irq: change ->set_affinity() to return status
[deliverable/linux.git] / arch / x86 / kernel / apic / io_apic.c
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
45
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/uv/uv_hub.h>
63 #include <asm/uv/uv_irq.h>
64
65 #include <asm/apic.h>
66
67 #define __apicdebuginit(type) static type __init
68
69 /*
70 * Is the SiS APIC rmw bug present ?
71 * -1 = don't know, 0 = no, 1 = yes
72 */
73 int sis_apic_bug = -1;
74
75 static DEFINE_SPINLOCK(ioapic_lock);
76 static DEFINE_SPINLOCK(vector_lock);
77
78 /*
79 * # of IRQ routing registers
80 */
81 int nr_ioapic_registers[MAX_IO_APICS];
82
83 /* I/O APIC entries */
84 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
85 int nr_ioapics;
86
87 /* MP IRQ source entries */
88 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
89
90 /* # of MP IRQ source entries */
91 int mp_irq_entries;
92
93 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
94 int mp_bus_id_to_type[MAX_MP_BUSSES];
95 #endif
96
97 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
98
99 int skip_ioapic_setup;
100
101 void arch_disable_smp_support(void)
102 {
103 #ifdef CONFIG_PCI
104 noioapicquirk = 1;
105 noioapicreroute = -1;
106 #endif
107 skip_ioapic_setup = 1;
108 }
109
110 static int __init parse_noapic(char *str)
111 {
112 /* disable IO-APIC */
113 arch_disable_smp_support();
114 return 0;
115 }
116 early_param("noapic", parse_noapic);
117
118 struct irq_pin_list;
119
120 /*
121 * This is performance-critical, we want to do it O(1)
122 *
123 * the indexing order of this array favors 1:1 mappings
124 * between pins and IRQs.
125 */
126
127 struct irq_pin_list {
128 int apic, pin;
129 struct irq_pin_list *next;
130 };
131
132 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
133 {
134 struct irq_pin_list *pin;
135 int node;
136
137 node = cpu_to_node(cpu);
138
139 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
140
141 return pin;
142 }
143
144 struct irq_cfg {
145 struct irq_pin_list *irq_2_pin;
146 cpumask_var_t domain;
147 cpumask_var_t old_domain;
148 unsigned move_cleanup_count;
149 u8 vector;
150 u8 move_in_progress : 1;
151 };
152
153 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
154 #ifdef CONFIG_SPARSE_IRQ
155 static struct irq_cfg irq_cfgx[] = {
156 #else
157 static struct irq_cfg irq_cfgx[NR_IRQS] = {
158 #endif
159 [0] = { .vector = IRQ0_VECTOR, },
160 [1] = { .vector = IRQ1_VECTOR, },
161 [2] = { .vector = IRQ2_VECTOR, },
162 [3] = { .vector = IRQ3_VECTOR, },
163 [4] = { .vector = IRQ4_VECTOR, },
164 [5] = { .vector = IRQ5_VECTOR, },
165 [6] = { .vector = IRQ6_VECTOR, },
166 [7] = { .vector = IRQ7_VECTOR, },
167 [8] = { .vector = IRQ8_VECTOR, },
168 [9] = { .vector = IRQ9_VECTOR, },
169 [10] = { .vector = IRQ10_VECTOR, },
170 [11] = { .vector = IRQ11_VECTOR, },
171 [12] = { .vector = IRQ12_VECTOR, },
172 [13] = { .vector = IRQ13_VECTOR, },
173 [14] = { .vector = IRQ14_VECTOR, },
174 [15] = { .vector = IRQ15_VECTOR, },
175 };
176
177 int __init arch_early_irq_init(void)
178 {
179 struct irq_cfg *cfg;
180 struct irq_desc *desc;
181 int count;
182 int i;
183
184 cfg = irq_cfgx;
185 count = ARRAY_SIZE(irq_cfgx);
186
187 for (i = 0; i < count; i++) {
188 desc = irq_to_desc(i);
189 desc->chip_data = &cfg[i];
190 alloc_bootmem_cpumask_var(&cfg[i].domain);
191 alloc_bootmem_cpumask_var(&cfg[i].old_domain);
192 if (i < NR_IRQS_LEGACY)
193 cpumask_setall(cfg[i].domain);
194 }
195
196 return 0;
197 }
198
199 #ifdef CONFIG_SPARSE_IRQ
200 static struct irq_cfg *irq_cfg(unsigned int irq)
201 {
202 struct irq_cfg *cfg = NULL;
203 struct irq_desc *desc;
204
205 desc = irq_to_desc(irq);
206 if (desc)
207 cfg = desc->chip_data;
208
209 return cfg;
210 }
211
212 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
213 {
214 struct irq_cfg *cfg;
215 int node;
216
217 node = cpu_to_node(cpu);
218
219 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
220 if (cfg) {
221 if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
222 kfree(cfg);
223 cfg = NULL;
224 } else if (!alloc_cpumask_var_node(&cfg->old_domain,
225 GFP_ATOMIC, node)) {
226 free_cpumask_var(cfg->domain);
227 kfree(cfg);
228 cfg = NULL;
229 } else {
230 cpumask_clear(cfg->domain);
231 cpumask_clear(cfg->old_domain);
232 }
233 }
234
235 return cfg;
236 }
237
238 int arch_init_chip_data(struct irq_desc *desc, int cpu)
239 {
240 struct irq_cfg *cfg;
241
242 cfg = desc->chip_data;
243 if (!cfg) {
244 desc->chip_data = get_one_free_irq_cfg(cpu);
245 if (!desc->chip_data) {
246 printk(KERN_ERR "can not alloc irq_cfg\n");
247 BUG_ON(1);
248 }
249 }
250
251 return 0;
252 }
253
254 /* for move_irq_desc */
255 static void
256 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
257 {
258 struct irq_pin_list *old_entry, *head, *tail, *entry;
259
260 cfg->irq_2_pin = NULL;
261 old_entry = old_cfg->irq_2_pin;
262 if (!old_entry)
263 return;
264
265 entry = get_one_free_irq_2_pin(cpu);
266 if (!entry)
267 return;
268
269 entry->apic = old_entry->apic;
270 entry->pin = old_entry->pin;
271 head = entry;
272 tail = entry;
273 old_entry = old_entry->next;
274 while (old_entry) {
275 entry = get_one_free_irq_2_pin(cpu);
276 if (!entry) {
277 entry = head;
278 while (entry) {
279 head = entry->next;
280 kfree(entry);
281 entry = head;
282 }
283 /* still use the old one */
284 return;
285 }
286 entry->apic = old_entry->apic;
287 entry->pin = old_entry->pin;
288 tail->next = entry;
289 tail = entry;
290 old_entry = old_entry->next;
291 }
292
293 tail->next = NULL;
294 cfg->irq_2_pin = head;
295 }
296
297 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
298 {
299 struct irq_pin_list *entry, *next;
300
301 if (old_cfg->irq_2_pin == cfg->irq_2_pin)
302 return;
303
304 entry = old_cfg->irq_2_pin;
305
306 while (entry) {
307 next = entry->next;
308 kfree(entry);
309 entry = next;
310 }
311 old_cfg->irq_2_pin = NULL;
312 }
313
314 void arch_init_copy_chip_data(struct irq_desc *old_desc,
315 struct irq_desc *desc, int cpu)
316 {
317 struct irq_cfg *cfg;
318 struct irq_cfg *old_cfg;
319
320 cfg = get_one_free_irq_cfg(cpu);
321
322 if (!cfg)
323 return;
324
325 desc->chip_data = cfg;
326
327 old_cfg = old_desc->chip_data;
328
329 memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
330
331 init_copy_irq_2_pin(old_cfg, cfg, cpu);
332 }
333
334 static void free_irq_cfg(struct irq_cfg *old_cfg)
335 {
336 kfree(old_cfg);
337 }
338
339 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
340 {
341 struct irq_cfg *old_cfg, *cfg;
342
343 old_cfg = old_desc->chip_data;
344 cfg = desc->chip_data;
345
346 if (old_cfg == cfg)
347 return;
348
349 if (old_cfg) {
350 free_irq_2_pin(old_cfg, cfg);
351 free_irq_cfg(old_cfg);
352 old_desc->chip_data = NULL;
353 }
354 }
355 /* end for move_irq_desc */
356
357 #else
358 static struct irq_cfg *irq_cfg(unsigned int irq)
359 {
360 return irq < nr_irqs ? irq_cfgx + irq : NULL;
361 }
362
363 #endif
364
365 struct io_apic {
366 unsigned int index;
367 unsigned int unused[3];
368 unsigned int data;
369 unsigned int unused2[11];
370 unsigned int eoi;
371 };
372
373 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
374 {
375 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
376 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
377 }
378
379 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
380 {
381 struct io_apic __iomem *io_apic = io_apic_base(apic);
382 writel(vector, &io_apic->eoi);
383 }
384
385 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
386 {
387 struct io_apic __iomem *io_apic = io_apic_base(apic);
388 writel(reg, &io_apic->index);
389 return readl(&io_apic->data);
390 }
391
392 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
393 {
394 struct io_apic __iomem *io_apic = io_apic_base(apic);
395 writel(reg, &io_apic->index);
396 writel(value, &io_apic->data);
397 }
398
399 /*
400 * Re-write a value: to be used for read-modify-write
401 * cycles where the read already set up the index register.
402 *
403 * Older SiS APIC requires we rewrite the index register
404 */
405 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
406 {
407 struct io_apic __iomem *io_apic = io_apic_base(apic);
408
409 if (sis_apic_bug)
410 writel(reg, &io_apic->index);
411 writel(value, &io_apic->data);
412 }
413
414 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
415 {
416 struct irq_pin_list *entry;
417 unsigned long flags;
418
419 spin_lock_irqsave(&ioapic_lock, flags);
420 entry = cfg->irq_2_pin;
421 for (;;) {
422 unsigned int reg;
423 int pin;
424
425 if (!entry)
426 break;
427 pin = entry->pin;
428 reg = io_apic_read(entry->apic, 0x10 + pin*2);
429 /* Is the remote IRR bit set? */
430 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
431 spin_unlock_irqrestore(&ioapic_lock, flags);
432 return true;
433 }
434 if (!entry->next)
435 break;
436 entry = entry->next;
437 }
438 spin_unlock_irqrestore(&ioapic_lock, flags);
439
440 return false;
441 }
442
443 union entry_union {
444 struct { u32 w1, w2; };
445 struct IO_APIC_route_entry entry;
446 };
447
448 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
449 {
450 union entry_union eu;
451 unsigned long flags;
452 spin_lock_irqsave(&ioapic_lock, flags);
453 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
454 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
455 spin_unlock_irqrestore(&ioapic_lock, flags);
456 return eu.entry;
457 }
458
459 /*
460 * When we write a new IO APIC routing entry, we need to write the high
461 * word first! If the mask bit in the low word is clear, we will enable
462 * the interrupt, and we need to make sure the entry is fully populated
463 * before that happens.
464 */
465 static void
466 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
467 {
468 union entry_union eu;
469 eu.entry = e;
470 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
471 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
472 }
473
474 void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
475 {
476 unsigned long flags;
477 spin_lock_irqsave(&ioapic_lock, flags);
478 __ioapic_write_entry(apic, pin, e);
479 spin_unlock_irqrestore(&ioapic_lock, flags);
480 }
481
482 /*
483 * When we mask an IO APIC routing entry, we need to write the low
484 * word first, in order to set the mask bit before we change the
485 * high bits!
486 */
487 static void ioapic_mask_entry(int apic, int pin)
488 {
489 unsigned long flags;
490 union entry_union eu = { .entry.mask = 1 };
491
492 spin_lock_irqsave(&ioapic_lock, flags);
493 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
494 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
495 spin_unlock_irqrestore(&ioapic_lock, flags);
496 }
497
498 #ifdef CONFIG_SMP
499 static void send_cleanup_vector(struct irq_cfg *cfg)
500 {
501 cpumask_var_t cleanup_mask;
502
503 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
504 unsigned int i;
505 cfg->move_cleanup_count = 0;
506 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
507 cfg->move_cleanup_count++;
508 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
509 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
510 } else {
511 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
512 cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
513 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
514 free_cpumask_var(cleanup_mask);
515 }
516 cfg->move_in_progress = 0;
517 }
518
519 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
520 {
521 int apic, pin;
522 struct irq_pin_list *entry;
523 u8 vector = cfg->vector;
524
525 entry = cfg->irq_2_pin;
526 for (;;) {
527 unsigned int reg;
528
529 if (!entry)
530 break;
531
532 apic = entry->apic;
533 pin = entry->pin;
534 /*
535 * With interrupt-remapping, destination information comes
536 * from interrupt-remapping table entry.
537 */
538 if (!irq_remapped(irq))
539 io_apic_write(apic, 0x11 + pin*2, dest);
540 reg = io_apic_read(apic, 0x10 + pin*2);
541 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
542 reg |= vector;
543 io_apic_modify(apic, 0x10 + pin*2, reg);
544 if (!entry->next)
545 break;
546 entry = entry->next;
547 }
548 }
549
550 static int
551 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
552
553 /*
554 * Either sets desc->affinity to a valid value, and returns
555 * ->cpu_mask_to_apicid of that, or returns BAD_APICID and
556 * leaves desc->affinity untouched.
557 */
558 static unsigned int
559 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
560 {
561 struct irq_cfg *cfg;
562 unsigned int irq;
563
564 if (!cpumask_intersects(mask, cpu_online_mask))
565 return BAD_APICID;
566
567 irq = desc->irq;
568 cfg = desc->chip_data;
569 if (assign_irq_vector(irq, cfg, mask))
570 return BAD_APICID;
571
572 cpumask_copy(desc->affinity, mask);
573
574 return apic->cpu_mask_to_apicid_and(desc->affinity, cfg->domain);
575 }
576
577 static int
578 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
579 {
580 struct irq_cfg *cfg;
581 unsigned long flags;
582 unsigned int dest;
583 unsigned int irq;
584 int ret = -1;
585
586 irq = desc->irq;
587 cfg = desc->chip_data;
588
589 spin_lock_irqsave(&ioapic_lock, flags);
590 dest = set_desc_affinity(desc, mask);
591 if (dest != BAD_APICID) {
592 /* Only the high 8 bits are valid. */
593 dest = SET_APIC_LOGICAL_ID(dest);
594 __target_IO_APIC_irq(irq, dest, cfg);
595 ret = 0;
596 }
597 spin_unlock_irqrestore(&ioapic_lock, flags);
598
599 return ret;
600 }
601
602 static int
603 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
604 {
605 struct irq_desc *desc;
606
607 desc = irq_to_desc(irq);
608
609 return set_ioapic_affinity_irq_desc(desc, mask);
610 }
611 #endif /* CONFIG_SMP */
612
613 /*
614 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
615 * shared ISA-space IRQs, so we have to support them. We are super
616 * fast in the common case, and fast for shared ISA-space IRQs.
