x86, nmi_watchdog: Remove all stub function calls from old nmi_watchdog
[deliverable/linux.git] / arch / x86 / kernel / apic / io_apic.c
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
46
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
63
64 #include <asm/apic.h>
65
66 #define __apicdebuginit(type) static type __init
67 #define for_each_irq_pin(entry, head) \
68 for (entry = head; entry; entry = entry->next)
69
70 /*
71 * Is the SiS APIC rmw bug present ?
72 * -1 = don't know, 0 = no, 1 = yes
73 */
74 int sis_apic_bug = -1;
75
76 static DEFINE_RAW_SPINLOCK(ioapic_lock);
77 static DEFINE_RAW_SPINLOCK(vector_lock);
78
79 /*
80 * # of IRQ routing registers
81 */
82 int nr_ioapic_registers[MAX_IO_APICS];
83
84 /* I/O APIC entries */
85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
87
88 /* IO APIC gsi routing info */
89 struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS];
90
91 /* The one past the highest gsi number used */
92 u32 gsi_top;
93
94 /* MP IRQ source entries */
95 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
96
97 /* # of MP IRQ source entries */
98 int mp_irq_entries;
99
100 /* GSI interrupts */
101 static int nr_irqs_gsi = NR_IRQS_LEGACY;
102
103 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
104 int mp_bus_id_to_type[MAX_MP_BUSSES];
105 #endif
106
107 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
108
109 int skip_ioapic_setup;
110
111 void arch_disable_smp_support(void)
112 {
113 #ifdef CONFIG_PCI
114 noioapicquirk = 1;
115 noioapicreroute = -1;
116 #endif
117 skip_ioapic_setup = 1;
118 }
119
120 static int __init parse_noapic(char *str)
121 {
122 /* disable IO-APIC */
123 arch_disable_smp_support();
124 return 0;
125 }
126 early_param("noapic", parse_noapic);
127
128 struct irq_pin_list {
129 int apic, pin;
130 struct irq_pin_list *next;
131 };
132
133 static struct irq_pin_list *alloc_irq_pin_list(int node)
134 {
135 return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
136 }
137
138 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
139 #ifdef CONFIG_SPARSE_IRQ
140 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
141 #else
142 static struct irq_cfg irq_cfgx[NR_IRQS];
143 #endif
144
145 int __init arch_early_irq_init(void)
146 {
147 struct irq_cfg *cfg;
148 int count, node, i;
149
150 if (!legacy_pic->nr_legacy_irqs) {
151 nr_irqs_gsi = 0;
152 io_apic_irqs = ~0UL;
153 }
154
155 cfg = irq_cfgx;
156 count = ARRAY_SIZE(irq_cfgx);
157 node = cpu_to_node(0);
158
159 /* Make sure the legacy interrupts are marked in the bitmap */
160 irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
161
162 for (i = 0; i < count; i++) {
163 set_irq_chip_data(i, &cfg[i]);
164 zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
165 zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
166 /*
167 * For legacy IRQ's, start with assigning irq0 to irq15 to
168 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
169 */
170 if (i < legacy_pic->nr_legacy_irqs) {
171 cfg[i].vector = IRQ0_VECTOR + i;
172 cpumask_set_cpu(0, cfg[i].domain);
173 }
174 }
175
176 return 0;
177 }
178
179 #ifdef CONFIG_SPARSE_IRQ
180 static struct irq_cfg *irq_cfg(unsigned int irq)
181 {
182 return get_irq_chip_data(irq);
183 }
184
185 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
186 {
187 struct irq_cfg *cfg;
188
189 cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
190 if (!cfg)
191 return NULL;
192 if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
193 goto out_cfg;
194 if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
195 goto out_domain;
196 return cfg;
197 out_domain:
198 free_cpumask_var(cfg->domain);
199 out_cfg:
200 kfree(cfg);
201 return NULL;
202 }
203
204 static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
205 {
206 if (!cfg)
207 return;
208 set_irq_chip_data(at, NULL);
209 free_cpumask_var(cfg->domain);
210 free_cpumask_var(cfg->old_domain);
211 kfree(cfg);
212 }
213
214 #else
215
216 struct irq_cfg *irq_cfg(unsigned int irq)
217 {
218 return irq < nr_irqs ? irq_cfgx + irq : NULL;
219 }
220
221 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
222 {
223 return irq_cfgx + irq;
