c991b3a7b904bbfea99c5b74e423808eb55b1c56
[deliverable/linux.git] / arch / x86 / include / asm / i387.h
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
12
13 #ifndef __ASSEMBLY__
14
15 #include <linux/sched.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/regset.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <asm/asm.h>
21 #include <asm/cpufeature.h>
22 #include <asm/processor.h>
23 #include <asm/sigcontext.h>
24 #include <asm/user.h>
25 #include <asm/uaccess.h>
26 #include <asm/xsave.h>
27
28 extern unsigned int sig_xstate_size;
29 extern void fpu_init(void);
30 extern void mxcsr_feature_mask_init(void);
31 extern int init_fpu(struct task_struct *child);
32 extern asmlinkage void math_state_restore(void);
33 extern void __math_state_restore(void);
34 extern void init_thread_xstate(void);
35 extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
36
37 extern user_regset_active_fn fpregs_active, xfpregs_active;
38 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
39 xstateregs_get;
40 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
41 xstateregs_set;
42
43 /*
44 * xstateregs_active == fpregs_active. Please refer to the comment
45 * at the definition of fpregs_active.
46 */
47 #define xstateregs_active fpregs_active
48
49 extern struct _fpx_sw_bytes fx_sw_reserved;
50 #ifdef CONFIG_IA32_EMULATION
51 extern unsigned int sig_xstate_ia32_size;
52 extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
53 struct _fpstate_ia32;
54 struct _xstate_ia32;
55 extern int save_i387_xstate_ia32(void __user *buf);
56 extern int restore_i387_xstate_ia32(void __user *buf);
57 #endif
58
59 #define X87_FSW_ES (1 << 7) /* Exception Summary */
60
61 static __always_inline __pure bool use_xsave(void)
62 {
63 return static_cpu_has(X86_FEATURE_XSAVE);
64 }
65
66 #ifdef CONFIG_X86_64
67
68 /* Ignore delayed exceptions from user space */
69 static inline void tolerant_fwait(void)
70 {
71 asm volatile("1: fwait\n"
72 "2:\n"
73 _ASM_EXTABLE(1b, 2b));
74 }
75
76 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
77 {
78 int err;
79
80 asm volatile("1: rex64/fxrstor (%[fx])\n\t"
81 "2:\n"
82 ".section .fixup,\"ax\"\n"
83 "3: movl $-1,%[err]\n"
84 " jmp 2b\n"
85 ".previous\n"
86 _ASM_EXTABLE(1b, 3b)
87 : [err] "=r" (err)
88 #if 0 /* See comment in fxsave() below. */
89 : [fx] "r" (fx), "m" (*fx), "0" (0));
90 #else
91 : [fx] "cdaSDb" (fx), "m" (*fx), "0" (0));
92 #endif
93 return err;
94 }
95
96 /* AMD CPUs don't save/restore FDP/FIP/FOP unless an exception
97 is pending. Clear the x87 state here by setting it to fixed
98 values. The kernel data segment can be sometimes 0 and sometimes
99 new user value. Both should be ok.
100 Use the PDA as safe address because it should be already in L1. */
101 static inline void fpu_clear(struct fpu *fpu)
102 {
103 struct xsave_struct *xstate = &fpu->state->xsave;
104 struct i387_fxsave_struct *fx = &fpu->state->fxsave;
105
106 /*
107 * xsave header may indicate the init state of the FP.
