oprofile: introduce module_param oprofile.cpu_type
[deliverable/linux.git] / arch / x86 / include / asm / uv / uv_hub.h
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9 */
10
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <asm/types.h>
19 #include <asm/percpu.h>
20 #include <asm/uv/uv_mmrs.h>
21
22
23 /*
24 * Addressing Terminology
25 *
26 * M - The low M bits of a physical address represent the offset
27 * into the blade local memory. RAM memory on a blade is physically
28 * contiguous (although various IO spaces may punch holes in
29 * it)..
30 *
31 * N - Number of bits in the node portion of a socket physical
32 * address.
33 *
34 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
35 * routers always have low bit of 1, C/MBricks have low bit
36 * equal to 0. Most addressing macros that target UV hub chips
37 * right shift the NASID by 1 to exclude the always-zero bit.
38 * NASIDs contain up to 15 bits.
39 *
40 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
41 * of nasids.
42 *
43 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
44 * of the nasid for socket usage.
45 *
46 *
47 * NumaLink Global Physical Address Format:
48 * +--------------------------------+---------------------+
49 * |00..000| GNODE | NodeOffset |
50 * +--------------------------------+---------------------+
51 * |<-------53 - M bits --->|<--------M bits ----->
52 *
53 * M - number of node offset bits (35 .. 40)
54 *
55 *
56 * Memory/UV-HUB Processor Socket Address Format:
57 * +----------------+---------------+---------------------+
58 * |00..000000000000| PNODE | NodeOffset |
59 * +----------------+---------------+---------------------+
60 * <--- N bits --->|<--------M bits ----->
61 *
62 * M - number of node offset bits (35 .. 40)
63 * N - number of PNODE bits (0 .. 10)
64 *
65 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
66 * The actual values are configuration dependent and are set at
67 * boot time. M & N values are set by the hardware/BIOS at boot.
68 *
69 *
70 * APICID format
71 * NOTE!!!!!! This is the current format of the APICID. However, code
72 * should assume that this will change in the future. Use functions
73 * in this file for all APICID bit manipulations and conversion.
74 *
75 * 1111110000000000
76 * 5432109876543210
77 * pppppppppplc0cch
78 * sssssssssss
79 *
80 * p = pnode bits
81 * l = socket number on board
82 * c = core
83 * h = hyperthread
84 * s = bits that are in the SOCKET_ID CSR
85 *
86 * Note: Processor only supports 12 bits in the APICID register. The ACPI
87 * tables hold all 16 bits. Software needs to be aware of this.
88 *
89 * Unless otherwise specified, all references to APICID refer to
90 * the FULL value contained in ACPI tables, not the subset in the
91 * processor APICID register.
92 */
93
94
95 /*
96 * Maximum number of bricks in all partitions and in all coherency domains.
97 * This is the total number of bricks accessible in the numalink fabric. It
98 * includes all C & M bricks. Routers are NOT included.
99 *
100 * This value is also the value of the maximum number of non-router NASIDs
101 * in the numalink fabric.
102 *
103 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
104 */
105 #define UV_MAX_NUMALINK_BLADES 16384
106
107 /*
108 * Maximum number of C/Mbricks within a software SSI (hardware may support
109 * more).
110 */
111 #define UV_MAX_SSI_BLADES 256
112
113 /*
114 * The largest possible NASID of a C or M brick (+ 2)
115 */
116 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
117
118 struct uv_scir_s {
119 struct timer_list timer;
120 unsigned long offset;
121 unsigned long last;
122 unsigned long idle_on;
123 unsigned long idle_off;
124 unsigned char state;
125 unsigned char enabled;
126 };
127
128 /*
129 * The following defines attributes of the HUB chip. These attributes are
130 * frequently referenced and are kept in the per-cpu data areas of each cpu.
131 * They are kept together in a struct to minimize cache misses.
