Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / x86 / kernel / apb_timer.c
1 /*
2 * apb_timer.c: Driver for Langwell APB timers
3 *
4 * (C) Copyright 2009 Intel Corporation
5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * Note:
13 * Langwell is the south complex of Intel Moorestown MID platform. There are
14 * eight external timers in total that can be used by the operating system.
15 * The timer information, such as frequency and addresses, is provided to the
16 * OS via SFI tables.
17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18 * individual redirection table entries (RTE).
19 * Unlike HPET, there is no master counter, therefore one of the timers are
20 * used as clocksource. The overall allocation looks like:
21 * - timer 0 - NR_CPUs for per cpu timer
22 * - one timer for clocksource
23 * - one timer for watchdog driver.
24 * It is also worth notice that APB timer does not support true one-shot mode,
25 * free-running mode will be used here to emulate one-shot mode.
26 * APB timer can also be used as broadcast timer along with per cpu local APIC
27 * timer, but by default APB timer has higher rating than local APIC timers.
28 */
29
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/delay.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/sysdev.h>
36 #include <linux/slab.h>
37 #include <linux/pm.h>
38 #include <linux/pci.h>
39 #include <linux/sfi.h>
40 #include <linux/interrupt.h>
41 #include <linux/cpu.h>
42 #include <linux/irq.h>
43
44 #include <asm/fixmap.h>
45 #include <asm/apb_timer.h>
46 #include <asm/mrst.h>
47
48 #define APBT_MASK CLOCKSOURCE_MASK(32)
49 #define APBT_SHIFT 22
50 #define APBT_CLOCKEVENT_RATING 110
51 #define APBT_CLOCKSOURCE_RATING 250
52 #define APBT_MIN_DELTA_USEC 200
53
54 #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
55 #define APBT_CLOCKEVENT0_NUM (0)
56 #define APBT_CLOCKEVENT1_NUM (1)
57 #define APBT_CLOCKSOURCE_NUM (2)
58
59 static unsigned long apbt_address;
60 static int apb_timer_block_enabled;
61 static void __iomem *apbt_virt_address;
62 static int phy_cs_timer_id;
63
64 /*
65 * Common DW APB timer info
66 */
67 static uint64_t apbt_freq;
68
69 static void apbt_set_mode(enum clock_event_mode mode,
70 struct clock_event_device *evt);
71 static int apbt_next_event(unsigned long delta,
72 struct clock_event_device *evt);
73 static cycle_t apbt_read_clocksource(struct clocksource *cs);
74 static void apbt_restart_clocksource(struct clocksource *cs);
75
76 struct apbt_dev {
77 struct clock_event_device evt;
78 unsigned int num;
79 int cpu;
80 unsigned int irq;
81 unsigned int tick;
82 unsigned int count;
83 unsigned int flags;
84 char name[10];
85 };
86
87 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
88
89 #ifdef CONFIG_SMP
90 static unsigned int apbt_num_timers_used;
91 static struct apbt_dev *apbt_devs;
92 #endif
93
94 static inline unsigned long apbt_readl_reg(unsigned long a)
95 {
96 return readl(apbt_virt_address + a);
97 }
98
99 static inline void apbt_writel_reg(unsigned long d, unsigned long a)
100 {
101 writel(d, apbt_virt_address + a);
102 }
103
104 static inline unsigned long apbt_readl(int n, unsigned long a)
105 {
106 return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
107 }
108
109 static inline void apbt_writel(int n, unsigned long d, unsigned long a)
110 {
111 writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
112 }
113
114 static inline void apbt_set_mapping(void)
115 {
116 struct sfi_timer_table_entry *mtmr;
117
118 if (apbt_virt_address) {
119 pr_debug("APBT base already mapped\n");
120 return;
121 }
122 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
123 if (mtmr == NULL) {
124 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
125 APBT_CLOCKEVENT0_NUM);
126 return;
127 }
128 apbt_address = (unsigned long)mtmr->phys_addr;
129 if (!apbt_address) {
130 printk(KERN_WARNING "No timer base from SFI, use default\n");
131 apbt_address = APBT_DEFAULT_BASE;
132 }