617 */
618 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
619 {
620 struct irq_pin_list *entry;
621
622 entry = cfg->irq_2_pin;
623 if (!entry) {
624 entry = get_one_free_irq_2_pin(cpu);
625 if (!entry) {
626 printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
627 apic, pin);
628 return;
629 }
630 cfg->irq_2_pin = entry;
631 entry->apic = apic;
632 entry->pin = pin;
633 return;
634 }
635
636 while (entry->next) {
637 /* not again, please */
638 if (entry->apic == apic && entry->pin == pin)
639 return;
640
641 entry = entry->next;
642 }
643
644 entry->next = get_one_free_irq_2_pin(cpu);
645 entry = entry->next;
646 entry->apic = apic;
647 entry->pin = pin;
648 }
649
650 /*
651 * Reroute an IRQ to a different pin.
652 */
653 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
654 int oldapic, int oldpin,
655 int newapic, int newpin)
656 {
657 struct irq_pin_list *entry = cfg->irq_2_pin;
658 int replaced = 0;
659
660 while (entry) {
661 if (entry->apic == oldapic && entry->pin == oldpin) {
662 entry->apic = newapic;
663 entry->pin = newpin;
664 replaced = 1;
665 /* every one is different, right? */
666 break;
667 }
668 entry = entry->next;
669 }
670
671 /* why? call replace before add? */
672 if (!replaced)
673 add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
674 }
675
676 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
677 int mask_and, int mask_or,
678 void (*final)(struct irq_pin_list *entry))
679 {
680 int pin;
681 struct irq_pin_list *entry;
682
683 for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
684 unsigned int reg;
685 pin = entry->pin;
686 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
687 reg &= mask_and;
688 reg |= mask_or;
689 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
690 if (final)
691 final(entry);
692 }
693 }
694
695 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
696 {
697 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
698 }
699
700 #ifdef CONFIG_X86_64
701 static void io_apic_sync(struct irq_pin_list *entry)
702 {
703 /*
704 * Synchronize the IO-APIC and the CPU by doing
705 * a dummy read from the IO-APIC
706 */
707 struct io_apic __iomem *io_apic;
708 io_apic = io_apic_base(entry->apic);
709 readl(&io_apic->data);
710 }
711
712 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
713 {
714 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
715 }
716 #else /* CONFIG_X86_32 */
717 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
718 {
719 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
720 }
721
722 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
723 {
724 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
725 IO_APIC_REDIR_MASKED, NULL);
726 }
727
728 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
729 {
730 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
731 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
732 }
733 #endif /* CONFIG_X86_32 */
734
735 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
736 {
737 struct irq_cfg *cfg = desc->chip_data;
738 unsigned long flags;
739
740 BUG_ON(!cfg);
741
742 spin_lock_irqsave(&ioapic_lock, flags);
743 __mask_IO_APIC_irq(cfg);
744 spin_unlock_irqrestore(&ioapic_lock, flags);
745 }
746
747 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
748 {
749 struct irq_cfg *cfg = desc->chip_data;
750 unsigned long flags;
751
752 spin_lock_irqsave(&ioapic_lock, flags);
753 __unmask_IO_APIC_irq(cfg);
754 spin_unlock_irqrestore(&ioapic_lock, flags);
755 }
756
757 static void mask_IO_APIC_irq(unsigned int irq)
758 {
759 struct irq_desc *desc = irq_to_desc(irq);
760
761 mask_IO_APIC_irq_desc(desc);
762 }
763 static void unmask_IO_APIC_irq(unsigned int irq)
764 {
765 struct irq_desc *desc = irq_to_desc(irq);
766
767 unmask_IO_APIC_irq_desc(desc);
768 }
769
770 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
771 {
772 struct IO_APIC_route_entry entry;
773
774 /* Check delivery_mode to be sure we're not clearing an SMI pin */
775 entry = ioapic_read_entry(apic, pin);
776 if (entry.delivery_mode == dest_SMI)
777 return;
778 /*
779 * Disable it in the IO-APIC irq-routing table:
780 */
781 ioapic_mask_entry(apic, pin);
782 }
783
784 static void clear_IO_APIC (void)
785 {
786 int apic, pin;
787
788 for (apic = 0; apic < nr_ioapics; apic++)
789 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
790 clear_IO_APIC_pin(apic, pin);
791 }
792
793 #ifdef CONFIG_X86_32
794 /*
795 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
796 * specific CPU-side IRQs.
797 */
798
799 #define MAX_PIRQS 8
800 static int pirq_entries[MAX_PIRQS] = {
801 [0 ... MAX_PIRQS - 1] = -1
802 };
803
804 static int __init ioapic_pirq_setup(char *str)
805 {
806 int i, max;
807 int ints[MAX_PIRQS+1];
808
809 get_options(str, ARRAY_SIZE(ints), ints);
810
811 apic_printk(APIC_VERBOSE, KERN_INFO
812 "PIRQ redirection, working around broken MP-BIOS.\n");
813 max = MAX_PIRQS;
814 if (ints[0] < MAX_PIRQS)
815 max = ints[0];
816
817 for (i = 0; i < max; i++) {
818 apic_printk(APIC_VERBOSE, KERN_DEBUG
819 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
820 /*
821 * PIRQs are mapped upside down, usually.
822 */
823 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
824 }
825 return 1;
826 }
827
828 __setup("pirq=", ioapic_pirq_setup);
829 #endif /* CONFIG_X86_32 */
830
831 #ifdef CONFIG_INTR_REMAP
832 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
833 {
834 int apic;
835 struct IO_APIC_route_entry **ioapic_entries;
836
837 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
838 GFP_ATOMIC);
839 if (!ioapic_entries)
840 return 0;
841
842 for (apic = 0; apic < nr_ioapics; apic++) {
843 ioapic_entries[apic] =
844 kzalloc(sizeof(struct IO_APIC_route_entry) *
845 nr_ioapic_registers[apic], GFP_ATOMIC);
846 if (!ioapic_entries[apic])
847 goto nomem;
848 }
849
850 return ioapic_entries;
851
852 nomem:
853 while (--apic >= 0)
854 kfree(ioapic_entries[apic]);
855 kfree(ioapic_entries);
856
857 return 0;
858 }
859
860 /*
861 * Saves all the IO-APIC RTE's
862 */
863 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
864 {
865 int apic, pin;
866
867 if (!ioapic_entries)
868 return -ENOMEM;
869
870 for (apic = 0; apic < nr_ioapics; apic++) {
871 if (!ioapic_entries[apic])
872 return -ENOMEM;
873
874 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
875 ioapic_entries[apic][pin] =
876 ioapic_read_entry(apic, pin);
877 }
878
879 return 0;
880 }
881
882 /*
883 * Mask all IO APIC entries.
884 */
885 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
886 {
887 int apic, pin;
888
889 if (!ioapic_entries)
890 return;
891
892 for (apic = 0; apic < nr_ioapics; apic++) {
893 if (!ioapic_entries[apic])
894 break;
895
896 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
897 struct IO_APIC_route_entry entry;
898
899 entry = ioapic_entries[apic][pin];
900 if (!entry.mask) {
901 entry.mask = 1;
902 ioapic_write_entry(apic, pin, entry);
903 }
904 }
905 }
906 }
907
908 /*
909 * Restore IO APIC entries which was saved in ioapic_entries.
910 */
911 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
912 {
913 int apic, pin;
914
915 if (!ioapic_entries)
916 return -ENOMEM;
917
918 for (apic = 0; apic < nr_ioapics; apic++) {
919 if (!ioapic_entries[apic])
920 return -ENOMEM;
921
922 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
923 ioapic_write_entry(apic, pin,
924 ioapic_entries[apic][pin]);
925 }
926 return 0;
927 }
928
929 void reinit_intr_remapped_IO_APIC(int intr_remapping,
930 struct IO_APIC_route_entry **ioapic_entries)
931
932 {
933 /*
934 * for now plain restore of previous settings.
935 * TBD: In the case of OS enabling interrupt-remapping,
936 * IO-APIC RTE's need to be setup to point to interrupt-remapping
937 * table entries. for now, do a plain restore, and wait for
938 * the setup_IO_APIC_irqs() to do proper initialization.
939 */
940 restore_IO_APIC_setup(ioapic_entries);
941 }
942
943 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
944 {
945 int apic;
946
947 for (apic = 0; apic < nr_ioapics; apic++)
948 kfree(ioapic_entries[apic]);
949
950 kfree(ioapic_entries);
951 }
952 #endif
953
954 /*
955 * Find the IRQ entry number of a certain pin.
956 */
957 static int find_irq_entry(int apic, int pin, int type)
958 {
959 int i;
960
961 for (i = 0; i < mp_irq_entries; i++)
962 if (mp_irqs[i].irqtype == type &&
963 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
964 mp_irqs[i].dstapic == MP_APIC_ALL) &&
965 mp_irqs[i].dstirq == pin)
966 return i;
967
968 return -1;
969 }
970
971 /*
972 * Find the pin to which IRQ[irq] (ISA) is connected
973 */
974 static int __init find_isa_irq_pin(int irq, int type)
975 {
976 int i;
977
978 for (i = 0; i < mp_irq_entries; i++) {
979 int lbus = mp_irqs[i].srcbus;
980
981 if (test_bit(lbus, mp_bus_not_pci) &&
982 (mp_irqs[i].irqtype == type) &&
983 (mp_irqs[i].srcbusirq == irq))
984
985 return mp_irqs[i].dstirq;
986 }
987 return -1;
988 }
989
990 static int __init find_isa_irq_apic(int irq, int type)
991 {
992 int i;
993
994 for (i = 0; i < mp_irq_entries; i++) {
995 int lbus = mp_irqs[i].srcbus;
996
997 if (test_bit(lbus, mp_bus_not_pci) &&
998 (mp_irqs[i].irqtype == type) &&
999 (mp_irqs[i].srcbusirq == irq))
1000 break;
1001 }
1002 if (i < mp_irq_entries) {
1003 int apic;
1004 for(apic = 0; apic < nr_ioapics; apic++) {
1005 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
1006 return apic;
1007 }
1008 }
1009
1010 return -1;
1011 }
1012
1013 /*
1014 * Find a specific PCI IRQ entry.
1015 * Not an __init, possibly needed by modules
1016 */
1017 static int pin_2_irq(int idx, int apic, int pin);
1018
1019 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
1020 {
1021 int apic, i, best_guess = -1;
1022
1023 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1024 bus, slot, pin);
1025 if (test_bit(bus, mp_bus_not_pci)) {
1026 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1027 return -1;
1028 }
1029 for (i = 0; i < mp_irq_entries; i++) {
1030 int lbus = mp_irqs[i].srcbus;
1031
1032 for (apic = 0; apic < nr_ioapics; apic++)
1033 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1034 mp_irqs[i].dstapic == MP_APIC_ALL)
1035 break;
1036
1037 if (!test_bit(lbus, mp_bus_not_pci) &&
1038 !mp_irqs[i].irqtype &&
1039 (bus == lbus) &&
1040 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1041 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1042
1043 if (!(apic || IO_APIC_IRQ(irq)))
1044 continue;
1045
1046 if (pin == (mp_irqs[i].srcbusirq & 3))
1047 return irq;
1048 /*
1049 * Use the first all-but-pin matching entry as a
1050 * best-guess fuzzy result for broken mptables.
1051 */
1052 if (best_guess < 0)
1053 best_guess = irq;
1054 }
1055 }
1056 return best_guess;
1057 }
1058
1059 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1060
1061 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1062 /*
1063 * EISA Edge/Level control register, ELCR
1064 */
1065 static int EISA_ELCR(unsigned int irq)
1066 {
1067 if (irq < NR_IRQS_LEGACY) {
1068 unsigned int port = 0x4d0 + (irq >> 3);
1069 return (inb(port) >> (irq & 7)) & 1;
1070 }
1071 apic_printk(APIC_VERBOSE, KERN_INFO
1072 "Broken MPtable reports ISA irq %d\n", irq);
1073 return 0;
1074 }
1075
1076 #endif
1077
1078 /* ISA interrupts are always polarity zero edge triggered,
1079 * when listed as conforming in the MP table. */
1080
1081 #define default_ISA_trigger(idx) (0)
1082 #define default_ISA_polarity(idx) (0)
1083
1084 /* EISA interrupts are always polarity zero and can be edge or level
1085 * trigger depending on the ELCR value. If an interrupt is listed as
1086 * EISA conforming in the MP table, that means its trigger type must
1087 * be read in from the ELCR */
1088
1089 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
1090 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
1091
1092 /* PCI interrupts are always polarity one level triggered,
1093 * when listed as conforming in the MP table. */
1094
1095 #define default_PCI_trigger(idx) (1)
1096 #define default_PCI_polarity(idx) (1)
1097
1098 /* MCA interrupts are always polarity zero level triggered,
1099 * when listed as conforming in the MP table. */
1100
1101 #define default_MCA_trigger(idx) (1)
1102 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
1103
1104 static int MPBIOS_polarity(int idx)
1105 {
1106 int bus = mp_irqs[idx].srcbus;
1107 int polarity;
1108
1109 /*
1110 * Determine IRQ line polarity (high active or low active):
1111 */
1112 switch (mp_irqs[idx].irqflag & 3)
1113 {
1114 case 0: /* conforms, ie. bus-type dependent polarity */
1115 if (test_bit(bus, mp_bus_not_pci))
1116 polarity = default_ISA_polarity(idx);
1117 else
1118 polarity = default_PCI_polarity(idx);
1119 break;
1120 case 1: /* high active */
1121 {
1122 polarity = 0;
1123 break;
1124 }
1125 case 2: /* reserved */
1126 {
1127 printk(KERN_WARNING "broken BIOS!!\n");
1128 polarity = 1;
1129 break;
1130 }
1131 case 3: /* low active */
1132 {
1133 polarity = 1;
1134 break;
1135 }
1136 default: /* invalid */
1137 {
1138 printk(KERN_WARNING "broken BIOS!!\n");
1139 polarity = 1;
1140 break;
1141 }
1142 }
1143 return polarity;
1144 }
1145
1146 static int MPBIOS_trigger(int idx)
1147 {
1148 int bus = mp_irqs[idx].srcbus;
1149 int trigger;
1150
1151 /*
1152 * Determine IRQ trigger mode (edge or level sensitive):
1153 */
1154 switch ((mp_irqs[idx].irqflag>>2) & 3)
1155 {
1156 case 0: /* conforms, ie. bus-type dependent */
1157 if (test_bit(bus, mp_bus_not_pci))
1158 trigger = default_ISA_trigger(idx);
1159 else
1160 trigger = default_PCI_trigger(idx);
1161 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1162 switch (mp_bus_id_to_type[bus]) {
1163 case MP_BUS_ISA: /* ISA pin */
1164 {
1165 /* set before the switch */
1166 break;
1167 }
1168 case MP_BUS_EISA: /* EISA pin */
1169 {
1170 trigger = default_EISA_trigger(idx);
1171 break;
1172 }
1173 case MP_BUS_PCI: /* PCI pin */
1174 {
1175 /* set before the switch */
1176 break;
1177 }
1178 case MP_BUS_MCA: /* MCA pin */
1179 {
1180 trigger = default_MCA_trigger(idx);
1181 break;
1182 }
1183 default:
1184 {
1185 printk(KERN_WARNING "broken BIOS!!\n");
1186 trigger = 1;
1187 break;
1188 }
1189 }
1190 #endif
1191 break;
1192 case 1: /* edge */
1193 {
1194 trigger = 0;
1195 break;
1196 }
1197 case 2: /* reserved */
1198 {
1199 printk(KERN_WARNING "broken BIOS!!\n");
1200 trigger = 1;
1201 break;
1202 }
1203 case 3: /* level */
1204 {
1205 trigger = 1;
1206 break;
1207 }
1208 default: /* invalid */
1209 {
1210 printk(KERN_WARNING "broken BIOS!!\n");
1211 trigger = 0;
1212 break;
1213 }
1214 }
1215 return trigger;
1216 }
1217
1218 static inline int irq_polarity(int idx)
1219 {
1220 return MPBIOS_polarity(idx);
1221 }
1222
1223 static inline int irq_trigger(int idx)
1224 {
1225 return MPBIOS_trigger(idx);
1226 }
1227
1228 int (*ioapic_renumber_irq)(int ioapic, int irq);
1229 static int pin_2_irq(int idx, int apic, int pin)
1230 {
1231 int irq, i;
1232 int bus = mp_irqs[idx].srcbus;
1233
1234 /*
1235 * Debugging check, we are in big trouble if this message pops up!
