto out;
1068
1069 local64_set(&event->count, val);
1070 out:
1071 raw_spin_unlock_irqrestore(&cache_lock, flags);
1072 }
1073
1074 static void __intel_cqm_event_count(void *info)
1075 {
1076 struct rmid_read *rr = info;
1077 u64 val;
1078
1079 val = __rmid_read(rr->rmid);
1080
1081 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
1082 return;
1083
1084 atomic64_add(val, &rr->value);
1085 }
1086
1087 static inline bool cqm_group_leader(struct perf_event *event)
1088 {
1089 return !list_empty(&event->hw.cqm_groups_entry);
1090 }
1091
1092 static void __intel_mbm_event_count(void *info)
1093 {
1094 struct rmid_read *rr = info;
1095 u64 val;
1096
1097 val = rmid_read_mbm(rr->rmid, rr->evt_type);
1098 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
1099 return;
1100 atomic64_add(val, &rr->value);
1101 }
1102
1103 static enum hrtimer_restart mbm_hrtimer_handle(struct hrtimer *hrtimer)
1104 {
1105 struct perf_event *iter, *iter1;
1106 int ret = HRTIMER_RESTART;
1107 struct list_head *head;
1108 unsigned long flags;
1109 u32 grp_rmid;
1110
1111 /*
1112 * Need to cache_lock as the timer Event Select MSR reads
1113 * can race with the mbm/cqm count() and mbm_init() reads.
1114 */
1115 raw_spin_lock_irqsave(&cache_lock, flags);
1116
1117 if (list_empty(&cache_groups)) {
1118 ret = HRTIMER_NORESTART;
1119 goto out;
1120 }
1121
1122 list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
1123 grp_rmid = iter->hw.cqm_rmid;
1124 if (!__rmid_valid(grp_rmid))
1125 continue;
1126 if (is_mbm_event(iter->attr.config))
1127 update_sample(grp_rmid, iter->attr.config, 0);
1128
1129 head = &iter->hw.cqm_group_entry;
1130 if (list_empty(head))
1131 continue;
1132 list_for_each_entry(iter1, head, hw.cqm_group_entry) {
1133 if (!iter1->hw.is_group_event)
1134 break;
1135 if (is_mbm_event(iter1->attr.config))
1136 update_sample(iter1->hw.cqm_rmid,
1137 iter1->attr.config, 0);
1138 }
1139 }
1140
1141 hrtimer_forward_now(hrtimer, ms_to_ktime(MBM_CTR_OVERFLOW_TIME));
1142 out:
1143 raw_spin_unlock_irqrestore(&cache_lock, flags);
1144
1145 return ret;
1146 }
1147
1148 static void __mbm_start_timer(void *info)
1149 {
1150 hrtimer_start(&mbm_timers[pkg_id], ms_to_ktime(MBM_CTR_OVERFLOW_TIME),
1151 HRTIMER_MODE_REL_PINNED);
1152 }
1153
1154 static void __mbm_stop_timer(void *info)
1155 {
1156 hrtimer_cancel(&mbm_timers[pkg_id]);
1157 }
1158
1159 static void mbm_start_timers(void)
1160 {
1161 on_each_cpu_mask(&cqm_cpumask, __mbm_start_timer, NULL, 1);
1162 }
1163
1164 static void mbm_stop_timers(void)
1165 {
1166 on_each_cpu_mask(&cqm_cpumask, __mbm_stop_timer, NULL, 1);
1167 }
1168
1169 static void mbm_hrtimer_init(void)
1170 {
1171 struct hrtimer *hr;
1172 int i;
1173
1174 for (i = 0; i < mbm_socket_max; i++) {
1175 hr = &mbm_timers[i];
1176 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 hr->function = mbm_hrtimer_handle;
1178 }
1179 }
1180
1181 static u64 intel_cqm_event_count(struct perf_event *event)
1182 {
1183 unsigned long flags;
1184 struct rmid_read rr = {
1185 .evt_type = event->attr.config,
1186 .value = ATOMIC64_INIT(0),
1187 };
1188
1189 /*
1190 * We only need to worry about task events. System-wide events
1191 * are handled like usual, i.e. entirely with
1192 * intel_cqm_event_read().