133 apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
134 if (apbt_virt_address) {
135 pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
136 (void *)apbt_address, (void *)apbt_virt_address);
137 } else {
138 pr_debug("Failed mapping APBT phy address at %p\n",\
139 (void *)apbt_address);
140 goto panic_noapbt;
141 }
142 apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
143 sfi_free_mtmr(mtmr);
144
145 /* Now figure out the physical timer id for clocksource device */
146 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
147 if (mtmr == NULL)
148 goto panic_noapbt;
149
150 /* Now figure out the physical timer id */
151 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
152 / APBTMRS_REG_SIZE;
153 pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
154 return;
155
156 panic_noapbt:
157 panic("Failed to setup APB system timer\n");
158
159 }
160
161 static inline void apbt_clear_mapping(void)
162 {
163 iounmap(apbt_virt_address);
164 apbt_virt_address = NULL;
165 }
166
167 /*
168 * APBT timer interrupt enable / disable
169 */
170 static inline int is_apbt_capable(void)
171 {
172 return apbt_virt_address ? 1 : 0;
173 }
174
175 static struct clocksource clocksource_apbt = {
176 .name = "apbt",
177 .rating = APBT_CLOCKSOURCE_RATING,
178 .read = apbt_read_clocksource,
179 .mask = APBT_MASK,
180 .shift = APBT_SHIFT,
181 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
182 .resume = apbt_restart_clocksource,
183 };
184
185 /* boot APB clock event device */
186 static struct clock_event_device apbt_clockevent = {
187 .name = "apbt0",
188 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
189 .set_mode = apbt_set_mode,
190 .set_next_event = apbt_next_event,
191 .shift = APBT_SHIFT,
192 .irq = 0,
193 .rating = APBT_CLOCKEVENT_RATING,
194 };
195
196 /*
197 * start count down from 0xffff_ffff. this is done by toggling the enable bit
198 * then load initial load count to ~0.
199 */
200 static void apbt_start_counter(int n)
201 {
202 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
203
204 ctrl &= ~APBTMR_CONTROL_ENABLE;
205 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
206 apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
207 /* enable, mask interrupt */
208 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
209 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
210 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
211 /* read it once to get cached counter value initialized */
212 apbt_read_clocksource(&clocksource_apbt);
213 }
214
215 static irqreturn_t apbt_interrupt_handler(int irq, void *data)
216 {
217 struct apbt_dev *dev = (struct apbt_dev *)data;
218 struct clock_event_device *aevt = &dev->evt;
219
220 if (!aevt->event_handler) {
221 printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
222 dev->num);
223 return IRQ_NONE;
224 }
225 aevt->event_handler(aevt);
226 return IRQ_HANDLED;
227 }
228
229 static void apbt_restart_clocksource(struct clocksource *cs)
230 {
231 apbt_start_counter(phy_cs_timer_id);
232 }
233
234 static void apbt_enable_int(int n)
235 {
236 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
237 /* clear pending intr */
238 apbt_readl(n, APBTMR_N_EOI);
239 ctrl &= ~APBTMR_CONTROL_INT;
240 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
241 }
242
243 static void apbt_disable_int(int n)
244 {
245 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
246
247 ctrl |= APBTMR_CONTROL_INT;
248 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
249 }
250
251
252 static int __init apbt_clockevent_register(void)
253 {
254 struct sfi_timer_table_entry *mtmr;
255 struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
256
257 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
258 if (mtmr == NULL) {
259 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
260 APBT_CLOCKEVENT0_NUM);
261 return -ENODEV;
262 }
263
264 /*
265 * We need to calculate the scaled math multiplication factor for
266 * nanosecond to apbt tick conversion.
