x86, intel-mid: Create IRQs for APB timers and RTC timers
[deliverable/linux.git] / arch / x86 / kernel / apb_timer.c
1 /*
2 * apb_timer.c: Driver for Langwell APB timers
3 *
4 * (C) Copyright 2009 Intel Corporation
5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * Note:
13 * Langwell is the south complex of Intel Moorestown MID platform. There are
14 * eight external timers in total that can be used by the operating system.
15 * The timer information, such as frequency and addresses, is provided to the
16 * OS via SFI tables.
17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18 * individual redirection table entries (RTE).
19 * Unlike HPET, there is no master counter, therefore one of the timers are
20 * used as clocksource. The overall allocation looks like:
21 * - timer 0 - NR_CPUs for per cpu timer
22 * - one timer for clocksource
23 * - one timer for watchdog driver.
24 * It is also worth notice that APB timer does not support true one-shot mode,
25 * free-running mode will be used here to emulate one-shot mode.
26 * APB timer can also be used as broadcast timer along with per cpu local APIC
27 * timer, but by default APB timer has higher rating than local APIC timers.
28 */
29
30 #include <linux/delay.h>
31 #include <linux/dw_apb_timer.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/slab.h>
35 #include <linux/pm.h>
36 #include <linux/sfi.h>
37 #include <linux/interrupt.h>
38 #include <linux/cpu.h>
39 #include <linux/irq.h>
40
41 #include <asm/fixmap.h>
42 #include <asm/apb_timer.h>
43 #include <asm/intel-mid.h>
44 #include <asm/time.h>
45
46 #define APBT_CLOCKEVENT_RATING 110
47 #define APBT_CLOCKSOURCE_RATING 250
48
49 #define APBT_CLOCKEVENT0_NUM (0)
50 #define APBT_CLOCKSOURCE_NUM (2)
51
52 static phys_addr_t apbt_address;
53 static int apb_timer_block_enabled;
54 static void __iomem *apbt_virt_address;
55
56 /*
57 * Common DW APB timer info
58 */
59 static unsigned long apbt_freq;
60
61 struct apbt_dev {
62 struct dw_apb_clock_event_device *timer;
63 unsigned int num;
64 int cpu;
65 unsigned int irq;
66 char name[10];
67 };
68
69 static struct dw_apb_clocksource *clocksource_apbt;
70
71 static inline void __iomem *adev_virt_addr(struct apbt_dev *adev)
72 {
73 return apbt_virt_address + adev->num * APBTMRS_REG_SIZE;
74 }
75
76 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev);
77
78 #ifdef CONFIG_SMP
79 static unsigned int apbt_num_timers_used;
80 #endif
81
82 static inline void apbt_set_mapping(void)
83 {
84 struct sfi_timer_table_entry *mtmr;
85 int phy_cs_timer_id = 0;
86
87 if (apbt_virt_address) {
88 pr_debug("APBT base already mapped\n");
89 return;
90 }
91 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
92 if (mtmr == NULL) {
93 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
94 APBT_CLOCKEVENT0_NUM);
95 return;
96 }
97 apbt_address = (phys_addr_t)mtmr->phys_addr;
98 if (!apbt_address) {
99 printk(KERN_WARNING "No timer base from SFI, use default\n");
100 apbt_address = APBT_DEFAULT_BASE;
101 }
102 apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
103 if (!apbt_virt_address) {
104 pr_debug("Failed mapping APBT phy address at %lu\n",\
105 (unsigned long)apbt_address);
106 goto panic_noapbt;
107 }
108 apbt_freq = mtmr->freq_hz;
109 sfi_free_mtmr(mtmr);
110
111 /* Now figure out the physical timer id for clocksource device */
112 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
113 if (mtmr == NULL)
114 goto panic_noapbt;
115
116 /* Now figure out the physical timer id */
117 pr_debug("Use timer %d for clocksource\n",
118 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE);
119 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) /
120 APBTMRS_REG_SIZE;
121
122 clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING,
123 "apbt0", apbt_virt_address + phy_cs_timer_id *
124 APBTMRS_REG_SIZE, apbt_freq);
125 return;
126
127 panic_noapbt:
128 panic("Failed to setup APB system timer\n");
129
130 }
131
132 static inline void apbt_clear_mapping(void)
133 {
134 iounmap(apbt_virt_address);
135 apbt_virt_address = NULL;
136 }
137
138 /*
139 * APBT timer interrupt enable / disable
140 */
141 static inline int is_apbt_capable(void)
142 {
143 return apbt_virt_address ? 1 : 0;
144 }
145
146 static int __init apbt_clockevent_register(void)
147 {
148 struct sfi_timer_table_entry *mtmr;
149 struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev);
150
151 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
152 if (mtmr == NULL) {
153 printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
154 APBT_CLOCKEVENT0_NUM);
155 return -ENODEV;
156 }
157
158 adev->num = smp_processor_id();
159 adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0",
160 intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ?