1193 */
1194 if (event->cpu != -1)
1195 return __perf_event_count(event);
1196
1197 /*
1198 * Only the group leader gets to report values except in case of
1199 * multiple events in the same group, we still need to read the
1200 * other events.This stops us
1201 * reporting duplicate values to userspace, and gives us a clear
1202 * rule for which task gets to report the values.
1203 *
1204 * Note that it is impossible to attribute these values to
1205 * specific packages - we forfeit that ability when we create
1206 * task events.
1207 */
1208 if (!cqm_group_leader(event) && !event->hw.is_group_event)
1209 return 0;
1210
1211 /*
1212 * Getting up-to-date values requires an SMP IPI which is not
1213 * possible if we're being called in interrupt context. Return
1214 * the cached values instead.
1215 */
1216 if (unlikely(in_interrupt()))
1217 goto out;
1218
1219 /*
1220 * Notice that we don't perform the reading of an RMID
1221 * atomically, because we can't hold a spin lock across the
1222 * IPIs.
1223 *
1224 * Speculatively perform the read, since @event might be
1225 * assigned a different (possibly invalid) RMID while we're
1226 * busying performing the IPI calls. It's therefore necessary to
1227 * check @event's RMID afterwards, and if it has changed,
1228 * discard the result of the read.
1229 */
1230 rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
1231
1232 if (!__rmid_valid(rr.rmid))
1233 goto out;
1234
1235 cqm_mask_call(&rr);
1236
1237 raw_spin_lock_irqsave(&cache_lock, flags);
1238 if (event->hw.cqm_rmid == rr.rmid)
1239 local64_set(&event->count, atomic64_read(&rr.value));
1240 raw_spin_unlock_irqrestore(&cache_lock, flags);
1241 out:
1242 return __perf_event_count(event);
1243 }
1244
1245 static void intel_cqm_event_start(struct perf_event *event, int mode)
1246 {
1247 struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1248 u32 rmid = event->hw.cqm_rmid;
1249
1250 if (!(event->hw.cqm_state & PERF_HES_STOPPED))
1251 return;
1252
1253 event->hw.cqm_state &= ~PERF_HES_STOPPED;
1254
1255 if (state->rmid_usecnt++) {
1256 if (!WARN_ON_ONCE(state->rmid != rmid))
1257 return;
1258 } else {
1259 WARN_ON_ONCE(state->rmid);
1260 }
1261
1262 state->rmid = rmid;
1263 wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
1264 }
1265
1266 static void intel_cqm_event_stop(struct perf_event *event, int mode)
1267 {
1268 struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1269
1270 if (event->hw.cqm_state & PERF_HES_STOPPED)
1271 return;
1272
1273 event->hw.cqm_state |= PERF_HES_STOPPED;
1274
1275 intel_cqm_event_read(event);
1276
1277 if (!--state->rmid_usecnt) {
1278 state->rmid = 0;
1279 wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
1280 } else {
1281 WARN_ON_ONCE(!state->rmid);
1282 }
1283 }
1284
1285 static int intel_cqm_event_add(struct perf_event *event, int mode)
1286 {
1287 unsigned long flags;
1288 u32 rmid;
1289
1290 raw_spin_lock_irqsave(&cache_lock, flags);
1291
1292 event->hw.cqm_state = PERF_HES_STOPPED;
1293 rmid = event->hw.cqm_rmid;
1294
1295 if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1296 intel_cqm_event_start(event, mode);
1297
1298 raw_spin_unlock_irqrestore(&cache_lock, flags);
1299
1300 return 0;
1301 }
1302
1303 static void intel_cqm_event_destroy(struct perf_event *event)
1304 {
1305 struct perf_event *group_other = NULL;
1306 unsigned long flags;
1307
1308 mutex_lock(&cache_mutex);
1309 /*
1310 * Hold the cache_lock as mbm timer handlers could be
1311 * scanning the list of events.
1312 */
1313 raw_spin_lock_irqsave(&cache_lock, flags);
1314
1315 /*
1316 * If there's another event in this group...
