12acbb32a5613f641d4c31afd69960d639cc7010
[deliverable/linux.git] / arch / x86 / include / asm / fpu / internal.h
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _ASM_X86_FPU_INTERNAL_H
11 #define _ASM_X86_FPU_INTERNAL_H
12
13 #include <linux/compat.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16
17 #include <asm/user.h>
18 #include <asm/fpu/api.h>
19 #include <asm/fpu/xstate.h>
20
21 /*
22 * High level FPU state handling functions:
23 */
24 extern void fpu__activate_curr(struct fpu *fpu);
25 extern void fpu__activate_fpstate_read(struct fpu *fpu);
26 extern void fpu__activate_fpstate_write(struct fpu *fpu);
27 extern void fpu__save(struct fpu *fpu);
28 extern void fpu__restore(struct fpu *fpu);
29 extern int fpu__restore_sig(void __user *buf, int ia32_frame);
30 extern void fpu__drop(struct fpu *fpu);
31 extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
32 extern void fpu__clear(struct fpu *fpu);
33 extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
34 extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
35
36 /*
37 * Boot time FPU initialization functions:
38 */
39 extern void fpu__init_cpu(void);
40 extern void fpu__init_system_xstate(void);
41 extern void fpu__init_cpu_xstate(void);
42 extern void fpu__init_system(struct cpuinfo_x86 *c);
43 extern void fpu__init_check_bugs(void);
44 extern void fpu__resume_cpu(void);
45
46 /*
47 * Debugging facility:
48 */
49 #ifdef CONFIG_X86_DEBUG_FPU
50 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
51 #else
52 # define WARN_ON_FPU(x) ({ 0; })
53 #endif
54
55 /*
56 * FPU related CPU feature flag helper routines:
57 */
58 static __always_inline __pure bool use_eager_fpu(void)
59 {
60 return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
61 }
62
63 static __always_inline __pure bool use_xsaveopt(void)
64 {
65 return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
66 }
67
68 static __always_inline __pure bool use_xsave(void)
69 {
70 return static_cpu_has_safe(X86_FEATURE_XSAVE);
71 }
72
73 static __always_inline __pure bool use_fxsr(void)
74 {
75 return static_cpu_has_safe(X86_FEATURE_FXSR);
76 }
77
78 /*
79 * fpstate handling functions:
80 */
81
82 extern union fpregs_state init_fpstate;
83
84 extern void fpstate_init(union fpregs_state *state);
85 #ifdef CONFIG_MATH_EMULATION
86 extern void fpstate_init_soft(struct swregs_state *soft);
87 #else
88 static inline void fpstate_init_soft(struct swregs_state *soft) {}
89 #endif
90 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
91 {
92 fx->cwd = 0x37f;
93 fx->mxcsr = MXCSR_DEFAULT;
94 }
95 extern void fpstate_sanitize_xstate(struct fpu *fpu);
96
97 #define user_insn(insn, output, input...) \
98 ({ \
99 int err; \
100 asm volatile(ASM_STAC "\n" \
101 "1:" #insn "\n\t" \
102 "2: " ASM_CLAC "\n" \
103 ".section .fixup,\"ax\"\n" \
104 "3: movl $-1,%[err]\n" \
105 " jmp 2b\n" \
106 ".previous\n" \
107 _ASM_EXTABLE(1b, 3b) \
108 : [err] "=r" (err), output \
109 : "0"(0), input); \
110 err; \
111 })
112
113 #define check_insn(insn, output, input...) \
114 ({ \
115 int err; \
116 asm volatile("1:" #insn "\n\t" \
117 "2:\n" \
118 ".section .fixup,\"ax\"\n" \
119 "3: movl $-1,%[err]\n" \
120 " jmp 2b\n" \
121 ".previous\n" \
122 _ASM_EXTABLE(1b, 3b) \
123 : [err] "=r" (err), output \
124 : "0"(0), input); \
125 err; \
126 })
127
128 static inline int copy_fregs_to_user(struct fregs_state __user *fx)
129 {
130 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
131 }
132
133 static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
134 {
135 if (config_enabled(CONFIG_X86_32))
136 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
137 else if (config_enabled(CONFIG_AS_FXSAVEQ))
138 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
139
140 /* See comment in copy_fxregs_to_kernel() below. */
141 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
142 }
143
144 static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
145 {
146 int err;
147
148 if (config_enabled(CONFIG_X86_32)) {