132 */
133 struct uv_hub_info_s {
134 unsigned long global_mmr_base;
135 unsigned long gpa_mask;
136 unsigned long gnode_upper;
137 unsigned long lowmem_remap_top;
138 unsigned long lowmem_remap_base;
139 unsigned short pnode;
140 unsigned short pnode_mask;
141 unsigned short coherency_domain_number;
142 unsigned short numa_blade_id;
143 unsigned char blade_processor_id;
144 unsigned char m_val;
145 unsigned char n_val;
146 struct uv_scir_s scir;
147 };
148
149 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
150 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
151 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
152
153 /*
154 * Local & Global MMR space macros.
155 * Note: macros are intended to be used ONLY by inline functions
156 * in this file - not by other kernel code.
157 * n - NASID (full 15-bit global nasid)
158 * g - GNODE (full 15-bit global nasid, right shifted 1)
159 * p - PNODE (local part of nsids, right shifted 1)
160 */
161 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
162 #define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
163
164 #define UV_LOCAL_MMR_BASE 0xf4000000UL
165 #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
166 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
167 #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
168 #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
169
170 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
171 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
172
173 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
174
175 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
176 ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
177
178 #define UV_APIC_PNODE_SHIFT 6
179
180 /* Local Bus from cpu's perspective */
181 #define LOCAL_BUS_BASE 0x1c00000
182 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
183
184 /*
185 * System Controller Interface Reg
186 *
187 * Note there are NO leds on a UV system. This register is only
188 * used by the system controller to monitor system-wide operation.
189 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
190 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
191 * a node.
192 *
193 * The window is located at top of ACPI MMR space
194 */
195 #define SCIR_WINDOW_COUNT 64
196 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
197 LOCAL_BUS_SIZE - \
198 SCIR_WINDOW_COUNT)
199
200 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
201 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
202 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
203
204 /* Loop through all installed blades */
205 #define for_each_possible_blade(bid) \
206 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
207
208 /*
209 * Macros for converting between kernel virtual addresses, socket local physical
210 * addresses, and UV global physical addresses.
211 * Note: use the standard __pa() & __va() macros for converting
212 * between socket virtual and socket physical addresses.
213 */
214
215 /* socket phys RAM --> UV global physical address */
216 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
217 {
218 if (paddr < uv_hub_info->lowmem_remap_top)
219 paddr |= uv_hub_info->lowmem_remap_base;
220 return paddr | uv_hub_info->gnode_upper;
221 }
222
223
224 /* socket virtual --> UV global physical address */
225 static inline unsigned long uv_gpa(void *v)
226 {
227 return uv_soc_phys_ram_to_gpa(__pa(v));
228 }
229
230 /* pnode, offset --> socket virtual */
231 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
232 {
233 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
234 }
235
236
237 /*
238 * Extract a PNODE from an APICID (full apicid, not processor subset)
239 */
240 static inline int uv_apicid_to_pnode(int apicid)
241 {
242 return (apicid >> UV_APIC_PNODE_SHIFT);
243 }
244
245 /*
246 * Access global MMRs using the low memory MMR32 space. This region supports
247 * faster MMR access but not all MMRs are accessible in this space.
248 */
249 static inline unsigned long *uv_global_mmr32_address(int pnode,
250 unsigned long offset)
251 {
252 return __va(UV_GLOBAL_MMR32_BASE |
253 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
254 }
255
256 static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
257 unsigned long val)
258 {
259 *uv_global_mmr32_address(pnode, offset) = val;
260 }
261
262 static inline unsigned long uv_read_global_mmr32(int pnode,
263 unsigned long offset)
264 {
265 return *uv_global_mmr32_address(pnode, offset);
266 }
267
268 /*
269 * Access Global MMR space using the MMR space located at the top of physical
270 * memory.