1236 */
1237 if (mp_irqs[idx].dstirq != pin)
1238 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1239
1240 if (test_bit(bus, mp_bus_not_pci)) {
1241 irq = mp_irqs[idx].srcbusirq;
1242 } else {
1243 /*
1244 * PCI IRQs are mapped in order
1245 */
1246 i = irq = 0;
1247 while (i < apic)
1248 irq += nr_ioapic_registers[i++];
1249 irq += pin;
1250 /*
1251 * For MPS mode, so far only needed by ES7000 platform
1252 */
1253 if (ioapic_renumber_irq)
1254 irq = ioapic_renumber_irq(apic, irq);
1255 }
1256
1257 #ifdef CONFIG_X86_32
1258 /*
1259 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1260 */
1261 if ((pin >= 16) && (pin <= 23)) {
1262 if (pirq_entries[pin-16] != -1) {
1263 if (!pirq_entries[pin-16]) {
1264 apic_printk(APIC_VERBOSE, KERN_DEBUG
1265 "disabling PIRQ%d\n", pin-16);
1266 } else {
1267 irq = pirq_entries[pin-16];
1268 apic_printk(APIC_VERBOSE, KERN_DEBUG
1269 "using PIRQ%d -> IRQ %d\n",
1270 pin-16, irq);
1271 }
1272 }
1273 }
1274 #endif
1275
1276 return irq;
1277 }
1278
1279 void lock_vector_lock(void)
1280 {
1281 /* Used to the online set of cpus does not change
1282 * during assign_irq_vector.
1283 */
1284 spin_lock(&vector_lock);
1285 }
1286
1287 void unlock_vector_lock(void)
1288 {
1289 spin_unlock(&vector_lock);
1290 }
1291
1292 static int
1293 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1294 {
1295 /*
1296 * NOTE! The local APIC isn't very good at handling
1297 * multiple interrupts at the same interrupt level.
1298 * As the interrupt level is determined by taking the
1299 * vector number and shifting that right by 4, we
1300 * want to spread these out a bit so that they don't
1301 * all fall in the same interrupt level.
1302 *
1303 * Also, we've got to be careful not to trash gate
1304 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1305 */
1306 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1307 unsigned int old_vector;
1308 int cpu, err;
1309 cpumask_var_t tmp_mask;
1310
1311 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1312 return -EBUSY;
1313
1314 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1315 return -ENOMEM;
1316
1317 old_vector = cfg->vector;
1318 if (old_vector) {
1319 cpumask_and(tmp_mask, mask, cpu_online_mask);
1320 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1321 if (!cpumask_empty(tmp_mask)) {
1322 free_cpumask_var(tmp_mask);
1323 return 0;
1324 }
1325 }
1326
1327 /* Only try and allocate irqs on cpus that are present */
1328 err = -ENOSPC;
1329 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1330 int new_cpu;
1331 int vector, offset;
1332
1333 apic->vector_allocation_domain(cpu, tmp_mask);
1334
1335 vector = current_vector;
1336 offset = current_offset;
1337 next:
1338 vector += 8;
1339 if (vector >= first_system_vector) {
1340 /* If out of vectors on large boxen, must share them. */
1341 offset = (offset + 1) % 8;
1342 vector = FIRST_DEVICE_VECTOR + offset;
1343 }
1344 if (unlikely(current_vector == vector))
1345 continue;
1346
1347 if (test_bit(vector, used_vectors))
1348 goto next;
1349
1350 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1351 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1352 goto next;
1353 /* Found one! */
1354 current_vector = vector;
1355 current_offset = offset;
1356 if (old_vector) {
1357 cfg->move_in_progress = 1;
1358 cpumask_copy(cfg->old_domain, cfg->domain);
1359 }
1360 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1361 per_cpu(vector_irq, new_cpu)[vector] = irq;
1362 cfg->vector = vector;
1363 cpumask_copy(cfg->domain, tmp_mask);
1364 err = 0;
1365 break;
1366 }
1367 free_cpumask_var(tmp_mask);
1368 return err;
1369 }
1370
1371 static int
1372 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1373 {
1374 int err;
1375 unsigned long flags;
1376
1377 spin_lock_irqsave(&vector_lock, flags);
1378 err = __assign_irq_vector(irq, cfg, mask);
1379 spin_unlock_irqrestore(&vector_lock, flags);
1380 return err;
1381 }
1382
1383 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1384 {
1385 int cpu, vector;
1386
1387 BUG_ON(!cfg->vector);
1388
1389 vector = cfg->vector;
1390 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1391 per_cpu(vector_irq, cpu)[vector] = -1;
1392
1393 cfg->vector = 0;
1394 cpumask_clear(cfg->domain);
1395
1396 if (likely(!cfg->move_in_progress))
1397 return;
1398 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1399 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1400 vector++) {
1401 if (per_cpu(vector_irq, cpu)[vector] != irq)
1402 continue;
1403 per_cpu(vector_irq, cpu)[vector] = -1;
1404 break;
1405 }
1406 }
1407 cfg->move_in_progress = 0;
1408 }
1409
1410 void __setup_vector_irq(int cpu)
1411 {
1412 /* Initialize vector_irq on a new cpu */
1413 /* This function must be called with vector_lock held */
1414 int irq, vector;
1415 struct irq_cfg *cfg;
1416 struct irq_desc *desc;
1417
1418 /* Mark the inuse vectors */
1419 for_each_irq_desc(irq, desc) {
1420 cfg = desc->chip_data;
1421 if (!cpumask_test_cpu(cpu, cfg->domain))
1422 continue;
1423 vector = cfg->vector;
1424 per_cpu(vector_irq, cpu)[vector] = irq;
1425 }
1426 /* Mark the free vectors */
1427 for (vector = 0; vector < NR_VECTORS; ++vector) {
1428 irq = per_cpu(vector_irq, cpu)[vector];
1429 if (irq < 0)
1430 continue;
1431
1432 cfg = irq_cfg(irq);
1433 if (!cpumask_test_cpu(cpu, cfg->domain))
1434 per_cpu(vector_irq, cpu)[vector] = -1;
1435 }
1436 }
1437
1438 static struct irq_chip ioapic_chip;
1439 static struct irq_chip ir_ioapic_chip;
1440
1441 #define IOAPIC_AUTO -1
1442 #define IOAPIC_EDGE 0
1443 #define IOAPIC_LEVEL 1
1444
1445 #ifdef CONFIG_X86_32
1446 static inline int IO_APIC_irq_trigger(int irq)
1447 {
1448 int apic, idx, pin;
1449
1450 for (apic = 0; apic < nr_ioapics; apic++) {
1451 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1452 idx = find_irq_entry(apic, pin, mp_INT);
1453 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1454 return irq_trigger(idx);
1455 }
1456 }
1457 /*
1458 * nonexistent IRQs are edge default
1459 */
1460 return 0;
1461 }
1462 #else
1463 static inline int IO_APIC_irq_trigger(int irq)
1464 {
1465 return 1;
1466 }
1467 #endif
1468
1469 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1470 {
1471
1472 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1473 trigger == IOAPIC_LEVEL)
1474 desc->status |= IRQ_LEVEL;
1475 else
1476 desc->status &= ~IRQ_LEVEL;
1477
1478 if (irq_remapped(irq)) {
1479 desc->status |= IRQ_MOVE_PCNTXT;
1480 if (trigger)
1481 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1482 handle_fasteoi_irq,
1483 "fasteoi");
1484 else
1485 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1486 handle_edge_irq, "edge");
1487 return;
1488 }
1489
1490 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1491 trigger == IOAPIC_LEVEL)
1492 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1493 handle_fasteoi_irq,
1494 "fasteoi");
1495 else
1496 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1497 handle_edge_irq, "edge");
1498 }
1499
1500 int setup_ioapic_entry(int apic_id, int irq,
1501 struct IO_APIC_route_entry *entry,
1502 unsigned int destination, int trigger,
1503 int polarity, int vector, int pin)
1504 {
1505 /*
1506 * add it to the IO-APIC irq-routing table:
1507 */
1508 memset(entry,0,sizeof(*entry));
1509
1510 if (intr_remapping_enabled) {
1511 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1512 struct irte irte;
1513 struct IR_IO_APIC_route_entry *ir_entry =
1514 (struct IR_IO_APIC_route_entry *) entry;
1515 int index;
1516
1517 if (!iommu)
1518 panic("No mapping iommu for ioapic %d\n", apic_id);
1519
1520 index = alloc_irte(iommu, irq, 1);
1521 if (index < 0)
1522 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1523
1524 memset(&irte, 0, sizeof(irte));
1525
1526 irte.present = 1;
1527 irte.dst_mode = apic->irq_dest_mode;
1528 /*
1529 * Trigger mode in the IRTE will always be edge, and the
1530 * actual level or edge trigger will be setup in the IO-APIC
1531 * RTE. This will help simplify level triggered irq migration.
1532 * For more details, see the comments above explainig IO-APIC
1533 * irq migration in the presence of interrupt-remapping.
1534 */
1535 irte.trigger_mode = 0;
1536 irte.dlvry_mode = apic->irq_delivery_mode;
1537 irte.vector = vector;
1538 irte.dest_id = IRTE_DEST(destination);
1539
1540 modify_irte(irq, &irte);
1541
1542 ir_entry->index2 = (index >> 15) & 0x1;
1543 ir_entry->zero = 0;
1544 ir_entry->format = 1;
1545 ir_entry->index = (index & 0x7fff);
1546 /*
1547 * IO-APIC RTE will be configured with virtual vector.
1548 * irq handler will do the explicit EOI to the io-apic.
1549 */
1550 ir_entry->vector = pin;
1551 } else {
1552 entry->delivery_mode = apic->irq_delivery_mode;
1553 entry->dest_mode = apic->irq_dest_mode;
1554 entry->dest = destination;
1555 entry->vector = vector;
1556 }
1557
1558 entry->mask = 0; /* enable IRQ */
1559 entry->trigger = trigger;
1560 entry->polarity = polarity;
1561
1562 /* Mask level triggered irqs.
1563 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1564 */
1565 if (trigger)
1566 entry->mask = 1;
1567 return 0;
1568 }
1569
1570 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1571 int trigger, int polarity)
1572 {
1573 struct irq_cfg *cfg;
1574 struct IO_APIC_route_entry entry;
1575 unsigned int dest;
1576
1577 if (!IO_APIC_IRQ(irq))
1578 return;
1579
1580 cfg = desc->chip_data;
1581
1582 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1583 return;
1584
1585 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1586
1587 apic_printk(APIC_VERBOSE,KERN_DEBUG
1588 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1589 "IRQ %d Mode:%i Active:%i)\n",
1590 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1591 irq, trigger, polarity);
1592
1593
1594 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1595 dest, trigger, polarity, cfg->vector, pin)) {
1596 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1597 mp_ioapics[apic_id].apicid, pin);
1598 __clear_irq_vector(irq, cfg);
1599 return;
1600 }
1601
1602 ioapic_register_intr(irq, desc, trigger);
1603 if (irq < NR_IRQS_LEGACY)
1604 disable_8259A_irq(irq);
1605
1606 ioapic_write_entry(apic_id, pin, entry);
1607 }
1608
1609 static void __init setup_IO_APIC_irqs(void)
1610 {
1611 int apic_id, pin, idx, irq;
1612 int notcon = 0;
1613 struct irq_desc *desc;
1614 struct irq_cfg *cfg;
1615 int cpu = boot_cpu_id;
1616
1617 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1618
1619 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1620 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1621
1622 idx = find_irq_entry(apic_id, pin, mp_INT);
1623 if (idx == -1) {
1624 if (!notcon) {
1625 notcon = 1;
1626 apic_printk(APIC_VERBOSE,
1627 KERN_DEBUG " %d-%d",
1628 mp_ioapics[apic_id].apicid, pin);
1629 } else
1630 apic_printk(APIC_VERBOSE, " %d-%d",
1631 mp_ioapics[apic_id].apicid, pin);
1632 continue;
1633 }
1634 if (notcon) {
1635 apic_printk(APIC_VERBOSE,
1636 " (apicid-pin) not connected\n");
1637 notcon = 0;
1638 }
1639
1640 irq = pin_2_irq(idx, apic_id, pin);
1641
1642 /*
1643 * Skip the timer IRQ if there's a quirk handler
1644 * installed and if it returns 1:
1645 */
1646 if (apic->multi_timer_check &&
1647 apic->multi_timer_check(apic_id, irq))
1648 continue;
1649
1650 desc = irq_to_desc_alloc_cpu(irq, cpu);
1651 if (!desc) {
1652 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1653 continue;
1654 }
1655 cfg = desc->chip_data;
1656 add_pin_to_irq_cpu(cfg, cpu, apic_id, pin);
1657
1658 setup_IO_APIC_irq(apic_id, pin, irq, desc,
1659 irq_trigger(idx), irq_polarity(idx));
1660 }
1661 }
1662
1663 if (notcon)
1664 apic_printk(APIC_VERBOSE,
1665 " (apicid-pin) not connected\n");
1666 }
1667
1668 /*
1669 * Set up the timer pin, possibly with the 8259A-master behind.
1670 */
1671 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1672 int vector)
1673 {
1674 struct IO_APIC_route_entry entry;
1675
1676 if (intr_remapping_enabled)
1677 return;
1678
1679 memset(&entry, 0, sizeof(entry));
1680
1681 /*
1682 * We use logical delivery to get the timer IRQ
1683 * to the first CPU.
1684 */
1685 entry.dest_mode = apic->irq_dest_mode;
1686 entry.mask = 0; /* don't mask IRQ for edge */
1687 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1688 entry.delivery_mode = apic->irq_delivery_mode;
1689 entry.polarity = 0;
1690 entry.trigger = 0;
1691 entry.vector = vector;
1692
1693 /*
1694 * The timer IRQ doesn't have to know that behind the
1695 * scene we may have a 8259A-master in AEOI mode ...