1317 */
1318 if (!list_empty(&event->hw.cqm_group_entry)) {
1319 group_other = list_first_entry(&event->hw.cqm_group_entry,
1320 struct perf_event,
1321 hw.cqm_group_entry);
1322 list_del(&event->hw.cqm_group_entry);
1323 }
1324
1325 /*
1326 * And we're the group leader..
1327 */
1328 if (cqm_group_leader(event)) {
1329 /*
1330 * If there was a group_other, make that leader, otherwise
1331 * destroy the group and return the RMID.
1332 */
1333 if (group_other) {
1334 list_replace(&event->hw.cqm_groups_entry,
1335 &group_other->hw.cqm_groups_entry);
1336 } else {
1337 u32 rmid = event->hw.cqm_rmid;
1338
1339 if (__rmid_valid(rmid))
1340 __put_rmid(rmid);
1341 list_del(&event->hw.cqm_groups_entry);
1342 }
1343 }
1344
1345 raw_spin_unlock_irqrestore(&cache_lock, flags);
1346
1347 /*
1348 * Stop the mbm overflow timers when the last event is destroyed.
1349 */
1350 if (mbm_enabled && list_empty(&cache_groups))
1351 mbm_stop_timers();
1352
1353 mutex_unlock(&cache_mutex);
1354 }
1355
1356 static int intel_cqm_event_init(struct perf_event *event)
1357 {
1358 struct perf_event *group = NULL;
1359 bool rotate = false;
1360 unsigned long flags;
1361
1362 if (event->attr.type != intel_cqm_pmu.type)
1363 return -ENOENT;
1364
1365 if ((event->attr.config < QOS_L3_OCCUP_EVENT_ID) ||
1366 (event->attr.config > QOS_MBM_LOCAL_EVENT_ID))
1367 return -EINVAL;
1368
1369 /* unsupported modes and filters */
1370 if (event->attr.exclude_user ||
1371 event->attr.exclude_kernel ||
1372 event->attr.exclude_hv ||
1373 event->attr.exclude_idle ||
1374 event->attr.exclude_host ||
1375 event->attr.exclude_guest ||
1376 event->attr.sample_period) /* no sampling */
1377 return -EINVAL;
1378
1379 INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1380 INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1381
1382 event->destroy = intel_cqm_event_destroy;
1383
1384 mutex_lock(&cache_mutex);
1385
1386 /*
1387 * Start the mbm overflow timers when the first event is created.
1388 */
1389 if (mbm_enabled && list_empty(&cache_groups))
1390 mbm_start_timers();
1391
1392 /* Will also set rmid */
1393 intel_cqm_setup_event(event, &group);
1394
1395 /*
1396 * Hold the cache_lock as mbm timer handlers be
1397 * scanning the list of events.
1398 */
1399 raw_spin_lock_irqsave(&cache_lock, flags);
1400
1401 if (group) {
1402 list_add_tail(&event->hw.cqm_group_entry,
1403 &group->hw.cqm_group_entry);
1404 } else {
1405 list_add_tail(&event->hw.cqm_groups_entry,
1406 &cache_groups);
1407
1408 /*
1409 * All RMIDs are either in use or have recently been
1410 * used. Kick the rotation worker to clean/free some.
1411 *
1412 * We only do this for the group leader, rather than for
1413 * every event in a group to save on needless work.