149 err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
150 } else {
151 if (config_enabled(CONFIG_AS_FXSAVEQ)) {
152 err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
153 } else {
154 /* See comment in copy_fxregs_to_kernel() below. */
155 err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
156 }
157 }
158 /* Copying from a kernel buffer to FPU registers should never fail: */
159 WARN_ON_FPU(err);
160 }
161
162 static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
163 {
164 if (config_enabled(CONFIG_X86_32))
165 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
166 else if (config_enabled(CONFIG_AS_FXSAVEQ))
167 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
168
169 /* See comment in copy_fxregs_to_kernel() below. */
170 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
171 "m" (*fx));
172 }
173
174 static inline void copy_kernel_to_fregs(struct fregs_state *fx)
175 {
176 int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
177
178 WARN_ON_FPU(err);
179 }
180
181 static inline int copy_user_to_fregs(struct fregs_state __user *fx)
182 {
183 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
184 }
185
186 static inline void copy_fxregs_to_kernel(struct fpu *fpu)
187 {
188 if (config_enabled(CONFIG_X86_32))
189 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
190 else if (config_enabled(CONFIG_AS_FXSAVEQ))
191 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
192 else {
193 /* Using "rex64; fxsave %0" is broken because, if the memory
194 * operand uses any extended registers for addressing, a second
195 * REX prefix will be generated (to the assembler, rex64
196 * followed by semicolon is a separate instruction), and hence
197 * the 64-bitness is lost.
198 *
199 * Using "fxsaveq %0" would be the ideal choice, but is only
200 * supported starting with gas 2.16.
201 *
202 * Using, as a workaround, the properly prefixed form below
203 * isn't accepted by any binutils version so far released,
204 * complaining that the same type of prefix is used twice if
205 * an extended register is needed for addressing (fix submitted
206 * to mainline 2005-11-21).
207 *
208 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
209 *
210 * This, however, we can work around by forcing the compiler to
211 * select an addressing mode that doesn't require extended
212 * registers.
213 */
214 asm volatile( "rex64/fxsave (%[fx])"
215 : "=m" (fpu->state.fxsave)
216 : [fx] "R" (&fpu->state.fxsave));
217 }
218 }
219
220 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
221 #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
222 #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
223 #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
224 #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
225 #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
226
227 /* xstate instruction fault handler: */
228 #define xstate_fault(__err) \
229 \
230 ".section .fixup,\"ax\"\n" \
231 \
232 "3: movl $-2,%[_err]\n" \
233 " jmp 2b\n" \
234 \
235 ".previous\n" \
236 \
237 _ASM_EXTABLE(1b, 3b) \
238 : [_err] "=r" (__err)
239
240 /*
241 * This function is called only during boot time when x86 caps are not set
242 * up and alternative can not be used yet.
243 */
244 static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
245 {
246 u64 mask = -1;
247 u32 lmask = mask;
248 u32 hmask = mask >> 32;
249 int err = 0;
250
251 WARN_ON(system_state != SYSTEM_BOOTING);
252
253 if (boot_cpu_has(X86_FEATURE_XSAVES))
254 asm volatile("1:"XSAVES"\n\t"
255 "2:\n\t"
256 xstate_fault(err)
257 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
258 : "memory");
259 else
260 asm volatile("1:"XSAVE"\n\t"
261 "2:\n\t"
262 xstate_fault(err)
263 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
264 : "memory");
265
266 /* We should never fault when copying to a kernel buffer: */
267 WARN_ON_FPU(err);
268 }
269
270 /*
271 * This function is called only during boot time when x86 caps are not set
272 * up and alternative can not be used yet.
