x86: trampoline_64.S - use predefined constants with simplification
[deliverable/linux.git] / arch / x86 / include / asm / bitops.h
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8 #ifndef _LINUX_BITOPS_H
9 #error only <linux/bitops.h> can be included directly
10 #endif
11
12 #include <linux/compiler.h>
13 #include <asm/alternative.h>
14
15 /*
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
19 *
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21 */
22
23 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24 /* Technically wrong, but this avoids compilation errors on some gcc
25 versions. */
26 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
27 #else
28 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
29 #endif
30
31 #define ADDR BITOP_ADDR(addr)
32
33 /*
34 * We do the locked ops that don't return the old value as
35 * a mask operation on a byte.
36 */
37 #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
38 #define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
39 #define CONST_MASK(nr) (1 << ((nr) & 7))
40
41 /**
42 * set_bit - Atomically set a bit in memory
43 * @nr: the bit to set
44 * @addr: the address to start counting from
45 *
46 * This function is atomic and may not be reordered. See __set_bit()
47 * if you do not require the atomic guarantees.
48 *
49 * Note: there are no guarantees that this function will not be reordered
50 * on non x86 architectures, so if you are writing portable code,
51 * make sure not to rely on its reordering guarantees.
52 *
53 * Note that @nr may be almost arbitrarily large; this function is not
54 * restricted to acting on a single-word quantity.
55 */
56 static inline void set_bit(unsigned int nr, volatile unsigned long *addr)
57 {
58 if (IS_IMMEDIATE(nr)) {
59 asm volatile(LOCK_PREFIX "orb %1,%0"
60 : CONST_MASK_ADDR(nr, addr)
61 : "iq" ((u8)CONST_MASK(nr))
62 : "memory");
63 } else {
64 asm volatile(LOCK_PREFIX "bts %1,%0"
65 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
66 }
67 }
68
69 /**
70 * __set_bit - Set a bit in memory
71 * @nr: the bit to set
72 * @addr: the address to start counting from
73 *
74 * Unlike set_bit(), this function is non-atomic and may be reordered.
75 * If it's called on the same region of memory simultaneously, the effect
76 * may be that only one operation succeeds.
77 */
78 static inline void __set_bit(int nr, volatile unsigned long *addr)
79 {
80 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
81 }
82
83 /**
84 * clear_bit - Clears a bit in memory
85 * @nr: Bit to clear
86 * @addr: Address to start counting from
87 *
88 * clear_bit() is atomic and may not be reordered. However, it does
89 * not contain a memory barrier, so if it is used for locking purposes,
90 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
91 * in order to ensure changes are visible on other processors.
92 */
93 static inline void clear_bit(int nr, volatile unsigned long *addr)
94 {
95 if (IS_IMMEDIATE(nr)) {
96 asm volatile(LOCK_PREFIX "andb %1,%0"
97 : CONST_MASK_ADDR(nr, addr)
98 : "iq" ((u8)~CONST_MASK(nr)));
99 } else {
100 asm volatile(LOCK_PREFIX "btr %1,%0"
101 : BITOP_ADDR(addr)
102 : "Ir" (nr));
103 }
104 }
105
106 /*
107 * clear_bit_unlock - Clears a bit in memory
108 * @nr: Bit to clear
109 * @addr: Address to start counting from
110 *
111 * clear_bit() is atomic and implies release semantics before the memory
112 * operation. It can be used for an unlock.
113 */
114 static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
115 {
116 barrier();
117 clear_bit(nr, addr);
118 }
119
120 static inline void __clear_bit(int nr, volatile unsigned long *addr)
121 {
122 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
123 }
124
125 /*
126 * __clear_bit_unlock - Clears a bit in memory
127 * @nr: Bit to clear
128 * @addr: Address to start counting from
129 *
130 * __clear_bit() is non-atomic and implies release semantics before the memory
131 * operation. It can be used for an unlock if no other CPUs can concurrently
132 * modify other bits in the word.
133 *
134 * No memory barrier is required here, because x86 cannot reorder stores past
135 * older loads. Same principle as spin_unlock.
136 */
137 static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
138 {
139 barrier();
140 __clear_bit(nr, addr);
141 }
142
143 #define smp_mb__before_clear_bit() barrier()
144 #define smp_mb__after_clear_bit() barrier()
145
146 /**
147 * __change_bit - Toggle a bit in memory
148 * @nr: the bit to change
149 * @addr: the address to start counting from
150 *
151 * Unlike change_bit(), this function is non-atomic and may be reordered.
