x86: make lazy %gs optional on x86_32
[deliverable/linux.git] / arch / x86 / include / asm / system.h
1 #ifndef _ASM_X86_SYSTEM_H
2 #define _ASM_X86_SYSTEM_H
3
4 #include <asm/asm.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cmpxchg.h>
8 #include <asm/nops.h>
9
10 #include <linux/kernel.h>
11 #include <linux/irqflags.h>
12
13 /* entries in ARCH_DLINFO: */
14 #ifdef CONFIG_IA32_EMULATION
15 # define AT_VECTOR_SIZE_ARCH 2
16 #else
17 # define AT_VECTOR_SIZE_ARCH 1
18 #endif
19
20 struct task_struct; /* one of the stranger aspects of C forward declarations */
21 struct task_struct *__switch_to(struct task_struct *prev,
22 struct task_struct *next);
23
24 #ifdef CONFIG_X86_32
25
26 /*
27 * Saving eflags is important. It switches not only IOPL between tasks,
28 * it also protects other tasks from NT leaking through sysenter etc.
29 */
30 #define switch_to(prev, next, last) \
31 do { \
32 /* \
33 * Context-switching clobbers all registers, so we clobber \
34 * them explicitly, via unused output variables. \
35 * (EAX and EBP is not listed because EBP is saved/restored \
36 * explicitly for wchan access and EAX is the return value of \
37 * __switch_to()) \
38 */ \
39 unsigned long ebx, ecx, edx, esi, edi; \
40 \
41 asm volatile("pushfl\n\t" /* save flags */ \
42 "pushl %%ebp\n\t" /* save EBP */ \
43 "movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
44 "movl %[next_sp],%%esp\n\t" /* restore ESP */ \
45 "movl $1f,%[prev_ip]\n\t" /* save EIP */ \
46 "pushl %[next_ip]\n\t" /* restore EIP */ \
47 "jmp __switch_to\n" /* regparm call */ \
48 "1:\t" \
49 "popl %%ebp\n\t" /* restore EBP */ \
50 "popfl\n" /* restore flags */ \
51 \
52 /* output parameters */ \
53 : [prev_sp] "=m" (prev->thread.sp), \
54 [prev_ip] "=m" (prev->thread.ip), \
55 "=a" (last), \
56 \
57 /* clobbered output registers: */ \
58 "=b" (ebx), "=c" (ecx), "=d" (edx), \
59 "=S" (esi), "=D" (edi) \
60 \
61 /* input parameters: */ \
62 : [next_sp] "m" (next->thread.sp), \
63 [next_ip] "m" (next->thread.ip), \
64 \
65 /* regparm parameters for __switch_to(): */ \
66 [prev] "a" (prev), \
67 [next] "d" (next) \
68 \
69 : /* reloaded segment registers */ \
70 "memory"); \
71 } while (0)
72
73 /*
74 * disable hlt during certain critical i/o operations
75 */
76 #define HAVE_DISABLE_HLT
77 #else
78 #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
79 #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
80
81 /* frame pointer must be last for get_wchan */
82 #define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
83 #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
84
85 #define __EXTRA_CLOBBER \
86 , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
87 "r12", "r13", "r14", "r15"
88
89 #ifdef CONFIG_CC_STACKPROTECTOR
90 #define __switch_canary \
91 "movq %P[task_canary](%%rsi),%%r8\n\t" \
92 "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
93 #define __switch_canary_oparam \
94 , [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
95 #define __switch_canary_iparam \
96 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
97 #else /* CC_STACKPROTECTOR */
98 #define __switch_canary
99 #define __switch_canary_oparam
100 #define __switch_canary_iparam
101 #endif /* CC_STACKPROTECTOR */
102
103 /* Save restore flags to clear handle leaking NT */
104 #define switch_to(prev, next, last) \
105 asm volatile(SAVE_CONTEXT \
106 "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
107 "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
108 "call __switch_to\n\t" \
109 ".globl thread_return\n" \
110 "thread_return:\n\t" \
111 "movq "__percpu_arg([current_task])",%%rsi\n\t" \
112 __switch_canary \
113 "movq %P[thread_info](%%rsi),%%r8\n\t" \
114 LOCK_PREFIX "btr %[tif_fork],%P[ti_flags](%%r8)\n\t" \
115 "movq %%rax,%%rdi\n\t" \
116 "jc ret_from_fork\n\t" \
117 RESTORE_CONTEXT \
118 : "=a" (last) \
119 __switch_canary_oparam \
120 : [next] "S" (next), [prev] "D" (prev), \
121 [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
122 [ti_flags] "i" (offsetof(struct thread_info, flags)), \
123 [tif_fork] "i" (TIF_FORK), \
124 [thread_info] "i" (offsetof(struct task_struct, stack)), \
125 [current_task] "m" (per_cpu_var(current_task)) \
126 __switch_canary_iparam \
127 : "memory", "cc" __EXTRA_CLOBBER)
128 #endif
129
130 #ifdef __KERNEL__
131 #define _set_base(addr, base) do { unsigned long __pr; \
132 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
133 "rorl $16,%%edx\n\t" \
134 "movb %%dl,%2\n\t" \
135 "movb %%dh,%3" \
136 :"=&d" (__pr) \
137 :"m" (*((addr)+2)), \
138 "m" (*((addr)+4)), \
139 "m" (*((addr)+7)), \
140 "0" (base) \
141 ); } while (0)
142
143 #define _set_limit(addr, limit) do { unsigned long __lr; \
144 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
145 "rorl $16,%%edx\n\t" \
146 "movb %2,%%dh\n\t" \
147 "andb $0xf0,%%dh\n\t" \
148 "orb %%dh,%%dl\n\t" \
149 "movb %%dl,%2" \
150 :"=&d" (__lr) \
151 :"m" (*(addr)), \
152 "m" (*((addr)+6)), \
153 "0" (limit) \
154 ); } while (0)
155
156 #define set_base(ldt, base) _set_base(((char *)&(ldt)) , (base))
157 #define set_limit(ldt, limit) _set_limit(((char *)&(ldt)) , ((limit)-1))
158
159 extern void native_load_gs_index(unsigned);
160
161 /*
162 * Load a segment. Fall back on loading the zero
163 * segment if something goes wrong..