1414 */
1415 if (!__rmid_valid(event->hw.cqm_rmid))
1416 rotate = true;
1417 }
1418
1419 raw_spin_unlock_irqrestore(&cache_lock, flags);
1420 mutex_unlock(&cache_mutex);
1421
1422 if (rotate)
1423 schedule_delayed_work(&intel_cqm_rmid_work, 0);
1424
1425 return 0;
1426 }
1427
1428 EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1429 EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1430 EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1431 EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1432 EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1433
1434 EVENT_ATTR_STR(total_bytes, intel_cqm_total_bytes, "event=0x02");
1435 EVENT_ATTR_STR(total_bytes.per-pkg, intel_cqm_total_bytes_pkg, "1");
1436 EVENT_ATTR_STR(total_bytes.unit, intel_cqm_total_bytes_unit, "MB");
1437 EVENT_ATTR_STR(total_bytes.scale, intel_cqm_total_bytes_scale, "1e-6");
1438
1439 EVENT_ATTR_STR(local_bytes, intel_cqm_local_bytes, "event=0x03");
1440 EVENT_ATTR_STR(local_bytes.per-pkg, intel_cqm_local_bytes_pkg, "1");
1441 EVENT_ATTR_STR(local_bytes.unit, intel_cqm_local_bytes_unit, "MB");
1442 EVENT_ATTR_STR(local_bytes.scale, intel_cqm_local_bytes_scale, "1e-6");
1443
1444 static struct attribute *intel_cqm_events_attr[] = {
1445 EVENT_PTR(intel_cqm_llc),
1446 EVENT_PTR(intel_cqm_llc_pkg),
1447 EVENT_PTR(intel_cqm_llc_unit),
1448 EVENT_PTR(intel_cqm_llc_scale),
1449 EVENT_PTR(intel_cqm_llc_snapshot),
1450 NULL,
1451 };
1452
1453 static struct attribute *intel_mbm_events_attr[] = {
1454 EVENT_PTR(intel_cqm_total_bytes),
1455 EVENT_PTR(intel_cqm_local_bytes),
1456 EVENT_PTR(intel_cqm_total_bytes_pkg),
1457 EVENT_PTR(intel_cqm_local_bytes_pkg),
1458 EVENT_PTR(intel_cqm_total_bytes_unit),
1459 EVENT_PTR(intel_cqm_local_bytes_unit),
1460 EVENT_PTR(intel_cqm_total_bytes_scale),
1461 EVENT_PTR(intel_cqm_local_bytes_scale),
1462 NULL,
1463 };
1464
1465 static struct attribute *intel_cmt_mbm_events_attr[] = {
1466 EVENT_PTR(intel_cqm_llc),
1467 EVENT_PTR(intel_cqm_total_bytes),
1468 EVENT_PTR(intel_cqm_local_bytes),
1469 EVENT_PTR(intel_cqm_llc_pkg),
1470 EVENT_PTR(intel_cqm_total_bytes_pkg),
1471 EVENT_PTR(intel_cqm_local_bytes_pkg),
1472 EVENT_PTR(intel_cqm_llc_unit),
1473 EVENT_PTR(intel_cqm_total_bytes_unit),
1474 EVENT_PTR(intel_cqm_local_bytes_unit),
1475 EVENT_PTR(intel_cqm_llc_scale),
1476 EVENT_PTR(intel_cqm_total_bytes_scale),
1477 EVENT_PTR(intel_cqm_local_bytes_scale),
1478 EVENT_PTR(intel_cqm_llc_snapshot),
1479 NULL,
1480 };
1481
1482 static struct attribute_group intel_cqm_events_group = {
1483 .name = "events",
1484 .attrs = NULL,
1485 };
1486
1487 PMU_FORMAT_ATTR(event, "config:0-7");
1488 static struct attribute *intel_cqm_formats_attr[] = {
1489 &format_attr_event.attr,
1490 NULL,
1491 };
1492
1493 static struct attribute_group intel_cqm_format_group = {
1494 .name = "format",
1495 .attrs = intel_cqm_formats_attr,
1496 };
1497
1498 static ssize_t
1499 max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1500 char *page)
1501 {
1502 ssize_t rv;
1503
1504 mutex_lock(&cache_mutex);
1505 rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1506 mutex_unlock(&cache_mutex);
1507
1508 return rv;
1509 }
1510
1511 static ssize_t
1512 max_recycle_threshold_store(struct device *dev,
1513 struct device_attribute *attr,
1514 const char *buf, size_t count)
1515 {
1516 unsigned int bytes, cachelines;
1517 int ret;
1518
1519 ret = kstrtouint(buf, 0, &bytes);
1520 if (ret)
1521 return ret;
1522
1523 mutex_lock(&cache_mutex);
1524
1525 __intel_cqm_max_threshold = bytes;
1526 cachelines = bytes / cqm_l3_scale;
1527
1528 /*
1529 * The new maximum takes effect immediately.