1696 */
1697 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1698
1699 /*
1700 * Add it to the IO-APIC irq-routing table:
1701 */
1702 ioapic_write_entry(apic_id, pin, entry);
1703 }
1704
1705
1706 __apicdebuginit(void) print_IO_APIC(void)
1707 {
1708 int apic, i;
1709 union IO_APIC_reg_00 reg_00;
1710 union IO_APIC_reg_01 reg_01;
1711 union IO_APIC_reg_02 reg_02;
1712 union IO_APIC_reg_03 reg_03;
1713 unsigned long flags;
1714 struct irq_cfg *cfg;
1715 struct irq_desc *desc;
1716 unsigned int irq;
1717
1718 if (apic_verbosity == APIC_QUIET)
1719 return;
1720
1721 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1722 for (i = 0; i < nr_ioapics; i++)
1723 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1724 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1725
1726 /*
1727 * We are a bit conservative about what we expect. We have to
1728 * know about every hardware change ASAP.
1729 */
1730 printk(KERN_INFO "testing the IO APIC.......................\n");
1731
1732 for (apic = 0; apic < nr_ioapics; apic++) {
1733
1734 spin_lock_irqsave(&ioapic_lock, flags);
1735 reg_00.raw = io_apic_read(apic, 0);
1736 reg_01.raw = io_apic_read(apic, 1);
1737 if (reg_01.bits.version >= 0x10)
1738 reg_02.raw = io_apic_read(apic, 2);
1739 if (reg_01.bits.version >= 0x20)
1740 reg_03.raw = io_apic_read(apic, 3);
1741 spin_unlock_irqrestore(&ioapic_lock, flags);
1742
1743 printk("\n");
1744 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1745 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1746 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1747 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1748 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1749
1750 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1751 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1752
1753 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1754 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1755
1756 /*
1757 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1758 * but the value of reg_02 is read as the previous read register
1759 * value, so ignore it if reg_02 == reg_01.
1760 */
1761 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1762 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1763 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1764 }
1765
1766 /*
1767 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1768 * or reg_03, but the value of reg_0[23] is read as the previous read
1769 * register value, so ignore it if reg_03 == reg_0[12].
1770 */
1771 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1772 reg_03.raw != reg_01.raw) {
1773 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1774 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1775 }
1776
1777 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1778
1779 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1780 " Stat Dmod Deli Vect: \n");
1781
1782 for (i = 0; i <= reg_01.bits.entries; i++) {
1783 struct IO_APIC_route_entry entry;
1784
1785 entry = ioapic_read_entry(apic, i);
1786
1787 printk(KERN_DEBUG " %02x %03X ",
1788 i,
1789 entry.dest
1790 );
1791
1792 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1793 entry.mask,
1794 entry.trigger,
1795 entry.irr,
1796 entry.polarity,
1797 entry.delivery_status,
1798 entry.dest_mode,
1799 entry.delivery_mode,
1800 entry.vector
1801 );
1802 }
1803 }
1804 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1805 for_each_irq_desc(irq, desc) {
1806 struct irq_pin_list *entry;
1807
1808 cfg = desc->chip_data;
1809 entry = cfg->irq_2_pin;
1810 if (!entry)
1811 continue;
1812 printk(KERN_DEBUG "IRQ%d ", irq);
1813 for (;;) {
1814 printk("-> %d:%d", entry->apic, entry->pin);
1815 if (!entry->next)
1816 break;
1817 entry = entry->next;
1818 }
1819 printk("\n");
1820 }
1821
1822 printk(KERN_INFO ".................................... done.\n");
1823
1824 return;
1825 }
1826
1827 __apicdebuginit(void) print_APIC_bitfield(int base)
1828 {
1829 unsigned int v;
1830 int i, j;
1831
1832 if (apic_verbosity == APIC_QUIET)
1833 return;
1834
1835 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1836 for (i = 0; i < 8; i++) {
1837 v = apic_read(base + i*0x10);
1838 for (j = 0; j < 32; j++) {
1839 if (v & (1<<j))
1840 printk("1");
1841 else
1842 printk("0");
1843 }
1844 printk("\n");
1845 }
1846 }
1847
1848 __apicdebuginit(void) print_local_APIC(void *dummy)
1849 {
1850 unsigned int v, ver, maxlvt;
1851 u64 icr;
1852
1853 if (apic_verbosity == APIC_QUIET)
1854 return;
1855
1856 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1857 smp_processor_id(), hard_smp_processor_id());
1858 v = apic_read(APIC_ID);
1859 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1860 v = apic_read(APIC_LVR);
1861 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1862 ver = GET_APIC_VERSION(v);
1863 maxlvt = lapic_get_maxlvt();
1864
1865 v = apic_read(APIC_TASKPRI);
1866 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1867
1868 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1869 if (!APIC_XAPIC(ver)) {
1870 v = apic_read(APIC_ARBPRI);
1871 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1872 v & APIC_ARBPRI_MASK);
1873 }
1874 v = apic_read(APIC_PROCPRI);
1875 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1876 }
1877
1878 /*
1879 * Remote read supported only in the 82489DX and local APIC for
1880 * Pentium processors.
1881 */
1882 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1883 v = apic_read(APIC_RRR);
1884 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1885 }
1886
1887 v = apic_read(APIC_LDR);
1888 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1889 if (!x2apic_enabled()) {
1890 v = apic_read(APIC_DFR);
1891 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1892 }
1893 v = apic_read(APIC_SPIV);
1894 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1895
1896 printk(KERN_DEBUG "... APIC ISR field:\n");
1897 print_APIC_bitfield(APIC_ISR);
1898 printk(KERN_DEBUG "... APIC TMR field:\n");
1899 print_APIC_bitfield(APIC_TMR);
1900 printk(KERN_DEBUG "... APIC IRR field:\n");
1901 print_APIC_bitfield(APIC_IRR);
1902
1903 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1904 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1905 apic_write(APIC_ESR, 0);
1906
1907 v = apic_read(APIC_ESR);
1908 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1909 }
1910
1911 icr = apic_icr_read();
1912 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1913 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1914
1915 v = apic_read(APIC_LVTT);
1916 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1917
1918 if (maxlvt > 3) { /* PC is LVT#4. */
1919 v = apic_read(APIC_LVTPC);
1920 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1921 }
1922 v = apic_read(APIC_LVT0);
1923 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1924 v = apic_read(APIC_LVT1);
1925 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1926
1927 if (maxlvt > 2) { /* ERR is LVT#3. */
1928 v = apic_read(APIC_LVTERR);
1929 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1930 }
1931
1932 v = apic_read(APIC_TMICT);
1933 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1934 v = apic_read(APIC_TMCCT);
1935 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1936 v = apic_read(APIC_TDCR);
1937 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1938 printk("\n");
1939 }
1940
1941 __apicdebuginit(void) print_all_local_APICs(void)
1942 {
1943 int cpu;
1944
1945 preempt_disable();
1946 for_each_online_cpu(cpu)
1947 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1948 preempt_enable();
1949 }
1950
1951 __apicdebuginit(void) print_PIC(void)
1952 {
1953 unsigned int v;
1954 unsigned long flags;
1955
1956 if (apic_verbosity == APIC_QUIET)
1957 return;
1958
1959 printk(KERN_DEBUG "\nprinting PIC contents\n");
1960
1961 spin_lock_irqsave(&i8259A_lock, flags);
1962
1963 v = inb(0xa1) << 8 | inb(0x21);
1964 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1965
1966 v = inb(0xa0) << 8 | inb(0x20);
1967 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1968
1969 outb(0x0b,0xa0);
1970 outb(0x0b,0x20);
1971 v = inb(0xa0) << 8 | inb(0x20);
1972 outb(0x0a,0xa0);
1973 outb(0x0a,0x20);
1974
1975 spin_unlock_irqrestore(&i8259A_lock, flags);
1976
1977 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1978
1979 v = inb(0x4d1) << 8 | inb(0x4d0);
1980 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1981 }
1982
1983 __apicdebuginit(int) print_all_ICs(void)
1984 {
1985 print_PIC();
1986 print_all_local_APICs();
1987 print_IO_APIC();
1988
1989 return 0;
1990 }
1991
1992 fs_initcall(print_all_ICs);
1993
1994
1995 /* Where if anywhere is the i8259 connect in external int mode */
1996 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1997
1998 void __init enable_IO_APIC(void)
1999 {
2000 union IO_APIC_reg_01 reg_01;
2001 int i8259_apic, i8259_pin;
2002 int apic;
2003 unsigned long flags;
2004
2005 /*
2006 * The number of IO-APIC IRQ registers (== #pins):
2007 */
2008 for (apic = 0; apic < nr_ioapics; apic++) {
2009 spin_lock_irqsave(&ioapic_lock, flags);
2010 reg_01.raw = io_apic_read(apic, 1);
2011 spin_unlock_irqrestore(&ioapic_lock, flags);
2012 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
2013 }
2014 for(apic = 0; apic < nr_ioapics; apic++) {
2015 int pin;
2016 /* See if any of the pins is in ExtINT mode */
2017 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
2018 struct IO_APIC_route_entry entry;
2019 entry = ioapic_read_entry(apic, pin);
2020
2021 /* If the interrupt line is enabled and in ExtInt mode
2022 * I have found the pin where the i8259 is connected.
2023 */
2024 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
2025 ioapic_i8259.apic = apic;
2026 ioapic_i8259.pin = pin;
2027 goto found_i8259;
2028 }
2029 }
2030 }
2031 found_i8259:
2032 /* Look to see what if the MP table has reported the ExtINT */
2033 /* If we could not find the appropriate pin by looking at the ioapic
2034 * the i8259 probably is not connected the ioapic but give the
2035 * mptable a chance anyway.
2036 */
2037 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
2038 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
2039 /* Trust the MP table if nothing is setup in the hardware */
2040 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
2041 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
2042 ioapic_i8259.pin = i8259_pin;
2043 ioapic_i8259.apic = i8259_apic;
2044 }
2045 /* Complain if the MP table and the hardware disagree */
2046 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
2047 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
2048 {
2049 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2050 }
2051
2052 /*
2053 * Do not trust the IO-APIC being empty at bootup
2054 */
2055 clear_IO_APIC();
2056 }
2057
2058 /*
2059 * Not an __init, needed by the reboot code
2060 */
2061 void disable_IO_APIC(void)
2062 {
2063 /*
2064 * Clear the IO-APIC before rebooting:
2065 */
2066 clear_IO_APIC();
2067
2068 /*
2069 * If the i8259 is routed through an IOAPIC
2070 * Put that IOAPIC in virtual wire mode
2071 * so legacy interrupts can be delivered.
2072 *
2073 * With interrupt-remapping, for now we will use virtual wire A mode,
2074 * as virtual wire B is little complex (need to configure both
2075 * IOAPIC RTE aswell as interrupt-remapping table entry).
2076 * As this gets called during crash dump, keep this simple for now.
2077 */
2078 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
2079 struct IO_APIC_route_entry entry;
2080
2081 memset(&entry, 0, sizeof(entry));
2082 entry.mask = 0; /* Enabled */
2083 entry.trigger = 0; /* Edge */
2084 entry.irr = 0;
2085 entry.polarity = 0; /* High */
2086 entry.delivery_status = 0;
2087 entry.dest_mode = 0; /* Physical */
2088 entry.delivery_mode = dest_ExtINT; /* ExtInt */
2089 entry.vector = 0;
2090 entry.dest = read_apic_id();
2091
2092 /*
2093 * Add it to the IO-APIC irq-routing table:
2094 */
2095 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2096 }
2097
2098 /*
2099 * Use virtual wire A mode when interrupt remapping is enabled.
2100 */
2101 disconnect_bsp_APIC(!intr_remapping_enabled && ioapic_i8259.pin != -1);
2102 }
2103
2104 #ifdef CONFIG_X86_32
2105 /*
2106 * function to set the IO-APIC physical IDs based on the
2107 * values stored in the MPC table.
2108 *
2109 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
2110 */
2111
2112 static void __init setup_ioapic_ids_from_mpc(void)
2113 {
2114 union IO_APIC_reg_00 reg_00;
2115 physid_mask_t phys_id_present_map;
2116 int apic_id;
2117 int i;
2118 unsigned char old_id;
2119 unsigned long flags;
2120
2121 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2122 return;
2123
2124 /*
2125 * Don't check I/O APIC IDs for xAPIC systems. They have
2126 * no meaning without the serial APIC bus.
2127 */
2128 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2129 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2130 return;
2131 /*
2132 * This is broken; anything with a real cpu count has to
2133 * circumvent this idiocy regardless.
2134 */
2135 phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2136
2137 /*
2138 * Set the IOAPIC ID to the value stored in the MPC table.
2139 */
2140 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2141
2142 /* Read the register 0 value */
2143 spin_lock_irqsave(&ioapic_lock, flags);
2144 reg_00.raw = io_apic_read(apic_id, 0);
2145 spin_unlock_irqrestore(&ioapic_lock, flags);
2146
2147 old_id = mp_ioapics[apic_id].apicid;
2148
2149 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2150 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2151 apic_id, mp_ioapics[apic_id].apicid);
2152 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2153 reg_00.bits.ID);
2154 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2155 }
2156
2157 /*
2158 * Sanity check, is the ID really free? Every APIC in a
2159 * system must have a unique ID or we get lots of nice
2160 * 'stuck on smp_invalidate_needed IPI wait' messages.
2161 */
2162 if (apic->check_apicid_used(phys_id_present_map,
2163 mp_ioapics[apic_id].apicid)) {
2164 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2165 apic_id, mp_ioapics[apic_id].apicid);
2166 for (i = 0; i < get_physical_broadcast(); i++)
2167 if (!physid_isset(i, phys_id_present_map))
2168 break;
2169 if (i >= get_physical_broadcast())
2170 panic("Max APIC ID exceeded!\n");
2171 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2172 i);
2173 physid_set(i, phys_id_present_map);
2174 mp_ioapics[apic_id].apicid = i;
2175 } else {
2176 physid_mask_t tmp;
2177 tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2178 apic_printk(APIC_VERBOSE, "Setting %d in the "
2179 "phys_id_present_map\n",
2180 mp_ioapics[apic_id].apicid);
2181 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2182 }
2183
2184
2185 /*
2186 * We need to adjust the IRQ routing table
2187 * if the ID changed.
2188 */
2189 if (old_id != mp_ioapics[apic_id].apicid)
2190 for (i = 0; i < mp_irq_entries; i++)
2191 if (mp_irqs[i].dstapic == old_id)
2192 mp_irqs[i].dstapic
2193 = mp_ioapics[apic_id].apicid;
2194
2195 /*
2196 * Read the right value from the MPC table and
2197 * write it into the ID register.