108 */
109 if (use_xsave() &&
110 !(xstate->xsave_hdr.xstate_bv & XSTATE_FP))
111 return;
112
113 if (unlikely(fx->swd & X87_FSW_ES))
114 asm volatile("fnclex");
115 alternative_input(ASM_NOP8 ASM_NOP2,
116 " emms\n" /* clear stack tags */
117 " fildl %%gs:0", /* load to clear state */
118 X86_FEATURE_FXSAVE_LEAK);
119 }
120
121 static inline void clear_fpu_state(struct task_struct *tsk)
122 {
123 fpu_clear(&tsk->thread.fpu);
124 }
125
126 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
127 {
128 int err;
129
130 asm volatile("1: rex64/fxsave (%[fx])\n\t"
131 "2:\n"
132 ".section .fixup,\"ax\"\n"
133 "3: movl $-1,%[err]\n"
134 " jmp 2b\n"
135 ".previous\n"
136 _ASM_EXTABLE(1b, 3b)
137 : [err] "=r" (err), "=m" (*fx)
138 #if 0 /* See comment in fxsave() below. */
139 : [fx] "r" (fx), "0" (0));
140 #else
141 : [fx] "cdaSDb" (fx), "0" (0));
142 #endif
143 if (unlikely(err) &&
144 __clear_user(fx, sizeof(struct i387_fxsave_struct)))
145 err = -EFAULT;
146 /* No need to clear here because the caller clears USED_MATH */
147 return err;
148 }
149
150 static inline void fpu_fxsave(struct fpu *fpu)
151 {
152 /* Using "rex64; fxsave %0" is broken because, if the memory operand
153 uses any extended registers for addressing, a second REX prefix
154 will be generated (to the assembler, rex64 followed by semicolon
155 is a separate instruction), and hence the 64-bitness is lost. */
156 #if 0
157 /* Using "fxsaveq %0" would be the ideal choice, but is only supported
158 starting with gas 2.16. */
159 __asm__ __volatile__("fxsaveq %0"
160 : "=m" (fpu->state->fxsave));
161 #elif 0
162 /* Using, as a workaround, the properly prefixed form below isn't
163 accepted by any binutils version so far released, complaining that
164 the same type of prefix is used twice if an extended register is
165 needed for addressing (fix submitted to mainline 2005-11-21). */
166 __asm__ __volatile__("rex64/fxsave %0"
167 : "=m" (fpu->state->fxsave));
168 #else
169 /* This, however, we can work around by forcing the compiler to select
170 an addressing mode that doesn't require extended registers. */
171 __asm__ __volatile__("rex64/fxsave (%1)"
172 : "=m" (fpu->state->fxsave)
173 : "cdaSDb" (&fpu->state->fxsave));
174 #endif
175 }
176
177 static inline void fpu_save_init(struct fpu *fpu)
178 {
179 if (use_xsave())
180 fpu_xsave(fpu);
181 else
182 fpu_fxsave(fpu);
183
184 fpu_clear(fpu);
185 }
186
187 static inline void __save_init_fpu(struct task_struct *tsk)
188 {
189 fpu_save_init(&tsk->thread.fpu);
190 task_thread_info(tsk)->status &= ~TS_USEDFPU;
191 }
192
193 #else /* CONFIG_X86_32 */
194
195 #ifdef CONFIG_MATH_EMULATION
196 extern void finit_soft_fpu(struct i387_soft_struct *soft);
197 #else
198 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
199 #endif
200
201 static inline void tolerant_fwait(void)
202 {
203 asm volatile("fnclex ; fwait");
204 }
205
206 /* perform fxrstor iff the processor has extended states, otherwise frstor */
207 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
208 {
209 /*
210 * The "nop" is needed to make the instructions the same
211 * length.
212 */
213 alternative_input(
214 "nop ; frstor %1",
215 "fxrstor %1",
216 X86_FEATURE_FXSR,
217 "m" (*fx));
218
219 return 0;
220 }
221
222 /* We need a safe address that is cheap to find and that is already
223 in L1 during context switch. The best choices are unfortunately
224 different for UP and SMP */
225 #ifdef CONFIG_SMP
226 #define safe_address (__per_cpu_offset[0])
227 #else
228 #define safe_address (kstat_cpu(0).cpustat.user)
229 #endif
230
231 /*
232 * These must be called with preempt disabled
233 */
234 static inline void fpu_save_init(struct fpu *fpu)
235 {
236 if (use_xsave()) {
237 struct xsave_struct *xstate = &fpu->state->xsave;
238 struct i387_fxsave_struct *fx = &fpu->state->fxsave;
239
240 fpu_xsave(fpu);
241
242 /*
243 * xsave header may indicate the init state of the FP.