267 * mult = (nsec/cycle)*2^APBT_SHIFT
268 */
269 apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
270 , NSEC_PER_SEC, APBT_SHIFT);
271
272 /* Calculate the min / max delta */
273 apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
274 &apbt_clockevent);
275 apbt_clockevent.min_delta_ns = clockevent_delta2ns(
276 APBT_MIN_DELTA_USEC*apbt_freq,
277 &apbt_clockevent);
278 /*
279 * Start apbt with the boot cpu mask and make it
280 * global if not used for per cpu timer.
281 */
282 apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
283 adev->num = smp_processor_id();
284 memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
285
286 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
287 apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100;
288 global_clock_event = &adev->evt;
289 printk(KERN_DEBUG "%s clockevent registered as global\n",
290 global_clock_event->name);
291 }
292
293 if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
294 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
295 apbt_clockevent.name, adev)) {
296 printk(KERN_ERR "Failed request IRQ for APBT%d\n",
297 apbt_clockevent.irq);
298 }
299
300 clockevents_register_device(&adev->evt);
301 /* Start APBT 0 interrupts */
302 apbt_enable_int(APBT_CLOCKEVENT0_NUM);
303
304 sfi_free_mtmr(mtmr);
305 return 0;
306 }
307
308 #ifdef CONFIG_SMP
309
310 static void apbt_setup_irq(struct apbt_dev *adev)
311 {
312 /* timer0 irq has been setup early */
313 if (adev->irq == 0)
314 return;
315
316 if (system_state == SYSTEM_BOOTING) {
317 irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
318 /* APB timer irqs are set up as mp_irqs, timer is edge type */
319 __set_irq_handler(adev->irq, handle_edge_irq, 0, "edge");
320 if (request_irq(adev->irq, apbt_interrupt_handler,
321 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
322 adev->name, adev)) {
323 printk(KERN_ERR "Failed request IRQ for APBT%d\n",
324 adev->num);
325 }
326 } else
327 enable_irq(adev->irq);
328 }
329
330 /* Should be called with per cpu */
331 void apbt_setup_secondary_clock(void)
332 {
333 struct apbt_dev *adev;
334 struct clock_event_device *aevt;
335 int cpu;
336
337 /* Don't register boot CPU clockevent */
338 cpu = smp_processor_id();
339 if (!cpu)
340 return;
341 /*
342 * We need to calculate the scaled math multiplication factor for
343 * nanosecond to apbt tick conversion.
344 * mult = (nsec/cycle)*2^APBT_SHIFT
345 */
346 printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
347 adev = &per_cpu(cpu_apbt_dev, cpu);
348 aevt = &adev->evt;
349
350 memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
351 aevt->cpumask = cpumask_of(cpu);
352 aevt->name = adev->name;
353 aevt->mode = CLOCK_EVT_MODE_UNUSED;
354
355 printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
356 cpu, aevt->name, *(u32 *)aevt->cpumask);
357
358 apbt_setup_irq(adev);
359
360 clockevents_register_device(aevt);
361
362 apbt_enable_int(cpu);
363
364 return;
365 }
366
367 /*
368 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
369 * cpus are disabled/enabled frequently, for performance reasons, we keep the
370 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
371 *
372 * TODO: it might be more reliable to directly disable percpu clockevent device
373 * without the notifier chain. currently, cpu 0 may get interrupts from other
374 * cpu timers during the offline process due to the ordering of notification.
375 * the extra interrupt is harmless.