161 APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING,
162 adev_virt_addr(adev), 0, apbt_freq);
163 /* Firmware does EOI handling for us. */
164 adev->timer->eoi = NULL;
165
166 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
167 global_clock_event = &adev->timer->ced;
168 printk(KERN_DEBUG "%s clockevent registered as global\n",
169 global_clock_event->name);
170 }
171
172 dw_apb_clockevent_register(adev->timer);
173
174 sfi_free_mtmr(mtmr);
175 return 0;
176 }
177
178 #ifdef CONFIG_SMP
179
180 static void apbt_setup_irq(struct apbt_dev *adev)
181 {
182 /* timer0 irq has been setup early */
183 if (adev->irq == 0)
184 return;
185
186 irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT);
187 irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
188 }
189
190 /* Should be called with per cpu */
191 void apbt_setup_secondary_clock(void)
192 {
193 struct apbt_dev *adev;
194 int cpu;
195
196 /* Don't register boot CPU clockevent */
197 cpu = smp_processor_id();
198 if (!cpu)
199 return;
200
201 adev = this_cpu_ptr(&cpu_apbt_dev);
202 if (!adev->timer) {
203 adev->timer = dw_apb_clockevent_init(cpu, adev->name,
204 APBT_CLOCKEVENT_RATING, adev_virt_addr(adev),
205 adev->irq, apbt_freq);
206 adev->timer->eoi = NULL;
207 } else {
208 dw_apb_clockevent_resume(adev->timer);
209 }
210
211 printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n",
212 cpu, adev->name, adev->cpu);
213
214 apbt_setup_irq(adev);
215 dw_apb_clockevent_register(adev->timer);
216
217 return;
218 }
219
220 /*
221 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
222 * cpus are disabled/enabled frequently, for performance reasons, we keep the
223 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
224 *
225 * TODO: it might be more reliable to directly disable percpu clockevent device
226 * without the notifier chain. currently, cpu 0 may get interrupts from other
227 * cpu timers during the offline process due to the ordering of notification.
228 * the extra interrupt is harmless.
229 */
230 static int apbt_cpuhp_notify(struct notifier_block *n,
231 unsigned long action, void *hcpu)
232 {
233 unsigned long cpu = (unsigned long)hcpu;
234 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
235
236 switch (action & 0xf) {
237 case CPU_DEAD:
238 dw_apb_clockevent_pause(adev->timer);
239 if (system_state == SYSTEM_RUNNING) {
240 pr_debug("skipping APBT CPU %lu offline\n", cpu);
241 } else {
242 pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
243 dw_apb_clockevent_stop(adev->timer);
244 }
245 break;
246 default:
247 pr_debug("APBT notified %lu, no action\n", action);
248 }
249 return NOTIFY_OK;
250 }
251
252 static __init int apbt_late_init(void)
253 {
254 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ||
255 !apb_timer_block_enabled)
256 return 0;
257 /* This notifier should be called after workqueue is ready */
258 hotcpu_notifier(apbt_cpuhp_notify, -20);
259 return 0;
260 }
261 fs_initcall(apbt_late_init);
262 #else
263
264 void apbt_setup_secondary_clock(void) {}
265
266 #endif /* CONFIG_SMP */
267
268 static int apbt_clocksource_register(void)
269 {
270 u64 start, now;
271 cycle_t t1;
272
273 /* Start the counter, use timer 2 as source, timer 0/1 for event */
274 dw_apb_clocksource_start(clocksource_apbt);
275
276 /* Verify whether apbt counter works */
277 t1 = dw_apb_clocksource_read(clocksource_apbt);
278 rdtscll(start);
279
280 /*
281 * We don't know the TSC frequency yet, but waiting for
282 * 200000 TSC cycles is safe:
283 * 4 GHz == 50us
284 * 1 GHz == 200us
285 */
286 do {
287 rep_nop();
288 rdtscll(now);
289 } while ((now - start) < 200000UL);
290
291 /* APBT is the only always on clocksource, it has to work! */
292 if (t1 == dw_apb_clocksource_read(clocksource_apbt))
293 panic("APBT counter not counting. APBT disabled\n");
294
295 dw_apb_clocksource_register(clocksource_apbt);
296
297 return 0;
298 }
299
300 /*
301 * Early setup the APBT timer, only use timer 0 for booting then switch to
302 * per CPU timer if possible.