224 }
225
226 static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
227
228 #endif
229
230 static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
231 {
232 int res = irq_alloc_desc_at(at, node);
233 struct irq_cfg *cfg;
234
235 if (res < 0) {
236 if (res != -EEXIST)
237 return NULL;
238 cfg = get_irq_chip_data(at);
239 if (cfg)
240 return cfg;
241 }
242
243 cfg = alloc_irq_cfg(at, node);
244 if (cfg)
245 set_irq_chip_data(at, cfg);
246 else
247 irq_free_desc(at);
248 return cfg;
249 }
250
251 static int alloc_irq_from(unsigned int from, int node)
252 {
253 return irq_alloc_desc_from(from, node);
254 }
255
256 static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
257 {
258 free_irq_cfg(at, cfg);
259 irq_free_desc(at);
260 }
261
262 struct io_apic {
263 unsigned int index;
264 unsigned int unused[3];
265 unsigned int data;
266 unsigned int unused2[11];
267 unsigned int eoi;
268 };
269
270 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
271 {
272 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
273 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
274 }
275
276 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
277 {
278 struct io_apic __iomem *io_apic = io_apic_base(apic);
279 writel(vector, &io_apic->eoi);
280 }
281
282 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
283 {
284 struct io_apic __iomem *io_apic = io_apic_base(apic);
285 writel(reg, &io_apic->index);
286 return readl(&io_apic->data);
287 }
288
289 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
290 {
291 struct io_apic __iomem *io_apic = io_apic_base(apic);
292 writel(reg, &io_apic->index);
293 writel(value, &io_apic->data);
294 }
295
296 /*
297 * Re-write a value: to be used for read-modify-write
298 * cycles where the read already set up the index register.
299 *
300 * Older SiS APIC requires we rewrite the index register
301 */
302 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
303 {
304 struct io_apic __iomem *io_apic = io_apic_base(apic);
305
306 if (sis_apic_bug)
307 writel(reg, &io_apic->index);
308 writel(value, &io_apic->data);
309 }
310
311 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
312 {
313 struct irq_pin_list *entry;
314 unsigned long flags;
315
316 raw_spin_lock_irqsave(&ioapic_lock, flags);
317 for_each_irq_pin(entry, cfg->irq_2_pin) {
318 unsigned int reg;
319 int pin;
320
321 pin = entry->pin;
322 reg = io_apic_read(entry->apic, 0x10 + pin*2);
323 /* Is the remote IRR bit set? */
324 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
325 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
326 return true;
327 }
328 }
329 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
330
331 return false;
332 }
333
334 union entry_union {
335 struct { u32 w1, w2; };
336 struct IO_APIC_route_entry entry;
337 };
338
339 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
340 {
341 union entry_union eu;
342 unsigned long flags;
343 raw_spin_lock_irqsave(&ioapic_lock, flags);
344 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
345 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
346 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
347 return eu.entry;
348 }
349
350 /*
351 * When we write a new IO APIC routing entry, we need to write the high
352 * word first! If the mask bit in the low word is clear, we will enable
353 * the interrupt, and we need to make sure the entry is fully populated
354 * before that happens.
355 */
356 static void
357 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
358 {
359 union entry_union eu = {{0, 0}};
360
361 eu.entry = e;
362 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
363 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
364 }
365
366 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
367 {
368 unsigned long flags;
369 raw_spin_lock_irqsave(&ioapic_lock, flags);
370 __ioapic_write_entry(apic, pin, e);
371 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
372 }
373
374 /*
375 * When we mask an IO APIC routing entry, we need to write the low
376 * word first, in order to set the mask bit before we change the
377 * high bits!