1530 */
1531 if (__intel_cqm_threshold > cachelines)
1532 __intel_cqm_threshold = cachelines;
1533
1534 mutex_unlock(&cache_mutex);
1535
1536 return count;
1537 }
1538
1539 static DEVICE_ATTR_RW(max_recycle_threshold);
1540
1541 static struct attribute *intel_cqm_attrs[] = {
1542 &dev_attr_max_recycle_threshold.attr,
1543 NULL,
1544 };
1545
1546 static const struct attribute_group intel_cqm_group = {
1547 .attrs = intel_cqm_attrs,
1548 };
1549
1550 static const struct attribute_group *intel_cqm_attr_groups[] = {
1551 &intel_cqm_events_group,
1552 &intel_cqm_format_group,
1553 &intel_cqm_group,
1554 NULL,
1555 };
1556
1557 static struct pmu intel_cqm_pmu = {
1558 .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1559 .attr_groups = intel_cqm_attr_groups,
1560 .task_ctx_nr = perf_sw_context,
1561 .event_init = intel_cqm_event_init,
1562 .add = intel_cqm_event_add,
1563 .del = intel_cqm_event_stop,
1564 .start = intel_cqm_event_start,
1565 .stop = intel_cqm_event_stop,
1566 .read = intel_cqm_event_read,
1567 .count = intel_cqm_event_count,
1568 };
1569
1570 static inline void cqm_pick_event_reader(int cpu)
1571 {
1572 int reader;
1573
1574 /* First online cpu in package becomes the reader */
1575 reader = cpumask_any_and(&cqm_cpumask, topology_core_cpumask(cpu));
1576 if (reader >= nr_cpu_ids)
1577 cpumask_set_cpu(cpu, &cqm_cpumask);
1578 }
1579
1580 static void intel_cqm_cpu_starting(unsigned int cpu)
1581 {
1582 struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
1583 struct cpuinfo_x86 *c = &cpu_data(cpu);
1584
1585 state->rmid = 0;
1586 state->closid = 0;
1587 state->rmid_usecnt = 0;
1588
1589 WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1590 WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1591 }
1592
1593 static void intel_cqm_cpu_exit(unsigned int cpu)
1594 {
1595 int target;
1596
1597 /* Is @cpu the current cqm reader for this package ? */
1598 if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1599 return;
1600
1601 /* Find another online reader in this package */
1602 target = cpumask_any_but(topology_core_cpumask(cpu), cpu);
1603
1604 if (target < nr_cpu_ids)
1605 cpumask_set_cpu(target, &cqm_cpumask);
1606 }
1607
1608 static int intel_cqm_cpu_notifier(struct notifier_block *nb,
1609 unsigned long action, void *hcpu)
1610 {
1611 unsigned int cpu = (unsigned long)hcpu;
1612
1613 switch (action & ~CPU_TASKS_FROZEN) {
1614 case CPU_DOWN_PREPARE:
1615 intel_cqm_cpu_exit(cpu);
1616 break;
1617 case CPU_STARTING:
1618 intel_cqm_cpu_starting(cpu);
1619 cqm_pick_event_reader(cpu);
1620 break;
1621 }
1622
1623 return NOTIFY_OK;
1624 }
1625
1626 static const struct x86_cpu_id intel_cqm_match[] = {
1627 { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1628 {}
1629 };
1630
1631 static void mbm_cleanup(void)
1632 {
1633 if (!mbm_enabled)
1634 return;
1635
1636 kfree(mbm_local);
1637 kfree(mbm_total);
1638 mbm_enabled = false;
1639 }
1640
1641 static const struct x86_cpu_id intel_mbm_local_match[] = {
1642 { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_MBM_LOCAL },
1643 {}
1644 };
1645
1646 static const struct x86_cpu_id intel_mbm_total_match[] = {
1647 { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_MBM_TOTAL },
1648 {}
1649 };
1650
1651 static int intel_mbm_init(void)
1652 {
1653 int ret = 0, array_size, maxid = cqm_max_rmid + 1;
1654
1655 mbm_socket_max = topology_max_packages();
1656 array_size = sizeof(struct sample) * maxid * mbm_socket_max;
1657 mbm_local = kmalloc(array_size, GFP_KERNEL);
