x86: Avoid unnecessary __clear_user() and xrstor in signal handling
[deliverable/linux.git] / arch / x86 / include / asm / i387.h
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
12
13 #ifndef __ASSEMBLY__
14
15 #include <linux/sched.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/regset.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <asm/asm.h>
21 #include <asm/cpufeature.h>
22 #include <asm/processor.h>
23 #include <asm/sigcontext.h>
24 #include <asm/user.h>
25 #include <asm/uaccess.h>
26 #include <asm/xsave.h>
27
28 extern unsigned int sig_xstate_size;
29 extern void fpu_init(void);
30 extern void mxcsr_feature_mask_init(void);
31 extern int init_fpu(struct task_struct *child);
32 extern asmlinkage void math_state_restore(void);
33 extern void __math_state_restore(void);
34 extern void init_thread_xstate(void);
35 extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
36
37 extern user_regset_active_fn fpregs_active, xfpregs_active;
38 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
39 xstateregs_get;
40 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
41 xstateregs_set;
42
43 /*
44 * xstateregs_active == fpregs_active. Please refer to the comment
45 * at the definition of fpregs_active.
46 */
47 #define xstateregs_active fpregs_active
48
49 extern struct _fpx_sw_bytes fx_sw_reserved;
50 #ifdef CONFIG_IA32_EMULATION
51 extern unsigned int sig_xstate_ia32_size;
52 extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
53 struct _fpstate_ia32;
54 struct _xstate_ia32;
55 extern int save_i387_xstate_ia32(void __user *buf);
56 extern int restore_i387_xstate_ia32(void __user *buf);
57 #endif
58
59 #define X87_FSW_ES (1 << 7) /* Exception Summary */
60
61 static __always_inline __pure bool use_xsave(void)
62 {
63 return static_cpu_has(X86_FEATURE_XSAVE);
64 }
65
66 #ifdef CONFIG_X86_64
67
68 /* Ignore delayed exceptions from user space */
69 static inline void tolerant_fwait(void)
70 {
71 asm volatile("1: fwait\n"
72 "2:\n"
73 _ASM_EXTABLE(1b, 2b));
74 }
75
76 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
77 {
78 int err;
79
80 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
81 "2:\n"
82 ".section .fixup,\"ax\"\n"
83 "3: movl $-1,%[err]\n"
84 " jmp 2b\n"
85 ".previous\n"
86 _ASM_EXTABLE(1b, 3b)
87 : [err] "=r" (err)
88 #if 0 /* See comment in fxsave() below. */
89 : [fx] "r" (fx), "m" (*fx), "0" (0));
90 #else
91 : [fx] "cdaSDb" (fx), "m" (*fx), "0" (0));
92 #endif
93 return err;
94 }
95
96 /* AMD CPUs don't save/restore FDP/FIP/FOP unless an exception
97 is pending. Clear the x87 state here by setting it to fixed
98 values. The kernel data segment can be sometimes 0 and sometimes
99 new user value. Both should be ok.
100 Use the PDA as safe address because it should be already in L1. */
101 static inline void fpu_clear(struct fpu *fpu)
102 {
103 struct xsave_struct *xstate = &fpu->state->xsave;
104 struct i387_fxsave_struct *fx = &fpu->state->fxsave;
105
106 /*
107 * xsave header may indicate the init state of the FP.
108 */
109 if (use_xsave() &&
110 !(xstate->xsave_hdr.xstate_bv & XSTATE_FP))
111 return;
112
113 if (unlikely(fx->swd & X87_FSW_ES))
114 asm volatile("fnclex");
115 alternative_input(ASM_NOP8 ASM_NOP2,
116 " emms\n" /* clear stack tags */
117 " fildl %%gs:0", /* load to clear state */
118 X86_FEATURE_FXSAVE_LEAK);
119 }
120
121 static inline void clear_fpu_state(struct task_struct *tsk)
122 {
123 fpu_clear(&tsk->thread.fpu);
124 }
125
126 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
127 {
128 int err;
129
130 /*
131 * Clear the bytes not touched by the fxsave and reserved
132 * for the SW usage.