271 */
272 static inline unsigned long *uv_global_mmr64_address(int pnode,
273 unsigned long offset)
274 {
275 return __va(UV_GLOBAL_MMR64_BASE |
276 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
277 }
278
279 static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
280 unsigned long val)
281 {
282 *uv_global_mmr64_address(pnode, offset) = val;
283 }
284
285 static inline unsigned long uv_read_global_mmr64(int pnode,
286 unsigned long offset)
287 {
288 return *uv_global_mmr64_address(pnode, offset);
289 }
290
291 /*
292 * Access hub local MMRs. Faster than using global space but only local MMRs
293 * are accessible.
294 */
295 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
296 {
297 return __va(UV_LOCAL_MMR_BASE | offset);
298 }
299
300 static inline unsigned long uv_read_local_mmr(unsigned long offset)
301 {
302 return *uv_local_mmr_address(offset);
303 }
304
305 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
306 {
307 *uv_local_mmr_address(offset) = val;
308 }
309
310 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
311 {
312 return *((unsigned char *)uv_local_mmr_address(offset));
313 }
314
315 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
316 {
317 *((unsigned char *)uv_local_mmr_address(offset)) = val;
318 }
319
320 /*
321 * Structures and definitions for converting between cpu, node, pnode, and blade
322 * numbers.
323 */
324 struct uv_blade_info {
325 unsigned short nr_possible_cpus;
326 unsigned short nr_online_cpus;
327 unsigned short pnode;
328 };
329 extern struct uv_blade_info *uv_blade_info;
330 extern short *uv_node_to_blade;
331 extern short *uv_cpu_to_blade;
332 extern short uv_possible_blades;
333
334 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
335 static inline int uv_blade_processor_id(void)
336 {
337 return uv_hub_info->blade_processor_id;
338 }
339
340 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
341 static inline int uv_numa_blade_id(void)
342 {
343 return uv_hub_info->numa_blade_id;
344 }
345
346 /* Convert a cpu number to the the UV blade number */
347 static inline int uv_cpu_to_blade_id(int cpu)
348 {
349 return uv_cpu_to_blade[cpu];
350 }
351
352 /* Convert linux node number to the UV blade number */
353 static inline int uv_node_to_blade_id(int nid)
354 {
355 return uv_node_to_blade[nid];
356 }
357
358 /* Convert a blade id to the PNODE of the blade */
359 static inline int uv_blade_to_pnode(int bid)
360 {
361 return uv_blade_info[bid].pnode;
362 }
363
364 /* Determine the number of possible cpus on a blade */
365 static inline int uv_blade_nr_possible_cpus(int bid)
366 {
367 return uv_blade_info[bid].nr_possible_cpus;
368 }
369
370 /* Determine the number of online cpus on a blade */
371 static inline int uv_blade_nr_online_cpus(int bid)
372 {
373 return uv_blade_info[bid].nr_online_cpus;
374 }
375
376 /* Convert a cpu id to the PNODE of the blade containing the cpu */
377 static inline int uv_cpu_to_pnode(int cpu)
378 {
379 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
380 }
381
382 /* Convert a linux node number to the PNODE of the blade */
383 static inline int uv_node_to_pnode(int nid)
384 {
385 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
386 }
387
388 /* Maximum possible number of blades */
389 static inline int uv_num_possible_blades(void)
390 {
391 return uv_possible_blades;
392 }
393
394 /* Update SCIR state */
395 static inline void uv_set_scir_bits(unsigned char value)
396 {
397 if (uv_hub_info->scir.state != value) {
398 uv_hub_info->scir.state = value;
399 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
400 }
401 }
402
403 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
404 {
405 if (uv_cpu_hub_info(cpu)->scir.state != value) {
406 uv_cpu_hub_info(cpu)->scir.state = value;
407 uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
408 }
409 }
410
411 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
412 {
413 unsigned long val;
414
415 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
416 ((apicid & 0x3f) << UVH_IPI_INT_APIC_ID_SHFT) |
417 (vector << UVH_IPI_INT_VECTOR_SHFT);
418 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
419 }
420
421 #endif /* CONFIG_X86_64 */
422 #endif /* _ASM_X86_UV_UV_HUB_H */
This page took 0.039539 seconds and 5 git commands to generate.