378 */
379 static void ioapic_mask_entry(int apic, int pin)
380 {
381 unsigned long flags;
382 union entry_union eu = { .entry.mask = 1 };
383
384 raw_spin_lock_irqsave(&ioapic_lock, flags);
385 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
386 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
387 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
388 }
389
390 /*
391 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
392 * shared ISA-space IRQs, so we have to support them. We are super
393 * fast in the common case, and fast for shared ISA-space IRQs.
394 */
395 static int
396 __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
397 {
398 struct irq_pin_list **last, *entry;
399
400 /* don't allow duplicates */
401 last = &cfg->irq_2_pin;
402 for_each_irq_pin(entry, cfg->irq_2_pin) {
403 if (entry->apic == apic && entry->pin == pin)
404 return 0;
405 last = &entry->next;
406 }
407
408 entry = alloc_irq_pin_list(node);
409 if (!entry) {
410 printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
411 node, apic, pin);
412 return -ENOMEM;
413 }
414 entry->apic = apic;
415 entry->pin = pin;
416
417 *last = entry;
418 return 0;
419 }
420
421 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
422 {
423 if (__add_pin_to_irq_node(cfg, node, apic, pin))
424 panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
425 }
426
427 /*
428 * Reroute an IRQ to a different pin.
429 */
430 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
431 int oldapic, int oldpin,
432 int newapic, int newpin)
433 {
434 struct irq_pin_list *entry;
435
436 for_each_irq_pin(entry, cfg->irq_2_pin) {
437 if (entry->apic == oldapic && entry->pin == oldpin) {
438 entry->apic = newapic;
439 entry->pin = newpin;
440 /* every one is different, right? */
441 return;
442 }
443 }
444
445 /* old apic/pin didn't exist, so just add new ones */
446 add_pin_to_irq_node(cfg, node, newapic, newpin);
447 }
448
449 static void __io_apic_modify_irq(struct irq_pin_list *entry,
450 int mask_and, int mask_or,
451 void (*final)(struct irq_pin_list *entry))
452 {
453 unsigned int reg, pin;
454
455 pin = entry->pin;
456 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
457 reg &= mask_and;
458 reg |= mask_or;
459 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
460 if (final)
461 final(entry);
462 }
463
464 static void io_apic_modify_irq(struct irq_cfg *cfg,
465 int mask_and, int mask_or,
466 void (*final)(struct irq_pin_list *entry))
467 {
468 struct irq_pin_list *entry;
469
470 for_each_irq_pin(entry, cfg->irq_2_pin)
471 __io_apic_modify_irq(entry, mask_and, mask_or, final);
472 }
473
474 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
475 {
476 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
477 IO_APIC_REDIR_MASKED, NULL);
478 }
479
480 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
481 {
482 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
483 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
484 }
485
486 static void io_apic_sync(struct irq_pin_list *entry)
487 {
488 /*
489 * Synchronize the IO-APIC and the CPU by doing
490 * a dummy read from the IO-APIC
491 */
492 struct io_apic __iomem *io_apic;
493 io_apic = io_apic_base(entry->apic);
494 readl(&io_apic->data);
495 }
496
497 static void mask_ioapic(struct irq_cfg *cfg)
498 {
499 unsigned long flags;
500
501 raw_spin_lock_irqsave(&ioapic_lock, flags);
502 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
503 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
504 }
505
506 static void mask_ioapic_irq(struct irq_data *data)
507 {
508 mask_ioapic(data->chip_data);
509 }
510
511 static void __unmask_ioapic(struct irq_cfg *cfg)
512 {
513 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
514 }
515
516 static void unmask_ioapic(struct irq_cfg *cfg)
517 {
518 unsigned long flags;
519
520 raw_spin_lock_irqsave(&ioapic_lock, flags);
521 __unmask_ioapic(cfg);
522 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
523 }
524
525 static void unmask_ioapic_irq(struct irq_data *data)
526 {
527 unmask_ioapic(data->chip_data);
528 }
529
530 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
531 {
532 struct IO_APIC_route_entry entry;
533
534 /* Check delivery_mode to be sure we're not clearing an SMI pin */
535 entry = ioapic_read_entry(apic, pin);
536 if (entry.delivery_mode == dest_SMI)
537 return;
538 /*
539 * Disable it in the IO-APIC irq-routing table:
540 */
541 ioapic_mask_entry(apic, pin);
542 }
543
544 static void clear_IO_APIC (void)
545 {
546 int apic, pin;
547
548 for (apic = 0; apic < nr_ioapics; apic++)
549 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
550 clear_IO_APIC_pin(apic, pin);
551 }
552
553 #ifdef CONFIG_X86_32
554 /*
555 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
556 * specific CPU-side IRQs.