152 * If it's called on the same region of memory simultaneously, the effect
153 * may be that only one operation succeeds.
154 */
155 static inline void __change_bit(int nr, volatile unsigned long *addr)
156 {
157 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
158 }
159
160 /**
161 * change_bit - Toggle a bit in memory
162 * @nr: Bit to change
163 * @addr: Address to start counting from
164 *
165 * change_bit() is atomic and may not be reordered.
166 * Note that @nr may be almost arbitrarily large; this function is not
167 * restricted to acting on a single-word quantity.
168 */
169 static inline void change_bit(int nr, volatile unsigned long *addr)
170 {
171 if (IS_IMMEDIATE(nr)) {
172 asm volatile(LOCK_PREFIX "xorb %1,%0"
173 : CONST_MASK_ADDR(nr, addr)
174 : "iq" ((u8)CONST_MASK(nr)));
175 } else {
176 asm volatile(LOCK_PREFIX "btc %1,%0"
177 : BITOP_ADDR(addr)
178 : "Ir" (nr));
179 }
180 }
181
182 /**
183 * test_and_set_bit - Set a bit and return its old value
184 * @nr: Bit to set
185 * @addr: Address to count from
186 *
187 * This operation is atomic and cannot be reordered.
188 * It also implies a memory barrier.
189 */
190 static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
191 {
192 int oldbit;
193
194 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
195 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
196
197 return oldbit;
198 }
199
200 /**
201 * test_and_set_bit_lock - Set a bit and return its old value for lock
202 * @nr: Bit to set
203 * @addr: Address to count from
204 *
205 * This is the same as test_and_set_bit on x86.
206 */
207 static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
208 {
209 return test_and_set_bit(nr, addr);
210 }
211
212 /**
213 * __test_and_set_bit - Set a bit and return its old value
214 * @nr: Bit to set
215 * @addr: Address to count from
216 *
217 * This operation is non-atomic and can be reordered.
218 * If two examples of this operation race, one can appear to succeed
219 * but actually fail. You must protect multiple accesses with a lock.
220 */
221 static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
222 {
223 int oldbit;
224
225 asm("bts %2,%1\n\t"
226 "sbb %0,%0"
227 : "=r" (oldbit), ADDR
228 : "Ir" (nr));
229 return oldbit;
230 }
231
232 /**
233 * test_and_clear_bit - Clear a bit and return its old value
234 * @nr: Bit to clear
235 * @addr: Address to count from
236 *
237 * This operation is atomic and cannot be reordered.
238 * It also implies a memory barrier.
239 */
240 static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
241 {
242 int oldbit;
243
244 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
245 "sbb %0,%0"
246 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
247
248 return oldbit;
249 }
250
251 /**
252 * __test_and_clear_bit - Clear a bit and return its old value
253 * @nr: Bit to clear
254 * @addr: Address to count from
255 *
256 * This operation is non-atomic and can be reordered.
257 * If two examples of this operation race, one can appear to succeed
258 * but actually fail. You must protect multiple accesses with a lock.
259 */
260 static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
261 {
262 int oldbit;
263
264 asm volatile("btr %2,%1\n\t"
265 "sbb %0,%0"
266 : "=r" (oldbit), ADDR
267 : "Ir" (nr));
268 return oldbit;
269 }
270
271 /* WARNING: non atomic and it can be reordered! */
272 static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
273 {
274 int oldbit;
275
276 asm volatile("btc %2,%1\n\t"
277 "sbb %0,%0"
278 : "=r" (oldbit), ADDR
279 : "Ir" (nr) : "memory");
280
281 return oldbit;
282 }
283
284 /**
285 * test_and_change_bit - Change a bit and return its old value
286 * @nr: Bit to change
287 * @addr: Address to count from
288 *
289 * This operation is atomic and cannot be reordered.
290 * It also implies a memory barrier.