2198 */
2199 apic_printk(APIC_VERBOSE, KERN_INFO
2200 "...changing IO-APIC physical APIC ID to %d ...",
2201 mp_ioapics[apic_id].apicid);
2202
2203 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2204 spin_lock_irqsave(&ioapic_lock, flags);
2205 io_apic_write(apic_id, 0, reg_00.raw);
2206 spin_unlock_irqrestore(&ioapic_lock, flags);
2207
2208 /*
2209 * Sanity check
2210 */
2211 spin_lock_irqsave(&ioapic_lock, flags);
2212 reg_00.raw = io_apic_read(apic_id, 0);
2213 spin_unlock_irqrestore(&ioapic_lock, flags);
2214 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2215 printk("could not set ID!\n");
2216 else
2217 apic_printk(APIC_VERBOSE, " ok.\n");
2218 }
2219 }
2220 #endif
2221
2222 int no_timer_check __initdata;
2223
2224 static int __init notimercheck(char *s)
2225 {
2226 no_timer_check = 1;
2227 return 1;
2228 }
2229 __setup("no_timer_check", notimercheck);
2230
2231 /*
2232 * There is a nasty bug in some older SMP boards, their mptable lies
2233 * about the timer IRQ. We do the following to work around the situation:
2234 *
2235 * - timer IRQ defaults to IO-APIC IRQ
2236 * - if this function detects that timer IRQs are defunct, then we fall
2237 * back to ISA timer IRQs
2238 */
2239 static int __init timer_irq_works(void)
2240 {
2241 unsigned long t1 = jiffies;
2242 unsigned long flags;
2243
2244 if (no_timer_check)
2245 return 1;
2246
2247 local_save_flags(flags);
2248 local_irq_enable();
2249 /* Let ten ticks pass... */
2250 mdelay((10 * 1000) / HZ);
2251 local_irq_restore(flags);
2252
2253 /*
2254 * Expect a few ticks at least, to be sure some possible
2255 * glue logic does not lock up after one or two first
2256 * ticks in a non-ExtINT mode. Also the local APIC
2257 * might have cached one ExtINT interrupt. Finally, at
2258 * least one tick may be lost due to delays.
2259 */
2260
2261 /* jiffies wrap? */
2262 if (time_after(jiffies, t1 + 4))
2263 return 1;
2264 return 0;
2265 }
2266
2267 /*
2268 * In the SMP+IOAPIC case it might happen that there are an unspecified
2269 * number of pending IRQ events unhandled. These cases are very rare,
2270 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2271 * better to do it this way as thus we do not have to be aware of
2272 * 'pending' interrupts in the IRQ path, except at this point.
2273 */
2274 /*
2275 * Edge triggered needs to resend any interrupt
2276 * that was delayed but this is now handled in the device
2277 * independent code.
2278 */
2279
2280 /*
2281 * Starting up a edge-triggered IO-APIC interrupt is
2282 * nasty - we need to make sure that we get the edge.
2283 * If it is already asserted for some reason, we need
2284 * return 1 to indicate that is was pending.
2285 *
2286 * This is not complete - we should be able to fake
2287 * an edge even if it isn't on the 8259A...
2288 */
2289
2290 static unsigned int startup_ioapic_irq(unsigned int irq)
2291 {
2292 int was_pending = 0;
2293 unsigned long flags;
2294 struct irq_cfg *cfg;
2295
2296 spin_lock_irqsave(&ioapic_lock, flags);
2297 if (irq < NR_IRQS_LEGACY) {
2298 disable_8259A_irq(irq);
2299 if (i8259A_irq_pending(irq))
2300 was_pending = 1;
2301 }
2302 cfg = irq_cfg(irq);
2303 __unmask_IO_APIC_irq(cfg);
2304 spin_unlock_irqrestore(&ioapic_lock, flags);
2305
2306 return was_pending;
2307 }
2308
2309 #ifdef CONFIG_X86_64
2310 static int ioapic_retrigger_irq(unsigned int irq)
2311 {
2312
2313 struct irq_cfg *cfg = irq_cfg(irq);
2314 unsigned long flags;
2315
2316 spin_lock_irqsave(&vector_lock, flags);
2317 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2318 spin_unlock_irqrestore(&vector_lock, flags);
2319
2320 return 1;
2321 }
2322 #else
2323 static int ioapic_retrigger_irq(unsigned int irq)
2324 {
2325 apic->send_IPI_self(irq_cfg(irq)->vector);
2326
2327 return 1;
2328 }
2329 #endif
2330
2331 /*
2332 * Level and edge triggered IO-APIC interrupts need different handling,
2333 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2334 * handled with the level-triggered descriptor, but that one has slightly
2335 * more overhead. Level-triggered interrupts cannot be handled with the
2336 * edge-triggered handler, without risking IRQ storms and other ugly
2337 * races.
2338 */
2339
2340 #ifdef CONFIG_SMP
2341
2342 #ifdef CONFIG_INTR_REMAP
2343
2344 /*
2345 * Migrate the IO-APIC irq in the presence of intr-remapping.
2346 *
2347 * For both level and edge triggered, irq migration is a simple atomic
2348 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2349 *
2350 * For level triggered, we eliminate the io-apic RTE modification (with the
2351 * updated vector information), by using a virtual vector (io-apic pin number).
2352 * Real vector that is used for interrupting cpu will be coming from
2353 * the interrupt-remapping table entry.
2354 */
2355 static int
2356 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2357 {
2358 struct irq_cfg *cfg;
2359 struct irte irte;
2360 unsigned int dest;
2361 unsigned int irq;
2362 int ret = -1;
2363
2364 if (!cpumask_intersects(mask, cpu_online_mask))
2365 return ret;
2366
2367 irq = desc->irq;
2368 if (get_irte(irq, &irte))
2369 return ret;
2370
2371 cfg = desc->chip_data;
2372 if (assign_irq_vector(irq, cfg, mask))
2373 return ret;
2374
2375 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2376
2377 irte.vector = cfg->vector;
2378 irte.dest_id = IRTE_DEST(dest);
2379
2380 /*
2381 * Modified the IRTE and flushes the Interrupt entry cache.
2382 */
2383 modify_irte(irq, &irte);
2384
2385 if (cfg->move_in_progress)
2386 send_cleanup_vector(cfg);
2387
2388 cpumask_copy(desc->affinity, mask);
2389
2390 return 0;
2391 }
2392
2393 /*
2394 * Migrates the IRQ destination in the process context.
2395 */
2396 static int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2397 const struct cpumask *mask)
2398 {
2399 return migrate_ioapic_irq_desc(desc, mask);
2400 }
2401 static int set_ir_ioapic_affinity_irq(unsigned int irq,
2402 const struct cpumask *mask)
2403 {
2404 struct irq_desc *desc = irq_to_desc(irq);
2405
2406 return set_ir_ioapic_affinity_irq_desc(desc, mask);
2407 }
2408 #else
2409 static inline int set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2410 const struct cpumask *mask)
2411 {
2412 return 0;
2413 }
2414 #endif
2415
2416 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2417 {
2418 unsigned vector, me;
2419
2420 ack_APIC_irq();
2421 exit_idle();
2422 irq_enter();
2423
2424 me = smp_processor_id();
2425 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2426 unsigned int irq;
2427 unsigned int irr;
2428 struct irq_desc *desc;
2429 struct irq_cfg *cfg;
2430 irq = __get_cpu_var(vector_irq)[vector];
2431
2432 if (irq == -1)
2433 continue;
2434
2435 desc = irq_to_desc(irq);
2436 if (!desc)
2437 continue;
2438
2439 cfg = irq_cfg(irq);
2440 spin_lock(&desc->lock);
2441 if (!cfg->move_cleanup_count)
2442 goto unlock;
2443
2444 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2445 goto unlock;
2446
2447 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2448 /*
2449 * Check if the vector that needs to be cleanedup is
2450 * registered at the cpu's IRR. If so, then this is not
2451 * the best time to clean it up. Lets clean it up in the
2452 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2453 * to myself.
2454 */
2455 if (irr & (1 << (vector % 32))) {
2456 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2457 goto unlock;
2458 }
2459 __get_cpu_var(vector_irq)[vector] = -1;
2460 cfg->move_cleanup_count--;
2461 unlock:
2462 spin_unlock(&desc->lock);
2463 }
2464
2465 irq_exit();
2466 }
2467
2468 static void irq_complete_move(struct irq_desc **descp)
2469 {
2470 struct irq_desc *desc = *descp;
2471 struct irq_cfg *cfg = desc->chip_data;
2472 unsigned vector, me;
2473
2474 if (likely(!cfg->move_in_progress))
2475 return;
2476
2477 vector = ~get_irq_regs()->orig_ax;
2478 me = smp_processor_id();
2479
2480 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2481 send_cleanup_vector(cfg);
2482 }
2483 #else
2484 static inline void irq_complete_move(struct irq_desc **descp) {}
2485 #endif
2486
2487 static void __eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2488 {
2489 int apic, pin;
2490 struct irq_pin_list *entry;
2491
2492 entry = cfg->irq_2_pin;
2493 for (;;) {
2494
2495 if (!entry)
2496 break;
2497
2498 apic = entry->apic;
2499 pin = entry->pin;
2500 io_apic_eoi(apic, pin);
2501 entry = entry->next;
2502 }
2503 }
2504
2505 static void
2506 eoi_ioapic_irq(struct irq_desc *desc)
2507 {
2508 struct irq_cfg *cfg;
2509 unsigned long flags;
2510 unsigned int irq;
2511
2512 irq = desc->irq;
2513 cfg = desc->chip_data;
2514
2515 spin_lock_irqsave(&ioapic_lock, flags);
2516 __eoi_ioapic_irq(irq, cfg);
2517 spin_unlock_irqrestore(&ioapic_lock, flags);
2518 }
2519
2520 #ifdef CONFIG_X86_X2APIC
2521 static void ack_x2apic_level(unsigned int irq)
2522 {
2523 struct irq_desc *desc = irq_to_desc(irq);
2524 ack_x2APIC_irq();
2525 eoi_ioapic_irq(desc);
2526 }
2527
2528 static void ack_x2apic_edge(unsigned int irq)
2529 {
2530 ack_x2APIC_irq();
2531 }
2532 #endif
2533
2534 static void ack_apic_edge(unsigned int irq)
2535 {
2536 struct irq_desc *desc = irq_to_desc(irq);
2537
2538 irq_complete_move(&desc);
2539 move_native_irq(irq);
2540 ack_APIC_irq();
2541 }
2542
2543 atomic_t irq_mis_count;
2544
2545 static void ack_apic_level(unsigned int irq)
2546 {
2547 struct irq_desc *desc = irq_to_desc(irq);
2548
2549 #ifdef CONFIG_X86_32
2550 unsigned long v;
2551 int i;
2552 #endif
2553 struct irq_cfg *cfg;
2554 int do_unmask_irq = 0;
2555
2556 irq_complete_move(&desc);
2557 #ifdef CONFIG_GENERIC_PENDING_IRQ
2558 /* If we are moving the irq we need to mask it */
2559 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2560 do_unmask_irq = 1;
2561 mask_IO_APIC_irq_desc(desc);
2562 }
2563 #endif
2564
2565 #ifdef CONFIG_X86_32
2566 /*
2567 * It appears there is an erratum which affects at least version 0x11
2568 * of I/O APIC (that's the 82093AA and cores integrated into various
2569 * chipsets). Under certain conditions a level-triggered interrupt is
2570 * erroneously delivered as edge-triggered one but the respective IRR
2571 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2572 * message but it will never arrive and further interrupts are blocked
2573 * from the source. The exact reason is so far unknown, but the
2574 * phenomenon was observed when two consecutive interrupt requests
2575 * from a given source get delivered to the same CPU and the source is
2576 * temporarily disabled in between.
2577 *
2578 * A workaround is to simulate an EOI message manually. We achieve it
2579 * by setting the trigger mode to edge and then to level when the edge
2580 * trigger mode gets detected in the TMR of a local APIC for a
2581 * level-triggered interrupt. We mask the source for the time of the
2582 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2583 * The idea is from Manfred Spraul. --macro
2584 */
2585 cfg = desc->chip_data;
2586 i = cfg->vector;
2587
2588 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2589 #endif
2590
2591 /*
2592 * We must acknowledge the irq before we move it or the acknowledge will
2593 * not propagate properly.
2594 */
2595 ack_APIC_irq();
2596
2597 if (irq_remapped(irq))
2598 eoi_ioapic_irq(desc);
2599
2600 /* Now we can move and renable the irq */
2601 if (unlikely(do_unmask_irq)) {
2602 /* Only migrate the irq if the ack has been received.
2603 *
2604 * On rare occasions the broadcast level triggered ack gets
2605 * delayed going to ioapics, and if we reprogram the
2606 * vector while Remote IRR is still set the irq will never
2607 * fire again.
2608 *
2609 * To prevent this scenario we read the Remote IRR bit
2610 * of the ioapic. This has two effects.
2611 * - On any sane system the read of the ioapic will
2612 * flush writes (and acks) going to the ioapic from
2613 * this cpu.
2614 * - We get to see if the ACK has actually been delivered.
2615 *
2616 * Based on failed experiments of reprogramming the
2617 * ioapic entry from outside of irq context starting
2618 * with masking the ioapic entry and then polling until
2619 * Remote IRR was clear before reprogramming the
2620 * ioapic I don't trust the Remote IRR bit to be
2621 * completey accurate.
2622 *
2623 * However there appears to be no other way to plug
2624 * this race, so if the Remote IRR bit is not
2625 * accurate and is causing problems then it is a hardware bug
2626 * and you can go talk to the chipset vendor about it.
2627 */
2628 cfg = desc->chip_data;
2629 if (!io_apic_level_ack_pending(cfg))
2630 move_masked_irq(irq);
2631 unmask_IO_APIC_irq_desc(desc);
2632 }
2633
2634 #ifdef CONFIG_X86_32
2635 if (!(v & (1 << (i & 0x1f)))) {
2636 atomic_inc(&irq_mis_count);
2637 spin_lock(&ioapic_lock);
2638 __mask_and_edge_IO_APIC_irq(cfg);
2639 __unmask_and_level_IO_APIC_irq(cfg);
2640 spin_unlock(&ioapic_lock);
2641 }
2642 #endif
2643 }
2644
2645 #ifdef CONFIG_INTR_REMAP
2646 static void ir_ack_apic_edge(unsigned int irq)
2647 {
2648 #ifdef CONFIG_X86_X2APIC
2649 if (x2apic_enabled())
2650 return ack_x2apic_edge(irq);
2651 #endif
2652 return ack_apic_edge(irq);
2653 }
2654
2655 static void ir_ack_apic_level(unsigned int irq)
2656 {
2657 #ifdef CONFIG_X86_X2APIC
2658 if (x2apic_enabled())
2659 return ack_x2apic_level(irq);
2660 #endif
2661 return ack_apic_level(irq);
2662 }
2663 #endif /* CONFIG_INTR_REMAP */
2664
2665 static struct irq_chip ioapic_chip __read_mostly = {
2666 .name = "IO-APIC",
2667 .startup = startup_ioapic_irq,
2668 .mask = mask_IO_APIC_irq,
2669 .unmask = unmask_IO_APIC_irq,
2670 .ack = ack_apic_edge,
2671 .eoi = ack_apic_level,
2672 #ifdef CONFIG_SMP
2673 .set_affinity = set_ioapic_affinity_irq,
2674 #endif
2675 .retrigger = ioapic_retrigger_irq,
2676 };
2677
2678 static struct irq_chip ir_ioapic_chip __read_mostly = {
2679 .name = "IR-IO-APIC",
2680 .startup = startup_ioapic_irq,
2681 .mask = mask_IO_APIC_irq,
2682 .unmask = unmask_IO_APIC_irq,
2683 #ifdef CONFIG_INTR_REMAP
2684 .ack = ir_ack_apic_edge,
2685 .eoi = ir_ack_apic_level,
2686 #ifdef CONFIG_SMP
2687 .set_affinity = set_ir_ioapic_affinity_irq,
2688 #endif
2689 #endif
2690 .retrigger = ioapic_retrigger_irq,
2691 };
2692
2693 static inline void init_IO_APIC_traps(void)
2694 {
2695 int irq;
2696 struct irq_desc *desc;
2697 struct irq_cfg *cfg;
2698
2699 /*
2700 * NOTE! The local APIC isn't very good at handling
2701 * multiple interrupts at the same interrupt level.