557 */
558
559 #define MAX_PIRQS 8
560 static int pirq_entries[MAX_PIRQS] = {
561 [0 ... MAX_PIRQS - 1] = -1
562 };
563
564 static int __init ioapic_pirq_setup(char *str)
565 {
566 int i, max;
567 int ints[MAX_PIRQS+1];
568
569 get_options(str, ARRAY_SIZE(ints), ints);
570
571 apic_printk(APIC_VERBOSE, KERN_INFO
572 "PIRQ redirection, working around broken MP-BIOS.\n");
573 max = MAX_PIRQS;
574 if (ints[0] < MAX_PIRQS)
575 max = ints[0];
576
577 for (i = 0; i < max; i++) {
578 apic_printk(APIC_VERBOSE, KERN_DEBUG
579 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
580 /*
581 * PIRQs are mapped upside down, usually.
582 */
583 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
584 }
585 return 1;
586 }
587
588 __setup("pirq=", ioapic_pirq_setup);
589 #endif /* CONFIG_X86_32 */
590
591 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
592 {
593 int apic;
594 struct IO_APIC_route_entry **ioapic_entries;
595
596 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
597 GFP_KERNEL);
598 if (!ioapic_entries)
599 return 0;
600
601 for (apic = 0; apic < nr_ioapics; apic++) {
602 ioapic_entries[apic] =
603 kzalloc(sizeof(struct IO_APIC_route_entry) *
604 nr_ioapic_registers[apic], GFP_KERNEL);
605 if (!ioapic_entries[apic])
606 goto nomem;
607 }
608
609 return ioapic_entries;
610
611 nomem:
612 while (--apic >= 0)
613 kfree(ioapic_entries[apic]);
614 kfree(ioapic_entries);
615
616 return 0;
617 }
618
619 /*
620 * Saves all the IO-APIC RTE's
621 */
622 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
623 {
624 int apic, pin;
625
626 if (!ioapic_entries)
627 return -ENOMEM;
628
629 for (apic = 0; apic < nr_ioapics; apic++) {
630 if (!ioapic_entries[apic])
631 return -ENOMEM;
632
633 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
634 ioapic_entries[apic][pin] =
635 ioapic_read_entry(apic, pin);
636 }
637
638 return 0;
639 }
640
641 /*
642 * Mask all IO APIC entries.
643 */
644 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
645 {
646 int apic, pin;
647
648 if (!ioapic_entries)
649 return;
650
651 for (apic = 0; apic < nr_ioapics; apic++) {
652 if (!ioapic_entries[apic])
653 break;
654
655 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
656 struct IO_APIC_route_entry entry;
657
658 entry = ioapic_entries[apic][pin];
659 if (!entry.mask) {
660 entry.mask = 1;
661 ioapic_write_entry(apic, pin, entry);
662 }
663 }
664 }
665 }
666
667 /*
668 * Restore IO APIC entries which was saved in ioapic_entries.