376 */
377 static int apbt_cpuhp_notify(struct notifier_block *n,
378 unsigned long action, void *hcpu)
379 {
380 unsigned long cpu = (unsigned long)hcpu;
381 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
382
383 switch (action & 0xf) {
384 case CPU_DEAD:
385 disable_irq(adev->irq);
386 apbt_disable_int(cpu);
387 if (system_state == SYSTEM_RUNNING) {
388 pr_debug("skipping APBT CPU %lu offline\n", cpu);
389 } else if (adev) {
390 pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
391 free_irq(adev->irq, adev);
392 }
393 break;
394 default:
395 pr_debug("APBT notified %lu, no action\n", action);
396 }
397 return NOTIFY_OK;
398 }
399
400 static __init int apbt_late_init(void)
401 {
402 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT ||
403 !apb_timer_block_enabled)
404 return 0;
405 /* This notifier should be called after workqueue is ready */
406 hotcpu_notifier(apbt_cpuhp_notify, -20);
407 return 0;
408 }
409 fs_initcall(apbt_late_init);
410 #else
411
412 void apbt_setup_secondary_clock(void) {}
413
414 #endif /* CONFIG_SMP */
415
416 static void apbt_set_mode(enum clock_event_mode mode,
417 struct clock_event_device *evt)
418 {
419 unsigned long ctrl;
420 uint64_t delta;
421 int timer_num;
422 struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
423
424 BUG_ON(!apbt_virt_address);
425
426 timer_num = adev->num;
427 pr_debug("%s CPU %d timer %d mode=%d\n",
428 __func__, first_cpu(*evt->cpumask), timer_num, mode);
429
430 switch (mode) {
431 case CLOCK_EVT_MODE_PERIODIC:
432 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
433 delta >>= apbt_clockevent.shift;
434 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
435 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
436 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
437 /*
438 * DW APB p. 46, have to disable timer before load counter,
439 * may cause sync problem.
440 */
441 ctrl &= ~APBTMR_CONTROL_ENABLE;
442 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
443 udelay(1);
444 pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
445 apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
446 ctrl |= APBTMR_CONTROL_ENABLE;
447 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
448 break;
449 /* APB timer does not have one-shot mode, use free running mode */
450 case CLOCK_EVT_MODE_ONESHOT:
451 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
452 /*
453 * set free running mode, this mode will let timer reload max
454 * timeout which will give time (3min on 25MHz clock) to rearm
455 * the next event, therefore emulate the one-shot mode.
456 */
457 ctrl &= ~APBTMR_CONTROL_ENABLE;
458 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
459
460 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
461 /* write again to set free running mode */
462 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
463
464 /*
465 * DW APB p. 46, load counter with all 1s before starting free
466 * running mode.
467 */
468 apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
469 ctrl &= ~APBTMR_CONTROL_INT;
470 ctrl |= APBTMR_CONTROL_ENABLE;
471 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
472 break;
473
474 case CLOCK_EVT_MODE_UNUSED:
475 case CLOCK_EVT_MODE_SHUTDOWN:
476 apbt_disable_int(timer_num);
477 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
478 ctrl &= ~APBTMR_CONTROL_ENABLE;
479 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
480 break;
481
482 case CLOCK_EVT_MODE_RESUME:
483 apbt_enable_int(timer_num);
484 break;
485 }
486 }
487
488 static int apbt_next_event(unsigned long delta,
489 struct clock_event_device *evt)
490 {
491 unsigned long ctrl;
492 int timer_num;
493
494 struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
495
496 timer_num = adev->num;
497 /* Disable timer */
498 ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
499 ctrl &= ~APBTMR_CONTROL_ENABLE;
500 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
501 /* write new count */
502 apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
503 ctrl |= APBTMR_CONTROL_ENABLE;
504 apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
505 return 0;
506 }
507
508 /*
509 * APB timer clock is not in sync with pclk on Langwell, which translates to
510 * unreliable read value caused by sampling error. the error does not add up
511 * overtime and only happens when sampling a 0 as a 1 by mistake. so the time
512 * would go backwards. the following code is trying to prevent time traveling
513 * backwards. little bit paranoid.
514 */
515 static cycle_t apbt_read_clocksource(struct clocksource *cs)
516 {
517 unsigned long t0, t1, t2;
518 static unsigned long last_read;
519
520 bad_count:
521 t1 = apbt_readl(phy_cs_timer_id,
522 APBTMR_N_CURRENT_VALUE);
523 t2 = apbt_readl(phy_cs_timer_id,
524 APBTMR_N_CURRENT_VALUE);
525 if (unlikely(t1 < t2)) {
526 pr_debug("APBT: read current count error %lx:%lx:%lx\n",
527 t1, t2, t2 - t1);
528 goto bad_count;
529 }
530 /*
531 * check against cached last read, makes sure time does not go back.