2702 * As the interrupt level is determined by taking the
2703 * vector number and shifting that right by 4, we
2704 * want to spread these out a bit so that they don't
2705 * all fall in the same interrupt level.
2706 *
2707 * Also, we've got to be careful not to trash gate
2708 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2709 */
2710 for_each_irq_desc(irq, desc) {
2711 cfg = desc->chip_data;
2712 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2713 /*
2714 * Hmm.. We don't have an entry for this,
2715 * so default to an old-fashioned 8259
2716 * interrupt if we can..
2717 */
2718 if (irq < NR_IRQS_LEGACY)
2719 make_8259A_irq(irq);
2720 else
2721 /* Strange. Oh, well.. */
2722 desc->chip = &no_irq_chip;
2723 }
2724 }
2725 }
2726
2727 /*
2728 * The local APIC irq-chip implementation:
2729 */
2730
2731 static void mask_lapic_irq(unsigned int irq)
2732 {
2733 unsigned long v;
2734
2735 v = apic_read(APIC_LVT0);
2736 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2737 }
2738
2739 static void unmask_lapic_irq(unsigned int irq)
2740 {
2741 unsigned long v;
2742
2743 v = apic_read(APIC_LVT0);
2744 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2745 }
2746
2747 static void ack_lapic_irq(unsigned int irq)
2748 {
2749 ack_APIC_irq();
2750 }
2751
2752 static struct irq_chip lapic_chip __read_mostly = {
2753 .name = "local-APIC",
2754 .mask = mask_lapic_irq,
2755 .unmask = unmask_lapic_irq,
2756 .ack = ack_lapic_irq,
2757 };
2758
2759 static void lapic_register_intr(int irq, struct irq_desc *desc)
2760 {
2761 desc->status &= ~IRQ_LEVEL;
2762 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2763 "edge");
2764 }
2765
2766 static void __init setup_nmi(void)
2767 {
2768 /*
2769 * Dirty trick to enable the NMI watchdog ...
2770 * We put the 8259A master into AEOI mode and
2771 * unmask on all local APICs LVT0 as NMI.
2772 *
2773 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2774 * is from Maciej W. Rozycki - so we do not have to EOI from
2775 * the NMI handler or the timer interrupt.
2776 */
2777 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2778
2779 enable_NMI_through_LVT0();
2780
2781 apic_printk(APIC_VERBOSE, " done.\n");
2782 }
2783
2784 /*
2785 * This looks a bit hackish but it's about the only one way of sending
2786 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2787 * not support the ExtINT mode, unfortunately. We need to send these
2788 * cycles as some i82489DX-based boards have glue logic that keeps the
2789 * 8259A interrupt line asserted until INTA. --macro
2790 */
2791 static inline void __init unlock_ExtINT_logic(void)
2792 {
2793 int apic, pin, i;
2794 struct IO_APIC_route_entry entry0, entry1;
2795 unsigned char save_control, save_freq_select;
2796
2797 pin = find_isa_irq_pin(8, mp_INT);
2798 if (pin == -1) {
2799 WARN_ON_ONCE(1);
2800 return;
2801 }
2802 apic = find_isa_irq_apic(8, mp_INT);
2803 if (apic == -1) {
2804 WARN_ON_ONCE(1);
2805 return;
2806 }
2807
2808 entry0 = ioapic_read_entry(apic, pin);
2809 clear_IO_APIC_pin(apic, pin);
2810
2811 memset(&entry1, 0, sizeof(entry1));
2812
2813 entry1.dest_mode = 0; /* physical delivery */
2814 entry1.mask = 0; /* unmask IRQ now */
2815 entry1.dest = hard_smp_processor_id();
2816 entry1.delivery_mode = dest_ExtINT;
2817 entry1.polarity = entry0.polarity;
2818 entry1.trigger = 0;
2819 entry1.vector = 0;
2820
2821 ioapic_write_entry(apic, pin, entry1);
2822
2823 save_control = CMOS_READ(RTC_CONTROL);
2824 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2825 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2826 RTC_FREQ_SELECT);
2827 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2828
2829 i = 100;
2830 while (i-- > 0) {
2831 mdelay(10);
2832 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2833 i -= 10;
2834 }
2835
2836 CMOS_WRITE(save_control, RTC_CONTROL);
2837 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2838 clear_IO_APIC_pin(apic, pin);
2839
2840 ioapic_write_entry(apic, pin, entry0);
2841 }
2842
2843 static int disable_timer_pin_1 __initdata;
2844 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2845 static int __init disable_timer_pin_setup(char *arg)
2846 {
2847 disable_timer_pin_1 = 1;
2848 return 0;
2849 }
2850 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2851
2852 int timer_through_8259 __initdata;
2853
2854 /*
2855 * This code may look a bit paranoid, but it's supposed to cooperate with
2856 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2857 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2858 * fanatically on his truly buggy board.
2859 *
2860 * FIXME: really need to revamp this for all platforms.
2861 */
2862 static inline void __init check_timer(void)
2863 {
2864 struct irq_desc *desc = irq_to_desc(0);
2865 struct irq_cfg *cfg = desc->chip_data;
2866 int cpu = boot_cpu_id;
2867 int apic1, pin1, apic2, pin2;
2868 unsigned long flags;
2869 int no_pin1 = 0;
2870
2871 local_irq_save(flags);
2872
2873 /*
2874 * get/set the timer IRQ vector:
2875 */
2876 disable_8259A_irq(0);
2877 assign_irq_vector(0, cfg, apic->target_cpus());
2878
2879 /*
2880 * As IRQ0 is to be enabled in the 8259A, the virtual
2881 * wire has to be disabled in the local APIC. Also
2882 * timer interrupts need to be acknowledged manually in
2883 * the 8259A for the i82489DX when using the NMI
2884 * watchdog as that APIC treats NMIs as level-triggered.
2885 * The AEOI mode will finish them in the 8259A
2886 * automatically.
2887 */
2888 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2889 init_8259A(1);
2890 #ifdef CONFIG_X86_32
2891 {
2892 unsigned int ver;
2893
2894 ver = apic_read(APIC_LVR);
2895 ver = GET_APIC_VERSION(ver);
2896 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2897 }
2898 #endif
2899
2900 pin1 = find_isa_irq_pin(0, mp_INT);
2901 apic1 = find_isa_irq_apic(0, mp_INT);
2902 pin2 = ioapic_i8259.pin;
2903 apic2 = ioapic_i8259.apic;
2904
2905 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2906 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2907 cfg->vector, apic1, pin1, apic2, pin2);
2908
2909 /*
2910 * Some BIOS writers are clueless and report the ExtINTA
2911 * I/O APIC input from the cascaded 8259A as the timer
2912 * interrupt input. So just in case, if only one pin
2913 * was found above, try it both directly and through the
2914 * 8259A.
2915 */
2916 if (pin1 == -1) {
2917 if (intr_remapping_enabled)
2918 panic("BIOS bug: timer not connected to IO-APIC");
2919 pin1 = pin2;
2920 apic1 = apic2;
2921 no_pin1 = 1;
2922 } else if (pin2 == -1) {
2923 pin2 = pin1;
2924 apic2 = apic1;
2925 }
2926
2927 if (pin1 != -1) {
2928 /*
2929 * Ok, does IRQ0 through the IOAPIC work?
2930 */
2931 if (no_pin1) {
2932 add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2933 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2934 } else {
2935 /* for edge trigger, setup_IO_APIC_irq already
2936 * leave it unmasked.
2937 * so only need to unmask if it is level-trigger
2938 * do we really have level trigger timer?
2939 */
2940 int idx;
2941 idx = find_irq_entry(apic1, pin1, mp_INT);
2942 if (idx != -1 && irq_trigger(idx))
2943 unmask_IO_APIC_irq_desc(desc);
2944 }
2945 if (timer_irq_works()) {
2946 if (nmi_watchdog == NMI_IO_APIC) {
2947 setup_nmi();
2948 enable_8259A_irq(0);
2949 }
2950 if (disable_timer_pin_1 > 0)
2951 clear_IO_APIC_pin(0, pin1);
2952 goto out;
2953 }
2954 if (intr_remapping_enabled)
2955 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2956 local_irq_disable();
2957 clear_IO_APIC_pin(apic1, pin1);
2958 if (!no_pin1)
2959 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2960 "8254 timer not connected to IO-APIC\n");
2961
2962 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2963 "(IRQ0) through the 8259A ...\n");
2964 apic_printk(APIC_QUIET, KERN_INFO
2965 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2966 /*
2967 * legacy devices should be connected to IO APIC #0
2968 */
2969 replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
2970 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2971 enable_8259A_irq(0);
2972 if (timer_irq_works()) {
2973 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2974 timer_through_8259 = 1;
2975 if (nmi_watchdog == NMI_IO_APIC) {
2976 disable_8259A_irq(0);
2977 setup_nmi();
2978 enable_8259A_irq(0);
2979 }
2980 goto out;
2981 }
2982 /*
2983 * Cleanup, just in case ...
2984 */
2985 local_irq_disable();
2986 disable_8259A_irq(0);
2987 clear_IO_APIC_pin(apic2, pin2);
2988 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2989 }
2990
2991 if (nmi_watchdog == NMI_IO_APIC) {
2992 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2993 "through the IO-APIC - disabling NMI Watchdog!\n");
2994 nmi_watchdog = NMI_NONE;
2995 }
2996 #ifdef CONFIG_X86_32
2997 timer_ack = 0;
2998 #endif
2999
3000 apic_printk(APIC_QUIET, KERN_INFO
3001 "...trying to set up timer as Virtual Wire IRQ...\n");
3002
3003 lapic_register_intr(0, desc);
3004 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
3005 enable_8259A_irq(0);
3006
3007 if (timer_irq_works()) {
3008 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3009 goto out;
3010 }
3011 local_irq_disable();
3012 disable_8259A_irq(0);
3013 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3014 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3015
3016 apic_printk(APIC_QUIET, KERN_INFO
3017 "...trying to set up timer as ExtINT IRQ...\n");
3018
3019 init_8259A(0);
3020 make_8259A_irq(0);
3021 apic_write(APIC_LVT0, APIC_DM_EXTINT);
3022
3023 unlock_ExtINT_logic();
3024
3025 if (timer_irq_works()) {
3026 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3027 goto out;
3028 }
3029 local_irq_disable();
3030 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3031 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
3032 "report. Then try booting with the 'noapic' option.\n");
3033 out:
3034 local_irq_restore(flags);
3035 }
3036
3037 /*
3038 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3039 * to devices. However there may be an I/O APIC pin available for
3040 * this interrupt regardless. The pin may be left unconnected, but
3041 * typically it will be reused as an ExtINT cascade interrupt for
3042 * the master 8259A. In the MPS case such a pin will normally be
3043 * reported as an ExtINT interrupt in the MP table. With ACPI
3044 * there is no provision for ExtINT interrupts, and in the absence
3045 * of an override it would be treated as an ordinary ISA I/O APIC
3046 * interrupt, that is edge-triggered and unmasked by default. We
3047 * used to do this, but it caused problems on some systems because
3048 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3049 * the same ExtINT cascade interrupt to drive the local APIC of the
3050 * bootstrap processor. Therefore we refrain from routing IRQ2 to
3051 * the I/O APIC in all cases now. No actual device should request
3052 * it anyway. --macro
3053 */
3054 #define PIC_IRQS (1 << PIC_CASCADE_IR)
3055
3056 void __init setup_IO_APIC(void)
3057 {
3058
3059 /*
3060 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3061 */
3062
3063 io_apic_irqs = ~PIC_IRQS;
3064
3065 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3066 /*
3067 * Set up IO-APIC IRQ routing.