669 */
670 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
671 {
672 int apic, pin;
673
674 if (!ioapic_entries)
675 return -ENOMEM;
676
677 for (apic = 0; apic < nr_ioapics; apic++) {
678 if (!ioapic_entries[apic])
679 return -ENOMEM;
680
681 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
682 ioapic_write_entry(apic, pin,
683 ioapic_entries[apic][pin]);
684 }
685 return 0;
686 }
687
688 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
689 {
690 int apic;
691
692 for (apic = 0; apic < nr_ioapics; apic++)
693 kfree(ioapic_entries[apic]);
694
695 kfree(ioapic_entries);
696 }
697
698 /*
699 * Find the IRQ entry number of a certain pin.
700 */
701 static int find_irq_entry(int apic, int pin, int type)
702 {
703 int i;
704
705 for (i = 0; i < mp_irq_entries; i++)
706 if (mp_irqs[i].irqtype == type &&
707 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
708 mp_irqs[i].dstapic == MP_APIC_ALL) &&
709 mp_irqs[i].dstirq == pin)
710 return i;
711
712 return -1;
713 }
714
715 /*
716 * Find the pin to which IRQ[irq] (ISA) is connected
717 */
718 static int __init find_isa_irq_pin(int irq, int type)
719 {
720 int i;
721
722 for (i = 0; i < mp_irq_entries; i++) {
723 int lbus = mp_irqs[i].srcbus;
724
725 if (test_bit(lbus, mp_bus_not_pci) &&
726 (mp_irqs[i].irqtype == type) &&
727 (mp_irqs[i].srcbusirq == irq))
728
729 return mp_irqs[i].dstirq;
730 }
731 return -1;
732 }
733
734 static int __init find_isa_irq_apic(int irq, int type)
735 {
736 int i;
737
738 for (i = 0; i < mp_irq_entries; i++) {
739 int lbus = mp_irqs[i].srcbus;
740
741 if (test_bit(lbus, mp_bus_not_pci) &&
742 (mp_irqs[i].irqtype == type) &&
743 (mp_irqs[i].srcbusirq == irq))
744 break;
745 }
746 if (i < mp_irq_entries) {
747 int apic;
748 for(apic = 0; apic < nr_ioapics; apic++) {
749 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
750 return apic;
751 }
752 }
753
754 return -1;
755 }
756
757 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
758 /*
759 * EISA Edge/Level control register, ELCR
760 */
761 static int EISA_ELCR(unsigned int irq)
762 {
763 if (irq < legacy_pic->nr_legacy_irqs) {
764 unsigned int port = 0x4d0 + (irq >> 3);
765 return (inb(port) >> (irq & 7)) & 1;
766 }
767 apic_printk(APIC_VERBOSE, KERN_INFO
768 "Broken MPtable reports ISA irq %d\n", irq);
769 return 0;
770 }
771
772 #endif
773
774 /* ISA interrupts are always polarity zero edge triggered,
775 * when listed as conforming in the MP table. */
776
777 #define default_ISA_trigger(idx) (0)
778 #define default_ISA_polarity(idx) (0)
779
780 /* EISA interrupts are always polarity zero and can be edge or level
781 * trigger depending on the ELCR value. If an interrupt is listed as
782 * EISA conforming in the MP table, that means its trigger type must
783 * be read in from the ELCR */
784
785 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
786 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
787
788 /* PCI interrupts are always polarity one level triggered,
789 * when listed as conforming in the MP table. */
790
791 #define default_PCI_trigger(idx) (1)
792 #define default_PCI_polarity(idx) (1)
793
794 /* MCA interrupts are always polarity zero level triggered,
795 * when listed as conforming in the MP table. */
796
797 #define default_MCA_trigger(idx) (1)
798 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
799
800 static int MPBIOS_polarity(int idx)
801 {