273 */
274 static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate, u64 mask)
275 {
276 u32 lmask = mask;
277 u32 hmask = mask >> 32;
278 int err = 0;
279
280 WARN_ON(system_state != SYSTEM_BOOTING);
281
282 if (boot_cpu_has(X86_FEATURE_XSAVES))
283 asm volatile("1:"XRSTORS"\n\t"
284 "2:\n\t"
285 xstate_fault(err)
286 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
287 : "memory");
288 else
289 asm volatile("1:"XRSTOR"\n\t"
290 "2:\n\t"
291 xstate_fault(err)
292 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
293 : "memory");
294
295 /* We should never fault when copying from a kernel buffer: */
296 WARN_ON_FPU(err);
297 }
298
299 /*
300 * Save processor xstate to xsave area.
301 */
302 static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
303 {
304 u64 mask = -1;
305 u32 lmask = mask;
306 u32 hmask = mask >> 32;
307 int err = 0;
308
309 WARN_ON(!alternatives_patched);
310
311 /*
312 * If xsaves is enabled, xsaves replaces xsaveopt because
313 * it supports compact format and supervisor states in addition to
314 * modified optimization in xsaveopt.
315 *
316 * Otherwise, if xsaveopt is enabled, xsaveopt replaces xsave
317 * because xsaveopt supports modified optimization which is not
318 * supported by xsave.
319 *
320 * If none of xsaves and xsaveopt is enabled, use xsave.
321 */
322 alternative_input_2(
323 "1:"XSAVE,
324 XSAVEOPT,
325 X86_FEATURE_XSAVEOPT,
326 XSAVES,
327 X86_FEATURE_XSAVES,
328 [xstate] "D" (xstate), "a" (lmask), "d" (hmask) :
329 "memory");
330 asm volatile("2:\n\t"
331 xstate_fault(err)
332 : "0" (err)
333 : "memory");
334
335 /* We should never fault when copying to a kernel buffer: */
336 WARN_ON_FPU(err);
337 }
338
339 /*
340 * Restore processor xstate from xsave area.
341 */
342 static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
343 {
344 u32 lmask = mask;
345 u32 hmask = mask >> 32;
346 int err = 0;
347
348 /*
349 * Use xrstors to restore context if it is enabled. xrstors supports
350 * compacted format of xsave area which is not supported by xrstor.
351 */
352 alternative_input(
353 "1: " XRSTOR,
354 XRSTORS,
355 X86_FEATURE_XSAVES,
356 "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask)
357 : "memory");
358
359 asm volatile("2:\n"
360 xstate_fault(err)
361 : "0" (err)
362 : "memory");
363
364 /* We should never fault when copying from a kernel buffer: */
365 WARN_ON_FPU(err);
366 }
367
368 /*
369 * Save xstate to user space xsave area.
370 *
371 * We don't use modified optimization because xrstor/xrstors might track
372 * a different application.
373 *
374 * We don't use compacted format xsave area for
375 * backward compatibility for old applications which don't understand
376 * compacted format of xsave area.
377 */
378 static inline int copy_xregs_to_user(struct xregs_state __user *buf)
379 {
380 int err;
381
382 /*
383 * Clear the xsave header first, so that reserved fields are
384 * initialized to zero.
385 */
386 err = __clear_user(&buf->header, sizeof(buf->header));
387 if (unlikely(err))
388 return -EFAULT;
389
390 __asm__ __volatile__(ASM_STAC "\n"
391 "1:"XSAVE"\n"
392 "2: " ASM_CLAC "\n"
393 xstate_fault(err)
394 : "D" (buf), "a" (-1), "d" (-1), "0" (err)
395 : "memory");
396 return err;
397 }
398
399 /*
400 * Restore xstate from user space xsave area.