3068 */
3069 #ifdef CONFIG_X86_32
3070 if (!acpi_ioapic)
3071 setup_ioapic_ids_from_mpc();
3072 #endif
3073 sync_Arb_IDs();
3074 setup_IO_APIC_irqs();
3075 init_IO_APIC_traps();
3076 check_timer();
3077 }
3078
3079 /*
3080 * Called after all the initialization is done. If we didnt find any
3081 * APIC bugs then we can allow the modify fast path
3082 */
3083
3084 static int __init io_apic_bug_finalize(void)
3085 {
3086 if (sis_apic_bug == -1)
3087 sis_apic_bug = 0;
3088 return 0;
3089 }
3090
3091 late_initcall(io_apic_bug_finalize);
3092
3093 struct sysfs_ioapic_data {
3094 struct sys_device dev;
3095 struct IO_APIC_route_entry entry[0];
3096 };
3097 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3098
3099 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3100 {
3101 struct IO_APIC_route_entry *entry;
3102 struct sysfs_ioapic_data *data;
3103 int i;
3104
3105 data = container_of(dev, struct sysfs_ioapic_data, dev);
3106 entry = data->entry;
3107 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3108 *entry = ioapic_read_entry(dev->id, i);
3109
3110 return 0;
3111 }
3112
3113 static int ioapic_resume(struct sys_device *dev)
3114 {
3115 struct IO_APIC_route_entry *entry;
3116 struct sysfs_ioapic_data *data;
3117 unsigned long flags;
3118 union IO_APIC_reg_00 reg_00;
3119 int i;
3120
3121 data = container_of(dev, struct sysfs_ioapic_data, dev);
3122 entry = data->entry;
3123
3124 spin_lock_irqsave(&ioapic_lock, flags);
3125 reg_00.raw = io_apic_read(dev->id, 0);
3126 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3127 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3128 io_apic_write(dev->id, 0, reg_00.raw);
3129 }
3130 spin_unlock_irqrestore(&ioapic_lock, flags);
3131 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3132 ioapic_write_entry(dev->id, i, entry[i]);
3133
3134 return 0;
3135 }
3136
3137 static struct sysdev_class ioapic_sysdev_class = {
3138 .name = "ioapic",
3139 .suspend = ioapic_suspend,
3140 .resume = ioapic_resume,
3141 };
3142
3143 static int __init ioapic_init_sysfs(void)
3144 {
3145 struct sys_device * dev;
3146 int i, size, error;
3147
3148 error = sysdev_class_register(&ioapic_sysdev_class);
3149 if (error)
3150 return error;
3151
3152 for (i = 0; i < nr_ioapics; i++ ) {
3153 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3154 * sizeof(struct IO_APIC_route_entry);
3155 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3156 if (!mp_ioapic_data[i]) {
3157 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3158 continue;
3159 }
3160 dev = &mp_ioapic_data[i]->dev;
3161 dev->id = i;
3162 dev->cls = &ioapic_sysdev_class;
3163 error = sysdev_register(dev);
3164 if (error) {
3165 kfree(mp_ioapic_data[i]);
3166 mp_ioapic_data[i] = NULL;
3167 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3168 continue;
3169 }
3170 }
3171
3172 return 0;
3173 }
3174
3175 device_initcall(ioapic_init_sysfs);
3176
3177 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3178 /*
3179 * Dynamic irq allocate and deallocation
3180 */
3181 unsigned int create_irq_nr(unsigned int irq_want)
3182 {
3183 /* Allocate an unused irq */
3184 unsigned int irq;
3185 unsigned int new;
3186 unsigned long flags;
3187 struct irq_cfg *cfg_new = NULL;
3188 int cpu = boot_cpu_id;
3189 struct irq_desc *desc_new = NULL;
3190
3191 irq = 0;
3192 if (irq_want < nr_irqs_gsi)
3193 irq_want = nr_irqs_gsi;
3194
3195 spin_lock_irqsave(&vector_lock, flags);
3196 for (new = irq_want; new < nr_irqs; new++) {
3197 desc_new = irq_to_desc_alloc_cpu(new, cpu);
3198 if (!desc_new) {
3199 printk(KERN_INFO "can not get irq_desc for %d\n", new);
3200 continue;
3201 }
3202 cfg_new = desc_new->chip_data;
3203
3204 if (cfg_new->vector != 0)
3205 continue;
3206 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3207 irq = new;
3208 break;
3209 }
3210 spin_unlock_irqrestore(&vector_lock, flags);
3211
3212 if (irq > 0) {
3213 dynamic_irq_init(irq);
3214 /* restore it, in case dynamic_irq_init clear it */
3215 if (desc_new)
3216 desc_new->chip_data = cfg_new;
3217 }
3218 return irq;
3219 }
3220
3221 int create_irq(void)
3222 {
3223 unsigned int irq_want;
3224 int irq;
3225
3226 irq_want = nr_irqs_gsi;
3227 irq = create_irq_nr(irq_want);
3228
3229 if (irq == 0)
3230 irq = -1;
3231
3232 return irq;
3233 }
3234
3235 void destroy_irq(unsigned int irq)
3236 {
3237 unsigned long flags;
3238 struct irq_cfg *cfg;
3239 struct irq_desc *desc;
3240
3241 /* store it, in case dynamic_irq_cleanup clear it */
3242 desc = irq_to_desc(irq);
3243 cfg = desc->chip_data;
3244 dynamic_irq_cleanup(irq);
3245 /* connect back irq_cfg */
3246 if (desc)
3247 desc->chip_data = cfg;
3248
3249 free_irte(irq);
3250 spin_lock_irqsave(&vector_lock, flags);
3251 __clear_irq_vector(irq, cfg);
3252 spin_unlock_irqrestore(&vector_lock, flags);
3253 }
3254
3255 /*
3256 * MSI message composition
3257 */
3258 #ifdef CONFIG_PCI_MSI
3259 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3260 {
3261 struct irq_cfg *cfg;
3262 int err;
3263 unsigned dest;
3264
3265 if (disable_apic)
3266 return -ENXIO;
3267
3268 cfg = irq_cfg(irq);
3269 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3270 if (err)
3271 return err;
3272
3273 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3274
3275 if (irq_remapped(irq)) {
3276 struct irte irte;
3277 int ir_index;
3278 u16 sub_handle;
3279
3280 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3281 BUG_ON(ir_index == -1);
3282
3283 memset (&irte, 0, sizeof(irte));
3284
3285 irte.present = 1;
3286 irte.dst_mode = apic->irq_dest_mode;
3287 irte.trigger_mode = 0; /* edge */
3288 irte.dlvry_mode = apic->irq_delivery_mode;
3289 irte.vector = cfg->vector;
3290 irte.dest_id = IRTE_DEST(dest);
3291
3292 modify_irte(irq, &irte);
3293
3294 msg->address_hi = MSI_ADDR_BASE_HI;
3295 msg->data = sub_handle;
3296 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3297 MSI_ADDR_IR_SHV |
3298 MSI_ADDR_IR_INDEX1(ir_index) |
3299 MSI_ADDR_IR_INDEX2(ir_index);
3300 } else {
3301 if (x2apic_enabled())
3302 msg->address_hi = MSI_ADDR_BASE_HI |
3303 MSI_ADDR_EXT_DEST_ID(dest);
3304 else
3305 msg->address_hi = MSI_ADDR_BASE_HI;
3306
3307 msg->address_lo =
3308 MSI_ADDR_BASE_LO |
3309 ((apic->irq_dest_mode == 0) ?
3310 MSI_ADDR_DEST_MODE_PHYSICAL:
3311 MSI_ADDR_DEST_MODE_LOGICAL) |
3312 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3313 MSI_ADDR_REDIRECTION_CPU:
3314 MSI_ADDR_REDIRECTION_LOWPRI) |
3315 MSI_ADDR_DEST_ID(dest);
3316
3317 msg->data =
3318 MSI_DATA_TRIGGER_EDGE |
3319 MSI_DATA_LEVEL_ASSERT |
3320 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3321 MSI_DATA_DELIVERY_FIXED:
3322 MSI_DATA_DELIVERY_LOWPRI) |
3323 MSI_DATA_VECTOR(cfg->vector);
3324 }
3325 return err;
3326 }
3327
3328 #ifdef CONFIG_SMP
3329 static int set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3330 {
3331 struct irq_desc *desc = irq_to_desc(irq);
3332 struct irq_cfg *cfg;
3333 struct msi_msg msg;
3334 unsigned int dest;
3335
3336 dest = set_desc_affinity(desc, mask);
3337 if (dest == BAD_APICID)
3338 return -1;
3339
3340 cfg = desc->chip_data;
3341
3342 read_msi_msg_desc(desc, &msg);
3343
3344 msg.data &= ~MSI_DATA_VECTOR_MASK;
3345 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3346 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3347 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3348
3349 write_msi_msg_desc(desc, &msg);
3350
3351 return 0;
3352 }
3353 #ifdef CONFIG_INTR_REMAP
3354 /*
3355 * Migrate the MSI irq to another cpumask. This migration is
3356 * done in the process context using interrupt-remapping hardware.
3357 */
3358 static int
3359 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3360 {
3361 struct irq_desc *desc = irq_to_desc(irq);
3362 struct irq_cfg *cfg = desc->chip_data;
3363 unsigned int dest;
3364 struct irte irte;
3365
3366 if (get_irte(irq, &irte))
3367 return -1;
3368
3369 dest = set_desc_affinity(desc, mask);
3370 if (dest == BAD_APICID)
3371 return -1;
3372
3373 irte.vector = cfg->vector;
3374 irte.dest_id = IRTE_DEST(dest);
3375
3376 /*
3377 * atomically update the IRTE with the new destination and vector.
3378 */
3379 modify_irte(irq, &irte);
3380
3381 /*
3382 * After this point, all the interrupts will start arriving
3383 * at the new destination. So, time to cleanup the previous
3384 * vector allocation.
3385 */
3386 if (cfg->move_in_progress)
3387 send_cleanup_vector(cfg);
3388
3389 return 0;
3390 }
3391
3392 #endif
3393 #endif /* CONFIG_SMP */
3394
3395 /*
3396 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3397 * which implement the MSI or MSI-X Capability Structure.
3398 */
3399 static struct irq_chip msi_chip = {
3400 .name = "PCI-MSI",
3401 .unmask = unmask_msi_irq,
3402 .mask = mask_msi_irq,
3403 .ack = ack_apic_edge,
3404 #ifdef CONFIG_SMP
3405 .set_affinity = set_msi_irq_affinity,
3406 #endif
3407 .retrigger = ioapic_retrigger_irq,
3408 };
3409
3410 static struct irq_chip msi_ir_chip = {
3411 .name = "IR-PCI-MSI",
3412 .unmask = unmask_msi_irq,
3413 .mask = mask_msi_irq,
3414 #ifdef CONFIG_INTR_REMAP
3415 .ack = ir_ack_apic_edge,
3416 #ifdef CONFIG_SMP
3417 .set_affinity = ir_set_msi_irq_affinity,
3418 #endif
3419 #endif
3420 .retrigger = ioapic_retrigger_irq,
3421 };
3422
3423 /*
3424 * Map the PCI dev to the corresponding remapping hardware unit
3425 * and allocate 'nvec' consecutive interrupt-remapping table entries
3426 * in it.
3427 */
3428 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3429 {
3430 struct intel_iommu *iommu;
3431 int index;
3432
3433 iommu = map_dev_to_ir(dev);
3434 if (!iommu) {
3435 printk(KERN_ERR
3436 "Unable to map PCI %s to iommu\n", pci_name(dev));
3437 return -ENOENT;
3438 }
3439
3440 index = alloc_irte(iommu, irq, nvec);
3441 if (index < 0) {
3442 printk(KERN_ERR
3443 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3444 pci_name(dev));
3445 return -ENOSPC;
3446 }
3447 return index;
3448 }
3449
3450 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3451 {
3452 int ret;
3453 struct msi_msg msg;
3454
3455 ret = msi_compose_msg(dev, irq, &msg);
3456 if (ret < 0)
3457 return ret;
3458
3459 set_irq_msi(irq, msidesc);
3460 write_msi_msg(irq, &msg);
3461
3462 if (irq_remapped(irq)) {
3463 struct irq_desc *desc = irq_to_desc(irq);
3464 /*
3465 * irq migration in process context
3466 */
3467 desc->status |= IRQ_MOVE_PCNTXT;
3468 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3469 } else
3470 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3471
3472 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3473
3474 return 0;
3475 }
3476
3477 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3478 {
3479 unsigned int irq;
3480 int ret, sub_handle;
3481 struct msi_desc *msidesc;
3482 unsigned int irq_want;
3483 struct intel_iommu *iommu = NULL;
3484 int index = 0;
3485
3486 /* x86 doesn't support multiple MSI yet */
3487 if (type == PCI_CAP_ID_MSI && nvec > 1)
3488 return 1;
3489
3490 irq_want = nr_irqs_gsi;
3491 sub_handle = 0;
3492 list_for_each_entry(msidesc, &dev->msi_list, list) {
3493 irq = create_irq_nr(irq_want);
3494 if (irq == 0)
3495 return -1;
3496 irq_want = irq + 1;
3497 if (!intr_remapping_enabled)
3498 goto no_ir;
3499
3500 if (!sub_handle) {
3501 /*
3502 * allocate the consecutive block of IRTE's
3503 * for 'nvec'
3504 */
3505 index = msi_alloc_irte(dev, irq, nvec);
3506 if (index < 0) {
3507 ret = index;
3508 goto error;
3509 }
3510 } else {
3511 iommu = map_dev_to_ir(dev);
3512 if (!iommu) {
3513 ret = -ENOENT;
3514 goto error;
3515 }
3516 /*
3517 * setup the mapping between the irq and the IRTE
3518 * base index, the sub_handle pointing to the
3519 * appropriate interrupt remap table entry.
3520 */
3521 set_irte_irq(irq, iommu, index, sub_handle);
3522 }
3523 no_ir:
3524 ret = setup_msi_irq(dev, msidesc, irq);
3525 if (ret < 0)
3526 goto error;
3527 sub_handle++;
3528 }
3529 return 0;
3530
3531 error:
3532 destroy_irq(irq);
3533 return ret;
3534 }
3535
3536 void arch_teardown_msi_irq(unsigned int irq)
3537 {
3538 destroy_irq(irq);
3539 }
3540
3541 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3542 #ifdef CONFIG_SMP
3543 static int dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3544 {
3545 struct irq_desc *desc = irq_to_desc(irq);
3546 struct irq_cfg *cfg;
3547 struct msi_msg msg;
3548 unsigned int dest;
3549
3550 dest = set_desc_affinity(desc, mask);
3551 if (dest == BAD_APICID)
3552 return -1;
3553
3554 cfg = desc->chip_data;
3555
3556 dmar_msi_read(irq, &msg);
3557
3558 msg.data &= ~MSI_DATA_VECTOR_MASK;
3559 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3560 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3561 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3562
3563 dmar_msi_write(irq, &msg);
3564
3565 return 0;
3566 }
3567
3568 #endif /* CONFIG_SMP */
3569
3570 struct irq_chip dmar_msi_type = {
3571 .name = "DMAR_MSI",
3572 .unmask = dmar_msi_unmask,
3573 .mask = dmar_msi_mask,
3574 .ack = ack_apic_edge,
3575 #ifdef CONFIG_SMP
3576 .set_affinity = dmar_msi_set_affinity,
3577 #endif
3578 .retrigger = ioapic_retrigger_irq,
3579 };
3580
3581 int arch_setup_dmar_msi(unsigned int irq)
3582 {
3583 int ret;
3584 struct msi_msg msg;
3585
3586 ret = msi_compose_msg(NULL, irq, &msg);
3587 if (ret < 0)
3588 return ret;
3589 dmar_msi_write(irq, &msg);
3590 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3591 "edge");
3592 return 0;
3593 }
3594 #endif
3595
3596 #ifdef CONFIG_HPET_TIMER
3597
3598 #ifdef CONFIG_SMP
3599 static int hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3600 {
3601 struct irq_desc *desc = irq_to_desc(irq);
3602 struct irq_cfg *cfg;
3603 struct msi_msg msg;
3604 unsigned int dest;
3605
3606 dest = set_desc_affinity(desc, mask);
3607 if (dest == BAD_APICID)
3608 return -1;
3609
3610 cfg = desc->chip_data;
3611
3612 hpet_msi_read(irq, &msg);
3613
3614 msg.data &= ~MSI_DATA_VECTOR_MASK;
3615 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3616 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3617 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3618
3619 hpet_msi_write(irq, &msg);
3620
3621 return 0;
3622 }
3623
3624 #endif /* CONFIG_SMP */
3625
3626 static struct irq_chip hpet_msi_type = {
3627 .name = "HPET_MSI",
3628 .unmask = hpet_msi_unmask,
3629 .mask = hpet_msi_mask,
3630 .ack = ack_apic_edge,
3631 #ifdef CONFIG_SMP
3632 .set_affinity = hpet_msi_set_affinity,
3633 #endif
3634 .retrigger = ioapic_retrigger_irq,
3635 };
3636
3637 int arch_setup_hpet_msi(unsigned int irq)
3638 {
3639 int ret;
3640 struct msi_msg msg;
3641 struct irq_desc *desc = irq_to_desc(irq);
3642
3643 ret = msi_compose_msg(NULL, irq, &msg);
3644 if (ret < 0)
3645 return ret;
3646
3647 hpet_msi_write(irq, &msg);
3648 desc->status |= IRQ_MOVE_PCNTXT;
3649 set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3650 "edge");
3651
3652 return 0;
3653 }
3654 #endif
3655
3656 #endif /* CONFIG_PCI_MSI */
3657 /*
3658 * Hypertransport interrupt support
3659 */
3660 #ifdef CONFIG_HT_IRQ
3661
3662 #ifdef CONFIG_SMP
3663
3664 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3665 {
3666 struct ht_irq_msg msg;
3667 fetch_ht_irq_msg(irq, &msg);
3668
3669 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3670 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3671
3672 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3673 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3674
3675 write_ht_irq_msg(irq, &msg);
3676 }
3677
3678 static int set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3679 {
3680 struct irq_desc *desc = irq_to_desc(irq);
3681 struct irq_cfg *cfg;
3682 unsigned int dest;
3683
3684 dest = set_desc_affinity(desc, mask);
3685 if (dest == BAD_APICID)
3686 return -1;
3687
3688 cfg = desc->chip_data;
3689
3690 target_ht_irq(irq, dest, cfg->vector);
3691
3692 return 0;
3693 }
3694
3695 #endif
3696
3697 static struct irq_chip ht_irq_chip = {
3698 .name = "PCI-HT",
3699 .mask = mask_ht_irq,
3700 .unmask = unmask_ht_irq,
3701 .ack = ack_apic_edge,
3702 #ifdef CONFIG_SMP
3703 .set_affinity = set_ht_irq_affinity,
3704 #endif
3705 .retrigger = ioapic_retrigger_irq,
3706 };
3707
3708 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3709 {
3710 struct irq_cfg *cfg;
3711 int err;
3712
3713 if (disable_apic)
3714 return -ENXIO;
3715
3716 cfg = irq_cfg(irq);
3717 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3718 if (!err) {
3719 struct ht_irq_msg msg;
3720 unsigned dest;
3721
3722 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3723 apic->target_cpus());
3724
3725 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3726
3727 msg.address_lo =
3728 HT_IRQ_LOW_BASE |
3729 HT_IRQ_LOW_DEST_ID(dest) |
3730 HT_IRQ_LOW_VECTOR(cfg->vector) |
3731 ((apic->irq_dest_mode == 0) ?