244 */
245 if (!(xstate->xsave_hdr.xstate_bv & XSTATE_FP))
246 goto end;
247
248 if (unlikely(fx->swd & X87_FSW_ES))
249 asm volatile("fnclex");
250
251 /*
252 * we can do a simple return here or be paranoid :)
253 */
254 goto clear_state;
255 }
256
257 /* Use more nops than strictly needed in case the compiler
258 varies code */
259 alternative_input(
260 "fnsave %[fx] ;fwait;" GENERIC_NOP8 GENERIC_NOP4,
261 "fxsave %[fx]\n"
262 "bt $7,%[fsw] ; jnc 1f ; fnclex\n1:",
263 X86_FEATURE_FXSR,
264 [fx] "m" (fpu->state->fxsave),
265 [fsw] "m" (fpu->state->fxsave.swd) : "memory");
266 clear_state:
267 /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
268 is pending. Clear the x87 state here by setting it to fixed
269 values. safe_address is a random variable that should be in L1 */
270 alternative_input(
271 GENERIC_NOP8 GENERIC_NOP2,
272 "emms\n\t" /* clear stack tags */
273 "fildl %[addr]", /* set F?P to defined value */
274 X86_FEATURE_FXSAVE_LEAK,
275 [addr] "m" (safe_address));
276 end:
277 ;
278 }
279
280 static inline void __save_init_fpu(struct task_struct *tsk)
281 {
282 fpu_save_init(&tsk->thread.fpu);
283 task_thread_info(tsk)->status &= ~TS_USEDFPU;
284 }
285
286
287 #endif /* CONFIG_X86_64 */
288
289 static inline int fpu_fxrstor_checking(struct fpu *fpu)
290 {
291 return fxrstor_checking(&fpu->state->fxsave);
292 }
293
294 static inline int fpu_restore_checking(struct fpu *fpu)
295 {
296 if (use_xsave())
297 return fpu_xrstor_checking(fpu);
298 else
299 return fpu_fxrstor_checking(fpu);
300 }
301
302 static inline int restore_fpu_checking(struct task_struct *tsk)
303 {
304 return fpu_restore_checking(&tsk->thread.fpu);
305 }
306
307 /*
308 * Signal frame handlers...
309 */
310 extern int save_i387_xstate(void __user *buf);
311 extern int restore_i387_xstate(void __user *buf);
312
313 static inline void __unlazy_fpu(struct task_struct *tsk)
314 {
315 if (task_thread_info(tsk)->status & TS_USEDFPU) {
316 __save_init_fpu(tsk);
317 stts();
318 } else
319 tsk->fpu_counter = 0;
320 }
321
322 static inline void __clear_fpu(struct task_struct *tsk)
323 {
324 if (task_thread_info(tsk)->status & TS_USEDFPU) {
325 tolerant_fwait();
326 task_thread_info(tsk)->status &= ~TS_USEDFPU;
327 stts();
328 }
329 }
330
331 static inline void kernel_fpu_begin(void)
332 {
333 struct thread_info *me = current_thread_info();
334 preempt_disable();
335 if (me->status & TS_USEDFPU)
336 __save_init_fpu(me->task);
337 else
338 clts();
339 }
340
341 static inline void kernel_fpu_end(void)
342 {
343 stts();
344 preempt_enable();
345 }
346
347 static inline bool irq_fpu_usable(void)
348 {
349 struct pt_regs *regs;
350
351 return !in_interrupt() || !(regs = get_irq_regs()) || \
352 user_mode(regs) || (read_cr0() & X86_CR0_TS);
353 }
354
355 /*
356 * Some instructions like VIA's padlock instructions generate a spurious
357 * DNA fault but don't modify SSE registers. And these instructions
358 * get used from interrupt context as well. To prevent these kernel instructions
359 * in interrupt context interacting wrongly with other user/kernel fpu usage, we
360 * should use them only in the context of irq_ts_save/restore()
361 */
362 static inline int irq_ts_save(void)
363 {
364 /*
365 * If in process context and not atomic, we can take a spurious DNA fault.