802 int bus = mp_irqs[idx].srcbus;
803 int polarity;
804
805 /*
806 * Determine IRQ line polarity (high active or low active):
807 */
808 switch (mp_irqs[idx].irqflag & 3)
809 {
810 case 0: /* conforms, ie. bus-type dependent polarity */
811 if (test_bit(bus, mp_bus_not_pci))
812 polarity = default_ISA_polarity(idx);
813 else
814 polarity = default_PCI_polarity(idx);
815 break;
816 case 1: /* high active */
817 {
818 polarity = 0;
819 break;
820 }
821 case 2: /* reserved */
822 {
823 printk(KERN_WARNING "broken BIOS!!\n");
824 polarity = 1;
825 break;
826 }
827 case 3: /* low active */
828 {
829 polarity = 1;
830 break;
831 }
832 default: /* invalid */
833 {
834 printk(KERN_WARNING "broken BIOS!!\n");
835 polarity = 1;
836 break;
837 }
838 }
839 return polarity;
840 }
841
842 static int MPBIOS_trigger(int idx)
843 {
844 int bus = mp_irqs[idx].srcbus;
845 int trigger;
846
847 /*
848 * Determine IRQ trigger mode (edge or level sensitive):
849 */
850 switch ((mp_irqs[idx].irqflag>>2) & 3)
851 {
852 case 0: /* conforms, ie. bus-type dependent */
853 if (test_bit(bus, mp_bus_not_pci))
854 trigger = default_ISA_trigger(idx);
855 else
856 trigger = default_PCI_trigger(idx);
857 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
858 switch (mp_bus_id_to_type[bus]) {
859 case MP_BUS_ISA: /* ISA pin */
860 {
861 /* set before the switch */
862 break;
863 }
864 case MP_BUS_EISA: /* EISA pin */
865 {
866 trigger = default_EISA_trigger(idx);
867 break;
868 }
869 case MP_BUS_PCI: /* PCI pin */
870 {
871 /* set before the switch */
872 break;
873 }
874 case MP_BUS_MCA: /* MCA pin */
875 {
876 trigger = default_MCA_trigger(idx);
877 break;
878 }
879 default:
880 {
881 printk(KERN_WARNING "broken BIOS!!\n");
882 trigger = 1;
883 break;
884 }
885 }
886 #endif
887 break;
888 case 1: /* edge */
889 {
890 trigger = 0;
891 break;
892 }
893 case 2: /* reserved */
894 {
895 printk(KERN_WARNING "broken BIOS!!\n");
896 trigger = 1;
897 break;
898 }
899 case 3: /* level */
900 {
901 trigger = 1;
902 break;
903 }
904 default: /* invalid */
905 {
906 printk(KERN_WARNING "broken BIOS!!\n");
907 trigger = 0;
908 break;
909 }
910 }
911 return trigger;
912 }
913
914 static inline int irq_polarity(int idx)
915 {
916 return MPBIOS_polarity(idx);
917 }
918
919 static inline int irq_trigger(int idx)
920 {
921 return MPBIOS_trigger(idx);
922 }
923
924 static int pin_2_irq(int idx, int apic, int pin)
925 {
926 int irq;
927 int bus = mp_irqs[idx].srcbus;
928
929 /*
930 * Debugging check, we are in big trouble if this message pops up!
931 */
932 if (mp_irqs[idx].dstirq != pin)
933 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
934
935 if (test_bit(bus, mp_bus_not_pci)) {
936 irq = mp_irqs[idx].srcbusirq;
937 } else {
938 u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
939
940 if (gsi >= NR_IRQS_LEGACY)
941 irq = gsi;
942 else
943 irq = gsi_top + gsi;
944 }
945
946 #ifdef CONFIG_X86_32
947 /*
948 * PCI IRQ command line redirection. Yes, limits are hardcoded.
949 */
950 if ((pin >= 16) && (pin <= 23)) {
951 if (pirq_entries[pin-16] != -1) {
952 if (!pirq_entries[pin-16]) {
953 apic_printk(APIC_VERBOSE, KERN_DEBUG
954 "disabling PIRQ%d\n", pin-16);
955 } else {
956 irq = pirq_entries[pin-16];
957 apic_printk(APIC_VERBOSE, KERN_DEBUG
958 "using PIRQ%d -> IRQ %d\n",
959 pin-16, irq);
960 }
961 }
962 }
963 #endif
964
965 return irq;
966 }
967
968 /*
969 * Find a specific PCI IRQ entry.