133 */
134 err = __clear_user(&fx->sw_reserved,
135 sizeof(struct _fpx_sw_bytes));
136 if (unlikely(err))
137 return -EFAULT;
138
139 asm volatile("1: rex64/fxsave (%[fx])\n\t"
140 "2:\n"
141 ".section .fixup,\"ax\"\n"
142 "3: movl $-1,%[err]\n"
143 " jmp 2b\n"
144 ".previous\n"
145 _ASM_EXTABLE(1b, 3b)
146 : [err] "=r" (err), "=m" (*fx)
147 #if 0 /* See comment in fxsave() below. */
148 : [fx] "r" (fx), "0" (0));
149 #else
150 : [fx] "cdaSDb" (fx), "0" (0));
151 #endif
152 if (unlikely(err) &&
153 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
154 err = -EFAULT;
155 /* No need to clear here because the caller clears USED_MATH */
156 return err;
157 }
158
159 static inline void fpu_fxsave(struct fpu *fpu)
160 {
161 /* Using "rex64; fxsave %0" is broken because, if the memory operand
162 uses any extended registers for addressing, a second REX prefix
163 will be generated (to the assembler, rex64 followed by semicolon
164 is a separate instruction), and hence the 64-bitness is lost. */
165 #if 0
166 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
167 starting with gas 2.16. */
168 __asm__ __volatile__("fxsaveq %0"
169 : "=m" (fpu->state->fxsave));
170 #elif 0
171 /* Using, as a workaround, the properly prefixed form below isn't
172 accepted by any binutils version so far released, complaining that
173 the same type of prefix is used twice if an extended register is
174 needed for addressing (fix submitted to mainline 2005-11-21). */
175 __asm__ __volatile__("rex64/fxsave %0"
176 : "=m" (fpu->state->fxsave));
177 #else
178 /* This, however, we can work around by forcing the compiler to select
179 an addressing mode that doesn't require extended registers. */
180 __asm__ __volatile__("rex64/fxsave (%1)"
181 : "=m" (fpu->state->fxsave)
182 : "cdaSDb" (&fpu->state->fxsave));
183 #endif
184 }
185
186 static inline void fpu_save_init(struct fpu *fpu)
187 {
188 if (use_xsave())
189 fpu_xsave(fpu);
190 else
191 fpu_fxsave(fpu);
192
193 fpu_clear(fpu);
194 }
195
196 static inline void __save_init_fpu(struct task_struct *tsk)
197 {
198 fpu_save_init(&tsk->thread.fpu);
199 task_thread_info(tsk)->status &= ~TS_USEDFPU;
200 }
201
202 #else /* CONFIG_X86_32 */
203
204 #ifdef CONFIG_MATH_EMULATION
205 extern void finit_soft_fpu(struct i387_soft_struct *soft);
206 #else
207 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
208 #endif
209
210 static inline void tolerant_fwait(void)
211 {
212 asm volatile("fnclex ; fwait");
213 }
214
215 /* perform fxrstor iff the processor has extended states, otherwise frstor */
216 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
217 {
218 /*
219 * The "nop" is needed to make the instructions the same
220 * length.
221 */
222 alternative_input(
223 "nop ; frstor %1",
224 "fxrstor %1",
225 X86_FEATURE_FXSR,
226 "m" (*fx));
227
228 return 0;
229 }
230
231 /* We need a safe address that is cheap to find and that is already
232 in L1 during context switch. The best choices are unfortunately
233 different for UP and SMP */
234 #ifdef CONFIG_SMP
235 #define safe_address (__per_cpu_offset[0])
236 #else
237 #define safe_address (kstat_cpu(0).cpustat.user)
238 #endif
239
240 /*
241 * These must be called with preempt disabled
242 */
243 static inline void fpu_save_init(struct fpu *fpu)
244 {
245 if (use_xsave()) {
246 struct xsave_struct *xstate = &fpu->state->xsave;
247 struct i387_fxsave_struct *fx = &fpu->state->fxsave;
248
249 fpu_xsave(fpu);
250
251 /*
252 * xsave header may indicate the init state of the FP.