366 * Otherwise, doing clts() in process context requires disabling preemption
367 * or some heavy lifting like kernel_fpu_begin()
368 */
369 if (!in_atomic())
370 return 0;
371
372 if (read_cr0() & X86_CR0_TS) {
373 clts();
374 return 1;
375 }
376
377 return 0;
378 }
379
380 static inline void irq_ts_restore(int TS_state)
381 {
382 if (TS_state)
383 stts();
384 }
385
386 #ifdef CONFIG_X86_64
387
388 static inline void save_init_fpu(struct task_struct *tsk)
389 {
390 __save_init_fpu(tsk);
391 stts();
392 }
393
394 #define unlazy_fpu __unlazy_fpu
395 #define clear_fpu __clear_fpu
396
397 #else /* CONFIG_X86_32 */
398
399 /*
400 * These disable preemption on their own and are safe
401 */
402 static inline void save_init_fpu(struct task_struct *tsk)
403 {
404 preempt_disable();
405 __save_init_fpu(tsk);
406 stts();
407 preempt_enable();
408 }
409
410 static inline void unlazy_fpu(struct task_struct *tsk)
411 {
412 preempt_disable();
413 __unlazy_fpu(tsk);
414 preempt_enable();
415 }
416
417 static inline void clear_fpu(struct task_struct *tsk)
418 {
419 preempt_disable();
420 __clear_fpu(tsk);
421 preempt_enable();
422 }
423
424 #endif /* CONFIG_X86_64 */
425
426 /*
427 * i387 state interaction
428 */
429 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
430 {
431 if (cpu_has_fxsr) {
432 return tsk->thread.fpu.state->fxsave.cwd;
433 } else {
434 return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
435 }
436 }
437
438 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
439 {
440 if (cpu_has_fxsr) {
441 return tsk->thread.fpu.state->fxsave.swd;
442 } else {
443 return (unsigned short)tsk->thread.fpu.state->fsave.swd;
444 }
445 }
446
447 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
448 {
449 if (cpu_has_xmm) {
450 return tsk->thread.fpu.state->fxsave.mxcsr;
451 } else {
452 return MXCSR_DEFAULT;
453 }
454 }
455
456 static bool fpu_allocated(struct fpu *fpu)
457 {
458 return fpu->state != NULL;
459 }
460
461 static inline int fpu_alloc(struct fpu *fpu)
462 {
463 if (fpu_allocated(fpu))
464 return 0;
465 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
466 if (!fpu->state)
467 return -ENOMEM;
468 WARN_ON((unsigned long)fpu->state & 15);
469 return 0;
470 }
471
472 static inline void fpu_free(struct fpu *fpu)
473 {
474 if (fpu->state) {
475 kmem_cache_free(task_xstate_cachep, fpu->state);
476 fpu->state = NULL;
477 }
478 }
479
480 static inline void fpu_copy(struct fpu *dst, struct fpu *src)
481 {
482 memcpy(dst->state, src->state, xstate_size);
483 }
484
485 #endif /* __ASSEMBLY__ */
486
487 #define PSHUFB_XMM5_XMM0 .byte 0x66, 0x0f, 0x38, 0x00, 0xc5
488 #define PSHUFB_XMM5_XMM6 .byte 0x66, 0x0f, 0x38, 0x00, 0xf5
489
490 #endif /* _ASM_X86_I387_H */
This page took 0.040066 seconds and 4 git commands to generate.