970 * Not an __init, possibly needed by modules
971 */
972 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
973 struct io_apic_irq_attr *irq_attr)
974 {
975 int apic, i, best_guess = -1;
976
977 apic_printk(APIC_DEBUG,
978 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
979 bus, slot, pin);
980 if (test_bit(bus, mp_bus_not_pci)) {
981 apic_printk(APIC_VERBOSE,
982 "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
983 return -1;
984 }
985 for (i = 0; i < mp_irq_entries; i++) {
986 int lbus = mp_irqs[i].srcbus;
987
988 for (apic = 0; apic < nr_ioapics; apic++)
989 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
990 mp_irqs[i].dstapic == MP_APIC_ALL)
991 break;
992
993 if (!test_bit(lbus, mp_bus_not_pci) &&
994 !mp_irqs[i].irqtype &&
995 (bus == lbus) &&
996 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
997 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
998
999 if (!(apic || IO_APIC_IRQ(irq)))
1000 continue;
1001
1002 if (pin == (mp_irqs[i].srcbusirq & 3)) {
1003 set_io_apic_irq_attr(irq_attr, apic,
1004 mp_irqs[i].dstirq,
1005 irq_trigger(i),
1006 irq_polarity(i));
1007 return irq;
1008 }
1009 /*
1010 * Use the first all-but-pin matching entry as a
1011 * best-guess fuzzy result for broken mptables.
1012 */
1013 if (best_guess < 0) {
1014 set_io_apic_irq_attr(irq_attr, apic,
1015 mp_irqs[i].dstirq,
1016 irq_trigger(i),
1017 irq_polarity(i));
1018 best_guess = irq;
1019 }
1020 }
1021 }
1022 return best_guess;
1023 }
1024 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1025
1026 void lock_vector_lock(void)
1027 {
1028 /* Used to the online set of cpus does not change
1029 * during assign_irq_vector.
1030 */
1031 raw_spin_lock(&vector_lock);
1032 }
1033
1034 void unlock_vector_lock(void)
1035 {
1036 raw_spin_unlock(&vector_lock);
1037 }
1038
1039 static int
1040 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1041 {
1042 /*
1043 * NOTE! The local APIC isn't very good at handling
1044 * multiple interrupts at the same interrupt level.
1045 * As the interrupt level is determined by taking the
1046 * vector number and shifting that right by 4, we
1047 * want to spread these out a bit so that they don't
1048 * all fall in the same interrupt level.
1049 *
1050 * Also, we've got to be careful not to trash gate
1051 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1052 */
1053 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1054 static int current_offset = VECTOR_OFFSET_START % 8;
1055 unsigned int old_vector;
1056 int cpu, err;
1057 cpumask_var_t tmp_mask;
1058
1059 if (cfg->move_in_progress)
1060 return -EBUSY;
1061
1062 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1063 return -ENOMEM;
1064
1065 old_vector = cfg->vector;
1066 if (old_vector) {
1067 cpumask_and(tmp_mask, mask, cpu_online_mask);
1068 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1069 if (!cpumask_empty(tmp_mask)) {
1070 free_cpumask_var(tmp_mask);
1071 return 0;
1072 }
1073 }
1074
1075 /* Only try and allocate irqs on cpus that are present */
1076 err = -ENOSPC;
1077 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1078 int new_cpu;
1079 int vector, offset;
1080
1081 apic->vector_allocation_domain(cpu, tmp_mask);
1082
1083 vector = current_vector;
1084 offset = current_offset;
1085 next:
1086 vector += 8;
1087 if (vector >= first_system_vector) {
1088 /* If out of vectors on large boxen, must share them. */
1089 offset = (offset + 1) % 8;
1090 vector = FIRST_EXTERNAL_VECTOR + offset;
1091 }