253 */
254 if (!(xstate->xsave_hdr.xstate_bv & XSTATE_FP))
255 goto end;
256
257 if (unlikely(fx->swd & X87_FSW_ES))
258 asm volatile("fnclex");
259
260 /*
261 * we can do a simple return here or be paranoid :)
262 */
263 goto clear_state;
264 }
265
266 /* Use more nops than strictly needed in case the compiler
267 varies code */
268 alternative_input(
269 "fnsave %[fx] ;fwait;" GENERIC_NOP8 GENERIC_NOP4,
270 "fxsave %[fx]\n"
271 "bt $7,%[fsw] ; jnc 1f ; fnclex\n1:",
272 X86_FEATURE_FXSR,
273 [fx] "m" (fpu->state->fxsave),
274 [fsw] "m" (fpu->state->fxsave.swd) : "memory");
275 clear_state:
276 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
277 is pending. Clear the x87 state here by setting it to fixed
278 values. safe_address is a random variable that should be in L1 */
279 alternative_input(
280 GENERIC_NOP8 GENERIC_NOP2,
281 "emms\n\t" /* clear stack tags */
282 "fildl %[addr]", /* set F?P to defined value */
283 X86_FEATURE_FXSAVE_LEAK,
284 [addr] "m" (safe_address));
285 end:
286 ;
287 }
288
289 static inline void __save_init_fpu(struct task_struct *tsk)
290 {
291 fpu_save_init(&tsk->thread.fpu);
292 task_thread_info(tsk)->status &= ~TS_USEDFPU;
293 }
294
295
296 #endif /* CONFIG_X86_64 */
297
298 static inline int fpu_fxrstor_checking(struct fpu *fpu)
299 {
300 return fxrstor_checking(&fpu->state->fxsave);
301 }
302
303 static inline int fpu_restore_checking(struct fpu *fpu)
304 {
305 if (use_xsave())
306 return fpu_xrstor_checking(fpu);
307 else
308 return fpu_fxrstor_checking(fpu);
309 }
310
311 static inline int restore_fpu_checking(struct task_struct *tsk)
312 {
313 return fpu_restore_checking(&tsk->thread.fpu);
314 }
315
316 /*
317 * Signal frame handlers...
318 */
319 extern int save_i387_xstate(void __user *buf);
320 extern int restore_i387_xstate(void __user *buf);
321
322 static inline void __unlazy_fpu(struct task_struct *tsk)
323 {
324 if (task_thread_info(tsk)->status & TS_USEDFPU) {
325 __save_init_fpu(tsk);
326 stts();
327 } else
328 tsk->fpu_counter = 0;
329 }
330
331 static inline void __clear_fpu(struct task_struct *tsk)
332 {
333 if (task_thread_info(tsk)->status & TS_USEDFPU) {
334 tolerant_fwait();
335 task_thread_info(tsk)->status &= ~TS_USEDFPU;
336 stts();
337 }
338 }
339
340 static inline void kernel_fpu_begin(void)
341 {
342 struct thread_info *me = current_thread_info();
343 preempt_disable();
344 if (me->status & TS_USEDFPU)
345 __save_init_fpu(me->task);
346 else
347 clts();
348 }
349
350 static inline void kernel_fpu_end(void)
351 {
352 stts();
353 preempt_enable();
354 }
355
356 static inline bool irq_fpu_usable(void)
357 {
358 struct pt_regs *regs;
359
360 return !in_interrupt() || !(regs = get_irq_regs()) || \
361 user_mode(regs) || (read_cr0() & X86_CR0_TS);
362 }
363
364 /*
365 * Some instructions like VIA's padlock instructions generate a spurious
366 * DNA fault but don't modify SSE registers. And these instructions
367 * get used from interrupt context as well. To prevent these kernel instructions
368 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
369 * should use them only in the context of irq_ts_save/restore()
370 */
371 static inline int irq_ts_save(void)
372 {
373 /*
374 * If in process context and not atomic, we can take a spurious DNA fault.