164 */
165 #define loadsegment(seg, value) \
166 asm volatile("\n" \
167 "1:\t" \
168 "movl %k0,%%" #seg "\n" \
169 "2:\n" \
170 ".section .fixup,\"ax\"\n" \
171 "3:\t" \
172 "movl %k1, %%" #seg "\n\t" \
173 "jmp 2b\n" \
174 ".previous\n" \
175 _ASM_EXTABLE(1b,3b) \
176 : :"r" (value), "r" (0) : "memory")
177
178
179 /*
180 * Save a segment register away
181 */
182 #define savesegment(seg, value) \
183 asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
184
185 /*
186 * x86_32 user gs accessors.
187 */
188 #ifdef CONFIG_X86_32
189 #ifdef CONFIG_X86_32_LAZY_GS
190 #define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
191 #define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
192 #define task_user_gs(tsk) ((tsk)->thread.gs)
193 #define lazy_save_gs(v) savesegment(gs, (v))
194 #define lazy_load_gs(v) loadsegment(gs, (v))
195 #else /* X86_32_LAZY_GS */
196 #define get_user_gs(regs) (u16)((regs)->gs)
197 #define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
198 #define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
199 #define lazy_save_gs(v) do { } while (0)
200 #define lazy_load_gs(v) do { } while (0)
201 #endif /* X86_32_LAZY_GS */
202 #endif /* X86_32 */
203
204 static inline unsigned long get_limit(unsigned long segment)
205 {
206 unsigned long __limit;
207 asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
208 return __limit + 1;
209 }
210
211 static inline void native_clts(void)
212 {
213 asm volatile("clts");
214 }
215
216 /*
217 * Volatile isn't enough to prevent the compiler from reordering the
218 * read/write functions for the control registers and messing everything up.
219 * A memory clobber would solve the problem, but would prevent reordering of
220 * all loads stores around it, which can hurt performance. Solution is to
221 * use a variable and mimic reads and writes to it to enforce serialization
222 */
223 static unsigned long __force_order;
224
225 static inline unsigned long native_read_cr0(void)
226 {
227 unsigned long val;
228 asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
229 return val;
230 }
231
232 static inline void native_write_cr0(unsigned long val)
233 {
234 asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
235 }
236
237 static inline unsigned long native_read_cr2(void)
238 {
239 unsigned long val;
240 asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
241 return val;
242 }
243
244 static inline void native_write_cr2(unsigned long val)
245 {
246 asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
247 }
248
249 static inline unsigned long native_read_cr3(void)
250 {
251 unsigned long val;
252 asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
253 return val;
254 }
255
256 static inline void native_write_cr3(unsigned long val)
257 {
258 asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
259 }
260
261 static inline unsigned long native_read_cr4(void)
262 {
263 unsigned long val;
264 asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
265 return val;
266 }
267
268 static inline unsigned long native_read_cr4_safe(void)
269 {
270 unsigned long val;
271 /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
272 * exists, so it will never fail. */
273 #ifdef CONFIG_X86_32
274 asm volatile("1: mov %%cr4, %0\n"
275 "2:\n"
276 _ASM_EXTABLE(1b, 2b)
277 : "=r" (val), "=m" (__force_order) : "0" (0));
278 #else
279 val = native_read_cr4();
280 #endif
281 return val;
282 }
283
284 static inline void native_write_cr4(unsigned long val)
285 {
286 asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
287 }
288
289 #ifdef CONFIG_X86_64
290 static inline unsigned long native_read_cr8(void)
291 {
292 unsigned long cr8;
293 asm volatile("movq %%cr8,%0" : "=r" (cr8));
294 return cr8;
295 }
296
297 static inline void native_write_cr8(unsigned long val)
298 {
299 asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
300 }
301 #endif
302
303 static inline void native_wbinvd(void)
304 {
305 asm volatile("wbinvd": : :"memory");
306 }
307
308 #ifdef CONFIG_PARAVIRT
309 #include <asm/paravirt.h>
310 #else
311 #define read_cr0() (native_read_cr0())
312 #define write_cr0(x) (native_write_cr0(x))
313 #define read_cr2() (native_read_cr2())
314 #define write_cr2(x) (native_write_cr2(x))
315 #define read_cr3() (native_read_cr3())
316 #define write_cr3(x) (native_write_cr3(x))
317 #define read_cr4() (native_read_cr4())
318 #define read_cr4_safe() (native_read_cr4_safe())
319 #define write_cr4(x) (native_write_cr4(x))
320 #define wbinvd() (native_wbinvd())
321 #ifdef CONFIG_X86_64
322 #define read_cr8() (native_read_cr8())
323 #define write_cr8(x) (native_write_cr8(x))
324 #define load_gs_index native_load_gs_index
325 #endif
326
327 /* Clear the 'TS' bit */
328 #define clts() (native_clts())
329
330 #endif/* CONFIG_PARAVIRT */
331
332 #define stts() write_cr0(read_cr0() | X86_CR0_TS)
333
334 #endif /* __KERNEL__ */
335
336 static inline void clflush(volatile void *__p)
337 {
338 asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
339 }
340
341 #define nop() asm volatile ("nop")
342
343 void disable_hlt(void);
344 void enable_hlt(void);
345
346 void cpu_idle_wait(void);
347
348 extern unsigned long arch_align_stack(unsigned long sp);
349 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
350
351 void default_idle(void);
352
353 void stop_this_cpu(void *dummy);
354
355 /*
356 * Force strict CPU ordering.