532 * it could be a normal rollover but we will do tripple check anyway
533 */
534 if (unlikely(t2 > last_read)) {
535 /* check if we have a normal rollover */
536 unsigned long raw_intr_status =
537 apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
538 /*
539 * cs timer interrupt is masked but raw intr bit is set if
540 * rollover occurs. then we read EOI reg to clear it.
541 */
542 if (raw_intr_status & (1 << phy_cs_timer_id)) {
543 apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
544 goto out;
545 }
546 pr_debug("APB CS going back %lx:%lx:%lx ",
547 t2, last_read, t2 - last_read);
548 bad_count_x3:
549 pr_debug("triple check enforced\n");
550 t0 = apbt_readl(phy_cs_timer_id,
551 APBTMR_N_CURRENT_VALUE);
552 udelay(1);
553 t1 = apbt_readl(phy_cs_timer_id,
554 APBTMR_N_CURRENT_VALUE);
555 udelay(1);
556 t2 = apbt_readl(phy_cs_timer_id,
557 APBTMR_N_CURRENT_VALUE);
558 if ((t2 > t1) || (t1 > t0)) {
559 printk(KERN_ERR "Error: APB CS tripple check failed\n");
560 goto bad_count_x3;
561 }
562 }
563 out:
564 last_read = t2;
565 return (cycle_t)~t2;
566 }
567
568 static int apbt_clocksource_register(void)
569 {
570 u64 start, now;
571 cycle_t t1;
572
573 /* Start the counter, use timer 2 as source, timer 0/1 for event */
574 apbt_start_counter(phy_cs_timer_id);
575
576 /* Verify whether apbt counter works */
577 t1 = apbt_read_clocksource(&clocksource_apbt);
578 rdtscll(start);
579
580 /*
581 * We don't know the TSC frequency yet, but waiting for
582 * 200000 TSC cycles is safe:
583 * 4 GHz == 50us
584 * 1 GHz == 200us
585 */
586 do {
587 rep_nop();
588 rdtscll(now);
589 } while ((now - start) < 200000UL);
590
591 /* APBT is the only always on clocksource, it has to work! */
592 if (t1 == apbt_read_clocksource(&clocksource_apbt))
593 panic("APBT counter not counting. APBT disabled\n");
594
595 /*
596 * initialize and register APBT clocksource
597 * convert that to ns/clock cycle
598 * mult = (ns/c) * 2^APBT_SHIFT
599 */
600 clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
601 (unsigned long) apbt_freq, APBT_SHIFT);
602 clocksource_register(&clocksource_apbt);
603
604 return 0;
605 }
606
607 /*
608 * Early setup the APBT timer, only use timer 0 for booting then switch to
609 * per CPU timer if possible.
610 * returns 1 if per cpu apbt is setup
611 * returns 0 if no per cpu apbt is chosen
612 * panic if set up failed, this is the only platform timer on Moorestown.
613 */
614 void __init apbt_time_init(void)
615 {
616 #ifdef CONFIG_SMP
617 int i;
618 struct sfi_timer_table_entry *p_mtmr;
619 unsigned int percpu_timer;
620 struct apbt_dev *adev;
621 #endif
622
623 if (apb_timer_block_enabled)
624 return;
625 apbt_set_mapping();
626 if (apbt_virt_address) {
627 pr_debug("Found APBT version 0x%lx\n",\
628 apbt_readl_reg(APBTMRS_COMP_VERSION));
629 } else
630 goto out_noapbt;
631 /*
632 * Read the frequency and check for a sane value, for ESL model
633 * we extend the possible clock range to allow time scaling.