375 * Otherwise, doing clts() in process context requires disabling preemption
376 * or some heavy lifting like kernel_fpu_begin()
377 */
378 if (!in_atomic())
379 return 0;
380
381 if (read_cr0() & X86_CR0_TS) {
382 clts();
383 return 1;
384 }
385
386 return 0;
387 }
388
389 static inline void irq_ts_restore(int TS_state)
390 {
391 if (TS_state)
392 stts();
393 }
394
395 #ifdef CONFIG_X86_64
396
397 static inline void save_init_fpu(struct task_struct *tsk)
398 {
399 __save_init_fpu(tsk);
400 stts();
401 }
402
403 #define unlazy_fpu __unlazy_fpu
404 #define clear_fpu __clear_fpu
405
406 #else /* CONFIG_X86_32 */
407
408 /*
409 * These disable preemption on their own and are safe
410 */
411 static inline void save_init_fpu(struct task_struct *tsk)
412 {
413 preempt_disable();
414 __save_init_fpu(tsk);
415 stts();
416 preempt_enable();
417 }
418
419 static inline void unlazy_fpu(struct task_struct *tsk)
420 {
421 preempt_disable();
422 __unlazy_fpu(tsk);
423 preempt_enable();
424 }
425
426 static inline void clear_fpu(struct task_struct *tsk)
427 {
428 preempt_disable();
429 __clear_fpu(tsk);
430 preempt_enable();
431 }
432
433 #endif /* CONFIG_X86_64 */
434
435 /*
436 * i387 state interaction
437 */
438 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
439 {
440 if (cpu_has_fxsr) {
441 return tsk->thread.fpu.state->fxsave.cwd;
442 } else {
443 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
444 }
445 }
446
447 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
448 {
449 if (cpu_has_fxsr) {
450 return tsk->thread.fpu.state->fxsave.swd;
451 } else {
452 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
453 }
454 }
455
456 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
457 {
458 if (cpu_has_xmm) {
459 return tsk->thread.fpu.state->fxsave.mxcsr;
460 } else {
461 return MXCSR_DEFAULT;
462 }
463 }
464
465 static bool fpu_allocated(struct fpu *fpu)
466 {
467 return fpu->state != NULL;
468 }
469
470 static inline int fpu_alloc(struct fpu *fpu)
471 {
472 if (fpu_allocated(fpu))
473 return 0;
474 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
475 if (!fpu->state)
476 return -ENOMEM;
477 WARN_ON((unsigned long)fpu->state & 15);
478 return 0;
479 }
480
481 static inline void fpu_free(struct fpu *fpu)
482 {
483 if (fpu->state) {
484 kmem_cache_free(task_xstate_cachep, fpu->state);
485 fpu->state = NULL;
486 }
487 }
488
489 static inline void fpu_copy(struct fpu *dst, struct fpu *src)
490 {
491 memcpy(dst->state, src->state, xstate_size);
492 }
493
494 #endif /* __ASSEMBLY__ */
495
496 #define PSHUFB_XMM5_XMM0 .byte 0x66, 0x0f, 0x38, 0x00, 0xc5
497 #define PSHUFB_XMM5_XMM6 .byte 0x66, 0x0f, 0x38, 0x00, 0xf5
498
499 #endif /* _ASM_X86_I387_H */
This page took 0.05001 seconds and 5 git commands to generate.