291 */
292 static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
293 {
294 int oldbit;
295
296 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
297 "sbb %0,%0"
298 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
299
300 return oldbit;
301 }
302
303 static inline int constant_test_bit(unsigned int nr, const volatile unsigned long *addr)
304 {
305 return ((1UL << (nr % BITS_PER_LONG)) &
306 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
307 }
308
309 static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
310 {
311 int oldbit;
312
313 asm volatile("bt %2,%1\n\t"
314 "sbb %0,%0"
315 : "=r" (oldbit)
316 : "m" (*(unsigned long *)addr), "Ir" (nr));
317
318 return oldbit;
319 }
320
321 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
322 /**
323 * test_bit - Determine whether a bit is set
324 * @nr: bit number to test
325 * @addr: Address to start counting from
326 */
327 static int test_bit(int nr, const volatile unsigned long *addr);
328 #endif
329
330 #define test_bit(nr, addr) \
331 (__builtin_constant_p((nr)) \
332 ? constant_test_bit((nr), (addr)) \
333 : variable_test_bit((nr), (addr)))
334
335 /**
336 * __ffs - find first set bit in word
337 * @word: The word to search
338 *
339 * Undefined if no bit exists, so code should check against 0 first.
340 */
341 static inline unsigned long __ffs(unsigned long word)
342 {
343 asm("bsf %1,%0"
344 : "=r" (word)
345 : "rm" (word));
346 return word;
347 }
348
349 /**
350 * ffz - find first zero bit in word
351 * @word: The word to search
352 *
353 * Undefined if no zero exists, so code should check against ~0UL first.
354 */
355 static inline unsigned long ffz(unsigned long word)
356 {
357 asm("bsf %1,%0"
358 : "=r" (word)
359 : "r" (~word));
360 return word;
361 }
362
363 /*
364 * __fls: find last set bit in word
365 * @word: The word to search
366 *
367 * Undefined if no set bit exists, so code should check against 0 first.
368 */
369 static inline unsigned long __fls(unsigned long word)
370 {
371 asm("bsr %1,%0"
372 : "=r" (word)
373 : "rm" (word));
374 return word;
375 }
376
377 #ifdef __KERNEL__
378 /**
379 * ffs - find first set bit in word
380 * @x: the word to search
381 *
382 * This is defined the same way as the libc and compiler builtin ffs
383 * routines, therefore differs in spirit from the other bitops.
384 *
385 * ffs(value) returns 0 if value is 0 or the position of the first
386 * set bit if value is nonzero. The first (least significant) bit
387 * is at position 1.
388 */
389 static inline int ffs(int x)
390 {
391 int r;
392 #ifdef CONFIG_X86_CMOV
393 asm("bsfl %1,%0\n\t"
394 "cmovzl %2,%0"
395 : "=r" (r) : "rm" (x), "r" (-1));
396 #else
397 asm("bsfl %1,%0\n\t"
398 "jnz 1f\n\t"
399 "movl $-1,%0\n"
400 "1:" : "=r" (r) : "rm" (x));
401 #endif
402 return r + 1;
403 }
404
405 /**
406 * fls - find last set bit in word
407 * @x: the word to search
408 *
409 * This is defined in a similar way as the libc and compiler builtin
410 * ffs, but returns the position of the most significant set bit.
411 *
412 * fls(value) returns 0 if value is 0 or the position of the last
413 * set bit if value is nonzero. The last (most significant) bit is
414 * at position 32.
415 */
416 static inline int fls(int x)
417 {
418 int r;
419 #ifdef CONFIG_X86_CMOV
420 asm("bsrl %1,%0\n\t"
421 "cmovzl %2,%0"
422 : "=&r" (r) : "rm" (x), "rm" (-1));
423 #else
424 asm("bsrl %1,%0\n\t"
425 "jnz 1f\n\t"
426 "movl $-1,%0\n"
427 "1:" : "=r" (r) : "rm" (x));
428 #endif
429 return r + 1;
430 }
431 #endif /* __KERNEL__ */
432
433 #undef ADDR
434
435 #ifdef __KERNEL__
436
437 #include <asm-generic/bitops/sched.h>
438
439 #define ARCH_HAS_FAST_MULTIPLIER 1
440
441 #include <asm-generic/bitops/hweight.h>
442
443 #endif /* __KERNEL__ */
444
445 #include <asm-generic/bitops/fls64.h>
446
447 #ifdef __KERNEL__
448
449 #include <asm-generic/bitops/ext2-non-atomic.h>
450
451 #define ext2_set_bit_atomic(lock, nr, addr) \
452 test_and_set_bit((nr), (unsigned long *)(addr))
453 #define ext2_clear_bit_atomic(lock, nr, addr) \
454 test_and_clear_bit((nr), (unsigned long *)(addr))
455
456 #include <asm-generic/bitops/minix.h>
457
458 #endif /* __KERNEL__ */
459 #endif /* _ASM_X86_BITOPS_H */
This page took 0.041477 seconds and 5 git commands to generate.