634 */
635
636 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
637 pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
638 goto out_noapbt;
639 }
640 if (apbt_clocksource_register()) {
641 pr_debug("APBT has failed to register clocksource\n");
642 goto out_noapbt;
643 }
644 if (!apbt_clockevent_register())
645 apb_timer_block_enabled = 1;
646 else {
647 pr_debug("APBT has failed to register clockevent\n");
648 goto out_noapbt;
649 }
650 #ifdef CONFIG_SMP
651 /* kernel cmdline disable apb timer, so we will use lapic timers */
652 if (mrst_timer_options == MRST_TIMER_LAPIC_APBT) {
653 printk(KERN_INFO "apbt: disabled per cpu timer\n");
654 return;
655 }
656 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
657 if (num_possible_cpus() <= sfi_mtimer_num) {
658 percpu_timer = 1;
659 apbt_num_timers_used = num_possible_cpus();
660 } else {
661 percpu_timer = 0;
662 apbt_num_timers_used = 1;
663 adev = &per_cpu(cpu_apbt_dev, 0);
664 adev->flags &= ~APBT_DEV_USED;
665 }
666 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
667
668 /* here we set up per CPU timer data structure */
669 apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
670 GFP_KERNEL);
671 if (!apbt_devs) {
672 printk(KERN_ERR "Failed to allocate APB timer devices\n");
673 return;
674 }
675 for (i = 0; i < apbt_num_timers_used; i++) {
676 adev = &per_cpu(cpu_apbt_dev, i);
677 adev->num = i;
678 adev->cpu = i;
679 p_mtmr = sfi_get_mtmr(i);
680 if (p_mtmr) {
681 adev->tick = p_mtmr->freq_hz;
682 adev->irq = p_mtmr->irq;
683 } else
684 printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
685 adev->count = 0;
686 sprintf(adev->name, "apbt%d", i);
687 }
688 #endif
689
690 return;
691
692 out_noapbt:
693 apbt_clear_mapping();
694 apb_timer_block_enabled = 0;
695 panic("failed to enable APB timer\n");
696 }
697
698 static inline void apbt_disable(int n)
699 {
700 if (is_apbt_capable()) {
701 unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
702 ctrl &= ~APBTMR_CONTROL_ENABLE;
703 apbt_writel(n, ctrl, APBTMR_N_CONTROL);
704 }
705 }
706
707 /* called before apb_timer_enable, use early map */
708 unsigned long apbt_quick_calibrate()
709 {
710 int i, scale;
711 u64 old, new;
712 cycle_t t1, t2;
713 unsigned long khz = 0;
714 u32 loop, shift;
715
716 apbt_set_mapping();
717 apbt_start_counter(phy_cs_timer_id);
718
719 /* check if the timer can count down, otherwise return */
720 old = apbt_read_clocksource(&clocksource_apbt);
721 i = 10000;
722 while (--i) {
723 if (old != apbt_read_clocksource(&clocksource_apbt))
724 break;
725 }
726 if (!i)
727 goto failed;
728
729 /* count 16 ms */
730 loop = (apbt_freq * 1000) << 4;
731
732 /* restart the timer to ensure it won't get to 0 in the calibration */
733 apbt_start_counter(phy_cs_timer_id);
734
735 old = apbt_read_clocksource(&clocksource_apbt);
736 old += loop;
737
738 t1 = __native_read_tsc();
739
740 do {
741 new = apbt_read_clocksource(&clocksource_apbt);
742 } while (new < old);
743
744 t2 = __native_read_tsc();
745
746 shift = 5;
747 if (unlikely(loop >> shift == 0)) {
748 printk(KERN_INFO
749 "APBT TSC calibration failed, not enough resolution\n");
750 return 0;
751 }
752 scale = (int)div_u64((t2 - t1), loop >> shift);
753 khz = (scale * apbt_freq * 1000) >> shift;
754 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
755 return khz;
756 failed:
757 return 0;
758 }
This page took 0.046568 seconds and 5 git commands to generate.