3732 HT_IRQ_LOW_DM_PHYSICAL :
3733 HT_IRQ_LOW_DM_LOGICAL) |
3734 HT_IRQ_LOW_RQEOI_EDGE |
3735 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3736 HT_IRQ_LOW_MT_FIXED :
3737 HT_IRQ_LOW_MT_ARBITRATED) |
3738 HT_IRQ_LOW_IRQ_MASKED;
3739
3740 write_ht_irq_msg(irq, &msg);
3741
3742 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3743 handle_edge_irq, "edge");
3744
3745 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3746 }
3747 return err;
3748 }
3749 #endif /* CONFIG_HT_IRQ */
3750
3751 #ifdef CONFIG_X86_UV
3752 /*
3753 * Re-target the irq to the specified CPU and enable the specified MMR located
3754 * on the specified blade to allow the sending of MSIs to the specified CPU.
3755 */
3756 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3757 unsigned long mmr_offset)
3758 {
3759 const struct cpumask *eligible_cpu = cpumask_of(cpu);
3760 struct irq_cfg *cfg;
3761 int mmr_pnode;
3762 unsigned long mmr_value;
3763 struct uv_IO_APIC_route_entry *entry;
3764 unsigned long flags;
3765 int err;
3766
3767 cfg = irq_cfg(irq);
3768
3769 err = assign_irq_vector(irq, cfg, eligible_cpu);
3770 if (err != 0)
3771 return err;
3772
3773 spin_lock_irqsave(&vector_lock, flags);
3774 set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3775 irq_name);
3776 spin_unlock_irqrestore(&vector_lock, flags);
3777
3778 mmr_value = 0;
3779 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3780 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3781
3782 entry->vector = cfg->vector;
3783 entry->delivery_mode = apic->irq_delivery_mode;
3784 entry->dest_mode = apic->irq_dest_mode;
3785 entry->polarity = 0;
3786 entry->trigger = 0;
3787 entry->mask = 0;
3788 entry->dest = apic->cpu_mask_to_apicid(eligible_cpu);
3789
3790 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3791 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3792
3793 return irq;
3794 }
3795
3796 /*
3797 * Disable the specified MMR located on the specified blade so that MSIs are
3798 * longer allowed to be sent.
3799 */
3800 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3801 {
3802 unsigned long mmr_value;
3803 struct uv_IO_APIC_route_entry *entry;
3804 int mmr_pnode;
3805
3806 mmr_value = 0;
3807 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3808 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3809
3810 entry->mask = 1;
3811
3812 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3813 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3814 }
3815 #endif /* CONFIG_X86_64 */
3816
3817 int __init io_apic_get_redir_entries (int ioapic)
3818 {
3819 union IO_APIC_reg_01 reg_01;
3820 unsigned long flags;
3821
3822 spin_lock_irqsave(&ioapic_lock, flags);
3823 reg_01.raw = io_apic_read(ioapic, 1);
3824 spin_unlock_irqrestore(&ioapic_lock, flags);
3825
3826 return reg_01.bits.entries;
3827 }
3828
3829 void __init probe_nr_irqs_gsi(void)
3830 {
3831 int nr = 0;
3832
3833 nr = acpi_probe_gsi();
3834 if (nr > nr_irqs_gsi) {
3835 nr_irqs_gsi = nr;
3836 } else {
3837 /* for acpi=off or acpi is not compiled in */
3838 int idx;
3839
3840 nr = 0;
3841 for (idx = 0; idx < nr_ioapics; idx++)
3842 nr += io_apic_get_redir_entries(idx) + 1;
3843
3844 if (nr > nr_irqs_gsi)
3845 nr_irqs_gsi = nr;
3846 }
3847
3848 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3849 }
3850
3851 #ifdef CONFIG_SPARSE_IRQ
3852 int __init arch_probe_nr_irqs(void)
3853 {
3854 int nr;
3855
3856 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3857 nr_irqs = NR_VECTORS * nr_cpu_ids;
3858
3859 nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3860 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3861 /*
3862 * for MSI and HT dyn irq
3863 */
3864 nr += nr_irqs_gsi * 16;
3865 #endif
3866 if (nr < nr_irqs)
3867 nr_irqs = nr;
3868
3869 return 0;
3870 }
3871 #endif
3872
3873 /* --------------------------------------------------------------------------
3874 ACPI-based IOAPIC Configuration
3875 -------------------------------------------------------------------------- */
3876
3877 #ifdef CONFIG_ACPI
3878
3879 #ifdef CONFIG_X86_32
3880 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3881 {
3882 union IO_APIC_reg_00 reg_00;
3883 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3884 physid_mask_t tmp;
3885 unsigned long flags;
3886 int i = 0;
3887
3888 /*
3889 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3890 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3891 * supports up to 16 on one shared APIC bus.
3892 *
3893 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3894 * advantage of new APIC bus architecture.
3895 */
3896
3897 if (physids_empty(apic_id_map))
3898 apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3899
3900 spin_lock_irqsave(&ioapic_lock, flags);
3901 reg_00.raw = io_apic_read(ioapic, 0);
3902 spin_unlock_irqrestore(&ioapic_lock, flags);
3903
3904 if (apic_id >= get_physical_broadcast()) {
3905 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3906 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3907 apic_id = reg_00.bits.ID;
3908 }
3909
3910 /*
3911 * Every APIC in a system must have a unique ID or we get lots of nice
3912 * 'stuck on smp_invalidate_needed IPI wait' messages.
3913 */
3914 if (apic->check_apicid_used(apic_id_map, apic_id)) {
3915
3916 for (i = 0; i < get_physical_broadcast(); i++) {
3917 if (!apic->check_apicid_used(apic_id_map, i))
3918 break;
3919 }
3920
3921 if (i == get_physical_broadcast())
3922 panic("Max apic_id exceeded!\n");
3923
3924 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3925 "trying %d\n", ioapic, apic_id, i);
3926
3927 apic_id = i;
3928 }
3929
3930 tmp = apic->apicid_to_cpu_present(apic_id);
3931 physids_or(apic_id_map, apic_id_map, tmp);
3932
3933 if (reg_00.bits.ID != apic_id) {
3934 reg_00.bits.ID = apic_id;
3935
3936 spin_lock_irqsave(&ioapic_lock, flags);
3937 io_apic_write(ioapic, 0, reg_00.raw);
3938 reg_00.raw = io_apic_read(ioapic, 0);
3939 spin_unlock_irqrestore(&ioapic_lock, flags);
3940
3941 /* Sanity check */
3942 if (reg_00.bits.ID != apic_id) {
3943 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3944 return -1;
3945 }
3946 }
3947
3948 apic_printk(APIC_VERBOSE, KERN_INFO
3949 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3950
3951 return apic_id;
3952 }
3953
3954 int __init io_apic_get_version(int ioapic)
3955 {
3956 union IO_APIC_reg_01 reg_01;
3957 unsigned long flags;
3958
3959 spin_lock_irqsave(&ioapic_lock, flags);
3960 reg_01.raw = io_apic_read(ioapic, 1);
3961 spin_unlock_irqrestore(&ioapic_lock, flags);
3962
3963 return reg_01.bits.version;
3964 }
3965 #endif
3966
3967 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3968 {
3969 struct irq_desc *desc;
3970 struct irq_cfg *cfg;
3971 int cpu = boot_cpu_id;
3972
3973 if (!IO_APIC_IRQ(irq)) {
3974 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3975 ioapic);
3976 return -EINVAL;
3977 }
3978
3979 desc = irq_to_desc_alloc_cpu(irq, cpu);
3980 if (!desc) {
3981 printk(KERN_INFO "can not get irq_desc %d\n", irq);
3982 return 0;
3983 }
3984
3985 /*
3986 * IRQs < 16 are already in the irq_2_pin[] map
3987 */
3988 if (irq >= NR_IRQS_LEGACY) {
3989 cfg = desc->chip_data;
3990 add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
3991 }
3992
3993 setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
3994
3995 return 0;
3996 }
3997
3998
3999 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
4000 {
4001 int i;
4002
4003 if (skip_ioapic_setup)
4004 return -1;
4005
4006 for (i = 0; i < mp_irq_entries; i++)
4007 if (mp_irqs[i].irqtype == mp_INT &&
4008 mp_irqs[i].srcbusirq == bus_irq)
4009 break;
4010 if (i >= mp_irq_entries)
4011 return -1;
4012
4013 *trigger = irq_trigger(i);
4014 *polarity = irq_polarity(i);
4015 return 0;
4016 }
4017
4018 #endif /* CONFIG_ACPI */
4019
4020 /*
4021 * This function currently is only a helper for the i386 smp boot process where
4022 * we need to reprogram the ioredtbls to cater for the cpus which have come online
4023 * so mask in all cases should simply be apic->target_cpus()
4024 */
4025 #ifdef CONFIG_SMP
4026 void __init setup_ioapic_dest(void)
4027 {
4028 int pin, ioapic, irq, irq_entry;
4029 struct irq_desc *desc;
4030 struct irq_cfg *cfg;
4031 const struct cpumask *mask;
4032
4033 if (skip_ioapic_setup == 1)
4034 return;
4035
4036 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4037 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4038 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4039 if (irq_entry == -1)
4040 continue;
4041 irq = pin_2_irq(irq_entry, ioapic, pin);
4042
4043 /* setup_IO_APIC_irqs could fail to get vector for some device
4044 * when you have too many devices, because at that time only boot
4045 * cpu is online.
4046 */
4047 desc = irq_to_desc(irq);
4048 cfg = desc->chip_data;
4049 if (!cfg->vector) {
4050 setup_IO_APIC_irq(ioapic, pin, irq, desc,
4051 irq_trigger(irq_entry),
4052 irq_polarity(irq_entry));
4053 continue;
4054
4055 }
4056
4057 /*
4058 * Honour affinities which have been set in early boot
4059 */
4060 if (desc->status &
4061 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4062 mask = desc->affinity;
4063 else
4064 mask = apic->target_cpus();
4065
4066 if (intr_remapping_enabled)
4067 set_ir_ioapic_affinity_irq_desc(desc, mask);
4068 else
4069 set_ioapic_affinity_irq_desc(desc, mask);
4070 }
4071
4072 }
4073 }
4074 #endif
4075
4076 #define IOAPIC_RESOURCE_NAME_SIZE 11
4077
4078 static struct resource *ioapic_resources;
4079
4080 static struct resource * __init ioapic_setup_resources(void)
4081 {
4082 unsigned long n;
4083 struct resource *res;
4084 char *mem;
4085 int i;
4086
4087 if (nr_ioapics <= 0)
4088 return NULL;
4089
4090 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4091 n *= nr_ioapics;
4092
4093 mem = alloc_bootmem(n);
4094 res = (void *)mem;
4095
4096 if (mem != NULL) {
4097 mem += sizeof(struct resource) * nr_ioapics;
4098
4099 for (i = 0; i < nr_ioapics; i++) {
4100 res[i].name = mem;
4101 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4102 sprintf(mem, "IOAPIC %u", i);
4103 mem += IOAPIC_RESOURCE_NAME_SIZE;
4104 }
4105 }
4106
4107 ioapic_resources = res;
4108
4109 return res;
4110 }
4111
4112 void __init ioapic_init_mappings(void)
4113 {
4114 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4115 struct resource *ioapic_res;
4116 int i;
4117
4118 ioapic_res = ioapic_setup_resources();
4119 for (i = 0; i < nr_ioapics; i++) {
4120 if (smp_found_config) {
4121 ioapic_phys = mp_ioapics[i].apicaddr;
4122 #ifdef CONFIG_X86_32
4123 if (!ioapic_phys) {
4124 printk(KERN_ERR
4125 "WARNING: bogus zero IO-APIC "
4126 "address found in MPTABLE, "
4127 "disabling IO/APIC support!\n");
4128 smp_found_config = 0;
4129 skip_ioapic_setup = 1;
4130 goto fake_ioapic_page;
4131 }
4132 #endif
4133 } else {
4134 #ifdef CONFIG_X86_32
4135 fake_ioapic_page:
4136 #endif
4137 ioapic_phys = (unsigned long)
4138 alloc_bootmem_pages(PAGE_SIZE);
4139 ioapic_phys = __pa(ioapic_phys);
4140 }
4141 set_fixmap_nocache(idx, ioapic_phys);
4142 apic_printk(APIC_VERBOSE,
4143 "mapped IOAPIC to %08lx (%08lx)\n",
4144 __fix_to_virt(idx), ioapic_phys);
4145 idx++;
4146
4147 if (ioapic_res != NULL) {
4148 ioapic_res->start = ioapic_phys;
4149 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4150 ioapic_res++;
4151 }
4152 }
4153 }
4154
4155 static int __init ioapic_insert_resources(void)
4156 {
4157 int i;
4158 struct resource *r = ioapic_resources;
4159
4160 if (!r) {
4161 if (nr_ioapics > 0) {
4162 printk(KERN_ERR
4163 "IO APIC resources couldn't be allocated.\n");
4164 return -1;
4165 }
4166 return 0;
4167 }
4168
4169 for (i = 0; i < nr_ioapics; i++) {
4170 insert_resource(&iomem_resource, r);
4171 r++;
4172 }
4173
4174 return 0;
4175 }
4176
4177 /* Insert the IO APIC resources after PCI initialization has occured to handle
4178 * IO APICS that are mapped in on a BAR in PCI space. */
4179 late_initcall(ioapic_insert_resources);
This page took 0.125175 seconds and 5 git commands to generate.