1658 if (!mbm_local)
1659 return -ENOMEM;
1660
1661 mbm_total = kmalloc(array_size, GFP_KERNEL);
1662 if (!mbm_total) {
1663 ret = -ENOMEM;
1664 goto out;
1665 }
1666
1667 array_size = sizeof(struct hrtimer) * mbm_socket_max;
1668 mbm_timers = kmalloc(array_size, GFP_KERNEL);
1669 if (!mbm_timers) {
1670 ret = -ENOMEM;
1671 goto out;
1672 }
1673 mbm_hrtimer_init();
1674
1675 out:
1676 if (ret)
1677 mbm_cleanup();
1678
1679 return ret;
1680 }
1681
1682 static int __init intel_cqm_init(void)
1683 {
1684 char *str = NULL, scale[20];
1685 int i, cpu, ret;
1686
1687 if (x86_match_cpu(intel_cqm_match))
1688 cqm_enabled = true;
1689
1690 if (x86_match_cpu(intel_mbm_local_match) &&
1691 x86_match_cpu(intel_mbm_total_match))
1692 mbm_enabled = true;
1693
1694 if (!cqm_enabled && !mbm_enabled)
1695 return -ENODEV;
1696
1697 cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1698
1699 /*
1700 * It's possible that not all resources support the same number
1701 * of RMIDs. Instead of making scheduling much more complicated
1702 * (where we have to match a task's RMID to a cpu that supports
1703 * that many RMIDs) just find the minimum RMIDs supported across
1704 * all cpus.
1705 *
1706 * Also, check that the scales match on all cpus.
1707 */
1708 cpu_notifier_register_begin();
1709
1710 for_each_online_cpu(cpu) {
1711 struct cpuinfo_x86 *c = &cpu_data(cpu);
1712
1713 if (c->x86_cache_max_rmid < cqm_max_rmid)
1714 cqm_max_rmid = c->x86_cache_max_rmid;
1715
1716 if (c->x86_cache_occ_scale != cqm_l3_scale) {
1717 pr_err("Multiple LLC scale values, disabling\n");
1718 ret = -EINVAL;
1719 goto out;
1720 }
1721 }
1722
1723 /*
1724 * A reasonable upper limit on the max threshold is the number
1725 * of lines tagged per RMID if all RMIDs have the same number of
1726 * lines tagged in the LLC.
1727 *
1728 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1729 */
1730 __intel_cqm_max_threshold =
1731 boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1732
1733 snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1734 str = kstrdup(scale, GFP_KERNEL);
1735 if (!str) {
1736 ret = -ENOMEM;
1737 goto out;
1738 }
1739
1740 event_attr_intel_cqm_llc_scale.event_str = str;
1741
1742 ret = intel_cqm_setup_rmid_cache();
1743 if (ret)
1744 goto out;
1745
1746 for_each_online_cpu(i) {
1747 intel_cqm_cpu_starting(i);
1748 cqm_pick_event_reader(i);
1749 }
1750
1751 if (mbm_enabled)
1752 ret = intel_mbm_init();
1753 if (ret && !cqm_enabled)
1754 goto out;
1755
1756 if (cqm_enabled && mbm_enabled)
1757 intel_cqm_events_group.attrs = intel_cmt_mbm_events_attr;
1758 else if (!cqm_enabled && mbm_enabled)
1759 intel_cqm_events_group.attrs = intel_mbm_events_attr;
1760 else if (cqm_enabled && !mbm_enabled)
1761 intel_cqm_events_group.attrs = intel_cqm_events_attr;
1762
1763 ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1764 if (ret) {
1765 pr_err("Intel CQM perf registration failed: %d\n", ret);
1766 goto out;
1767 }
1768
1769 if (cqm_enabled)
1770 pr_info("Intel CQM monitoring enabled\n");
1771 if (mbm_enabled)
1772 pr_info("Intel MBM enabled\n");
1773
1774 /*
1775 * Register the hot cpu notifier once we are sure cqm
1776 * is enabled to avoid notifier leak.
1777 */
1778 __perf_cpu_notifier(intel_cqm_cpu_notifier);
1779 out:
1780 cpu_notifier_register_done();
1781 if (ret) {
1782 kfree(str);
1783 cqm_cleanup();
1784 mbm_cleanup();
1785 }
1786
1787 return ret;
1788 }
1789 device_initcall(intel_cqm_init);
This page took 0.092301 seconds and 5 git commands to generate.