401 */
402 static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
403 {
404 struct xregs_state *xstate = ((__force struct xregs_state *)buf);
405 u32 lmask = mask;
406 u32 hmask = mask >> 32;
407 int err = 0;
408
409 __asm__ __volatile__(ASM_STAC "\n"
410 "1:"XRSTOR"\n"
411 "2: " ASM_CLAC "\n"
412 xstate_fault(err)
413 : "D" (xstate), "a" (lmask), "d" (hmask), "0" (err)
414 : "memory"); /* memory required? */
415 return err;
416 }
417
418 /*
419 * These must be called with preempt disabled. Returns
420 * 'true' if the FPU state is still intact and we can
421 * keep registers active.
422 *
423 * The legacy FNSAVE instruction cleared all FPU state
424 * unconditionally, so registers are essentially destroyed.
425 * Modern FPU state can be kept in registers, if there are
426 * no pending FP exceptions.
427 */
428 static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
429 {
430 if (likely(use_xsave())) {
431 copy_xregs_to_kernel(&fpu->state.xsave);
432 return 1;
433 }
434
435 if (likely(use_fxsr())) {
436 copy_fxregs_to_kernel(fpu);
437 return 1;
438 }
439
440 /*
441 * Legacy FPU register saving, FNSAVE always clears FPU registers,
442 * so we have to mark them inactive:
443 */
444 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
445
446 return 0;
447 }
448
449 static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
450 {
451 if (use_xsave()) {
452 copy_kernel_to_xregs(&fpstate->xsave, -1);
453 } else {
454 if (use_fxsr())
455 copy_kernel_to_fxregs(&fpstate->fxsave);
456 else
457 copy_kernel_to_fregs(&fpstate->fsave);
458 }
459 }
460
461 static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
462 {
463 /*
464 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
465 * pending. Clear the x87 state here by setting it to fixed values.
466 * "m" is a random variable that should be in L1.
467 */
468 if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
469 asm volatile(
470 "fnclex\n\t"
471 "emms\n\t"
472 "fildl %P[addr]" /* set F?P to defined value */
473 : : [addr] "m" (fpstate));
474 }
475
476 __copy_kernel_to_fpregs(fpstate);
477 }
478
479 extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
480
481 /*
482 * FPU context switch related helper methods:
483 */
484
485 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
486
487 /*
488 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
489 * on this CPU.
490 *
491 * This will disable any lazy FPU state restore of the current FPU state,
492 * but if the current thread owns the FPU, it will still be saved by.
493 */
494 static inline void __cpu_disable_lazy_restore(unsigned int cpu)
495 {
496 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
497 }
498
499 static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
500 {
501 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
502 }
503
504
505 /*
506 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
507 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
508 */
509
510 static inline void __fpregs_activate_hw(void)
511 {
512 if (!use_eager_fpu())
513 clts();
514 }
515
516 static inline void __fpregs_deactivate_hw(void)
517 {
518 if (!use_eager_fpu())
519 stts();
520 }
521
522 /* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
523 static inline void __fpregs_deactivate(struct fpu *fpu)
524 {
525 WARN_ON_FPU(!fpu->fpregs_active);
526
527 fpu->fpregs_active = 0;
528 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
529 }
530
531 /* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
532 static inline void __fpregs_activate(struct fpu *fpu)
533 {
534 WARN_ON_FPU(fpu->fpregs_active);
535
536 fpu->fpregs_active = 1;
537 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
538 }
539
540 /*
541 * The question "does this thread have fpu access?"
542 * is slightly racy, since preemption could come in
543 * and revoke it immediately after the test.
544 *
545 * However, even in that very unlikely scenario,
546 * we can just assume we have FPU access - typically
547 * to save the FP state - we'll just take a #NM
548 * fault and get the FPU access back.
549 */
550 static inline int fpregs_active(void)
551 {
552 return current->thread.fpu.fpregs_active;
553 }
554
555 /*
556 * Encapsulate the CR0.TS handling together with the
557 * software flag.
558 *
559 * These generally need preemption protection to work,
560 * do try to avoid using these on their own.