303 * returns 1 if per cpu apbt is setup
304 * returns 0 if no per cpu apbt is chosen
305 * panic if set up failed, this is the only platform timer on Moorestown.
306 */
307 void __init apbt_time_init(void)
308 {
309 #ifdef CONFIG_SMP
310 int i;
311 struct sfi_timer_table_entry *p_mtmr;
312 struct apbt_dev *adev;
313 #endif
314
315 if (apb_timer_block_enabled)
316 return;
317 apbt_set_mapping();
318 if (!apbt_virt_address)
319 goto out_noapbt;
320 /*
321 * Read the frequency and check for a sane value, for ESL model
322 * we extend the possible clock range to allow time scaling.
323 */
324
325 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
326 pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq);
327 goto out_noapbt;
328 }
329 if (apbt_clocksource_register()) {
330 pr_debug("APBT has failed to register clocksource\n");
331 goto out_noapbt;
332 }
333 if (!apbt_clockevent_register())
334 apb_timer_block_enabled = 1;
335 else {
336 pr_debug("APBT has failed to register clockevent\n");
337 goto out_noapbt;
338 }
339 #ifdef CONFIG_SMP
340 /* kernel cmdline disable apb timer, so we will use lapic timers */
341 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) {
342 printk(KERN_INFO "apbt: disabled per cpu timer\n");
343 return;
344 }
345 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
346 if (num_possible_cpus() <= sfi_mtimer_num)
347 apbt_num_timers_used = num_possible_cpus();
348 else
349 apbt_num_timers_used = 1;
350 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
351
352 /* here we set up per CPU timer data structure */
353 for (i = 0; i < apbt_num_timers_used; i++) {
354 adev = &per_cpu(cpu_apbt_dev, i);
355 adev->num = i;
356 adev->cpu = i;
357 p_mtmr = sfi_get_mtmr(i);
358 if (p_mtmr)
359 adev->irq = p_mtmr->irq;
360 else
361 printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
362 snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i);
363 }
364 #endif
365
366 return;
367
368 out_noapbt:
369 apbt_clear_mapping();
370 apb_timer_block_enabled = 0;
371 panic("failed to enable APB timer\n");
372 }
373
374 /* called before apb_timer_enable, use early map */
375 unsigned long apbt_quick_calibrate(void)
376 {
377 int i, scale;
378 u64 old, new;
379 cycle_t t1, t2;
380 unsigned long khz = 0;
381 u32 loop, shift;
382
383 apbt_set_mapping();
384 dw_apb_clocksource_start(clocksource_apbt);
385
386 /* check if the timer can count down, otherwise return */
387 old = dw_apb_clocksource_read(clocksource_apbt);
388 i = 10000;
389 while (--i) {
390 if (old != dw_apb_clocksource_read(clocksource_apbt))
391 break;
392 }
393 if (!i)
394 goto failed;
395
396 /* count 16 ms */
397 loop = (apbt_freq / 1000) << 4;
398
399 /* restart the timer to ensure it won't get to 0 in the calibration */
400 dw_apb_clocksource_start(clocksource_apbt);
401
402 old = dw_apb_clocksource_read(clocksource_apbt);
403 old += loop;
404
405 t1 = __native_read_tsc();
406
407 do {
408 new = dw_apb_clocksource_read(clocksource_apbt);
409 } while (new < old);
410
411 t2 = __native_read_tsc();
412
413 shift = 5;
414 if (unlikely(loop >> shift == 0)) {
415 printk(KERN_INFO
416 "APBT TSC calibration failed, not enough resolution\n");
417 return 0;
418 }
419 scale = (int)div_u64((t2 - t1), loop >> shift);
420 khz = (scale * (apbt_freq / 1000)) >> shift;
421 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
422 return khz;
423 failed:
424 return 0;
425 }
This page took 0.050399 seconds and 5 git commands to generate.