357 * And yes, this is required on UP too when we're talking
358 * to devices.
359 */
360 #ifdef CONFIG_X86_32
361 /*
362 * Some non-Intel clones support out of order store. wmb() ceases to be a
363 * nop for these.
364 */
365 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
366 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
367 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
368 #else
369 #define mb() asm volatile("mfence":::"memory")
370 #define rmb() asm volatile("lfence":::"memory")
371 #define wmb() asm volatile("sfence" ::: "memory")
372 #endif
373
374 /**
375 * read_barrier_depends - Flush all pending reads that subsequents reads
376 * depend on.
377 *
378 * No data-dependent reads from memory-like regions are ever reordered
379 * over this barrier. All reads preceding this primitive are guaranteed
380 * to access memory (but not necessarily other CPUs' caches) before any
381 * reads following this primitive that depend on the data return by
382 * any of the preceding reads. This primitive is much lighter weight than
383 * rmb() on most CPUs, and is never heavier weight than is
384 * rmb().
385 *
386 * These ordering constraints are respected by both the local CPU
387 * and the compiler.
388 *
389 * Ordering is not guaranteed by anything other than these primitives,
390 * not even by data dependencies. See the documentation for
391 * memory_barrier() for examples and URLs to more information.
392 *
393 * For example, the following code would force ordering (the initial
394 * value of "a" is zero, "b" is one, and "p" is "&a"):
395 *
396 * <programlisting>
397 * CPU 0 CPU 1
398 *
399 * b = 2;
400 * memory_barrier();
401 * p = &b; q = p;
402 * read_barrier_depends();
403 * d = *q;
404 * </programlisting>
405 *
406 * because the read of "*q" depends on the read of "p" and these
407 * two reads are separated by a read_barrier_depends(). However,
408 * the following code, with the same initial values for "a" and "b":
409 *
410 * <programlisting>
411 * CPU 0 CPU 1
412 *
413 * a = 2;
414 * memory_barrier();
415 * b = 3; y = b;
416 * read_barrier_depends();
417 * x = a;
418 * </programlisting>
419 *
420 * does not enforce ordering, since there is no data dependency between
421 * the read of "a" and the read of "b". Therefore, on some CPUs, such
422 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
423 * in cases like this where there are no data dependencies.
424 **/
425
426 #define read_barrier_depends() do { } while (0)
427
428 #ifdef CONFIG_SMP
429 #define smp_mb() mb()
430 #ifdef CONFIG_X86_PPRO_FENCE
431 # define smp_rmb() rmb()
432 #else
433 # define smp_rmb() barrier()
434 #endif
435 #ifdef CONFIG_X86_OOSTORE
436 # define smp_wmb() wmb()
437 #else
438 # define smp_wmb() barrier()
439 #endif
440 #define smp_read_barrier_depends() read_barrier_depends()
441 #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
442 #else
443 #define smp_mb() barrier()
444 #define smp_rmb() barrier()
445 #define smp_wmb() barrier()
446 #define smp_read_barrier_depends() do { } while (0)
447 #define set_mb(var, value) do { var = value; barrier(); } while (0)
448 #endif
449
450 /*
451 * Stop RDTSC speculation. This is needed when you need to use RDTSC
452 * (or get_cycles or vread that possibly accesses the TSC) in a defined
453 * code region.
454 *
455 * (Could use an alternative three way for this if there was one.)
456 */
457 static inline void rdtsc_barrier(void)
458 {
459 alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
460 alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
461 }
462
463 #endif /* _ASM_X86_SYSTEM_H */
This page took 0.042253 seconds and 5 git commands to generate.