561 */
562 static inline void fpregs_activate(struct fpu *fpu)
563 {
564 __fpregs_activate_hw();
565 __fpregs_activate(fpu);
566 }
567
568 static inline void fpregs_deactivate(struct fpu *fpu)
569 {
570 __fpregs_deactivate(fpu);
571 __fpregs_deactivate_hw();
572 }
573
574 /*
575 * FPU state switching for scheduling.
576 *
577 * This is a two-stage process:
578 *
579 * - switch_fpu_prepare() saves the old state and
580 * sets the new state of the CR0.TS bit. This is
581 * done within the context of the old process.
582 *
583 * - switch_fpu_finish() restores the new state as
584 * necessary.
585 */
586 typedef struct { int preload; } fpu_switch_t;
587
588 static inline fpu_switch_t
589 switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
590 {
591 fpu_switch_t fpu;
592
593 /*
594 * If the task has used the math, pre-load the FPU on xsave processors
595 * or if the past 5 consecutive context-switches used math.
596 */
597 fpu.preload = new_fpu->fpstate_active &&
598 (use_eager_fpu() || new_fpu->counter > 5);
599
600 if (old_fpu->fpregs_active) {
601 if (!copy_fpregs_to_fpstate(old_fpu))
602 old_fpu->last_cpu = -1;
603 else
604 old_fpu->last_cpu = cpu;
605
606 /* But leave fpu_fpregs_owner_ctx! */
607 old_fpu->fpregs_active = 0;
608
609 /* Don't change CR0.TS if we just switch! */
610 if (fpu.preload) {
611 new_fpu->counter++;
612 __fpregs_activate(new_fpu);
613 prefetch(&new_fpu->state);
614 } else {
615 __fpregs_deactivate_hw();
616 }
617 } else {
618 old_fpu->counter = 0;
619 old_fpu->last_cpu = -1;
620 if (fpu.preload) {
621 new_fpu->counter++;
622 if (fpu_want_lazy_restore(new_fpu, cpu))
623 fpu.preload = 0;
624 else
625 prefetch(&new_fpu->state);
626 fpregs_activate(new_fpu);
627 }
628 }
629 return fpu;
630 }
631
632 /*
633 * Misc helper functions:
634 */
635
636 /*
637 * By the time this gets called, we've already cleared CR0.TS and
638 * given the process the FPU if we are going to preload the FPU
639 * state - all we need to do is to conditionally restore the register
640 * state itself.
641 */
642 static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
643 {
644 if (fpu_switch.preload)
645 copy_kernel_to_fpregs(&new_fpu->state);
646 }
647
648 /*
649 * Needs to be preemption-safe.
650 *
651 * NOTE! user_fpu_begin() must be used only immediately before restoring
652 * the save state. It does not do any saving/restoring on its own. In
653 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
654 * the task can lose the FPU right after preempt_enable().
655 */
656 static inline void user_fpu_begin(void)
657 {
658 struct fpu *fpu = &current->thread.fpu;
659
660 preempt_disable();
661 if (!fpregs_active())
662 fpregs_activate(fpu);
663 preempt_enable();
664 }
665
666 /*
667 * MXCSR and XCR definitions:
668 */
669
670 extern unsigned int mxcsr_feature_mask;
671
672 #define XCR_XFEATURE_ENABLED_MASK 0x00000000
673
674 static inline u64 xgetbv(u32 index)
675 {
676 u32 eax, edx;
677
678 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
679 : "=a" (eax), "=d" (edx)
680 : "c" (index));
681 return eax + ((u64)edx << 32);
682 }
683
684 static inline void xsetbv(u32 index, u64 value)
685 {
686 u32 eax = value;
687 u32 edx = value >> 32;
688
689 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
690 : : "a" (eax), "d" (edx), "c" (index));
691 }
692
693 #endif /* _ASM_X86_FPU_INTERNAL_H */
This page took 0.044403 seconds and 4 git commands to generate.