1092 if (unlikely(current_vector == vector))
1093 continue;
1094
1095 if (test_bit(vector, used_vectors))
1096 goto next;
1097
1098 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1099 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1100 goto next;
1101 /* Found one! */
1102 current_vector = vector;
1103 current_offset = offset;
1104 if (old_vector) {
1105 cfg->move_in_progress = 1;
1106 cpumask_copy(cfg->old_domain, cfg->domain);
1107 }
1108 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1109 per_cpu(vector_irq, new_cpu)[vector] = irq;
1110 cfg->vector = vector;
1111 cpumask_copy(cfg->domain, tmp_mask);
1112 err = 0;
1113 break;
1114 }
1115 free_cpumask_var(tmp_mask);
1116 return err;
1117 }
1118
1119 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1120 {
1121 int err;
1122 unsigned long flags;
1123
1124 raw_spin_lock_irqsave(&vector_lock, flags);
1125 err = __assign_irq_vector(irq, cfg, mask);
1126 raw_spin_unlock_irqrestore(&vector_lock, flags);
1127 return err;
1128 }
1129
1130 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1131 {
1132 int cpu, vector;
1133
1134 BUG_ON(!cfg->vector);
1135
1136 vector = cfg->vector;
1137 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1138 per_cpu(vector_irq, cpu)[vector] = -1;
1139
1140 cfg->vector = 0;
1141 cpumask_clear(cfg->domain);
1142
1143 if (likely(!cfg->move_in_progress))
1144 return;
1145 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1146 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1147 vector++) {
1148 if (per_cpu(vector_irq, cpu)[vector] != irq)
1149 continue;
1150 per_cpu(vector_irq, cpu)[vector] = -1;
1151 break;
1152 }
1153 }
1154 cfg->move_in_progress = 0;
1155 }
1156
1157 void __setup_vector_irq(int cpu)
1158 {
1159 /* Initialize vector_irq on a new cpu */
1160 int irq, vector;
1161 struct irq_cfg *cfg;
1162
1163 /*
1164 * vector_lock will make sure that we don't run into irq vector
1165 * assignments that might be happening on another cpu in parallel,
1166 * while we setup our initial vector to irq mappings.
1167 */
1168 raw_spin_lock(&vector_lock);
1169 /* Mark the inuse vectors */
1170 for_each_active_irq(irq) {
1171 cfg = get_irq_chip_data(irq);
1172 if (!cfg)
1173 continue;
1174 /*
1175 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1176 * will be part of the irq_cfg's domain.
1177 */
1178 if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1179 cpumask_set_cpu(cpu, cfg->domain);
1180
1181 if (!cpumask_test_cpu(cpu, cfg->domain))
1182 continue;
1183 vector = cfg->vector;
1184 per_cpu(vector_irq, cpu)[vector] = irq;
1185 }
1186 /* Mark the free vectors */
1187 for (vector = 0; vector < NR_VECTORS; ++vector) {
1188 irq = per_cpu(vector_irq, cpu)[vector];
1189 if (irq < 0)
1190 continue;
1191
1192 cfg = irq_cfg(irq);
1193 if (!cpumask_test_cpu(cpu, cfg->domain))
1194 per_cpu(vector_irq, cpu)[vector] = -1;
1195 }
1196 raw_spin_unlock(&vector_lock);
1197 }
1198
1199 static struct irq_chip ioapic_chip;
1200 static struct irq_chip ir_ioapic_chip;
1201
1202 #define IOAPIC_AUTO -1
1203 #define IOAPIC_EDGE 0
1204 #define IOAPIC_LEVEL 1
1205
1206 #ifdef CONFIG_X86_32
1207 static inline int IO_APIC_irq_trigger(int irq)
1208 {
1209 int apic, idx, pin;
1210
1211 for (apic = 0; apic < nr_ioapics; apic++) {
1212 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1213 idx = find_irq_entry(apic, pin, mp_INT);
1214 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1215 return irq_trigger(idx);
1216 }
1217 }
1218 /*
1219 * nonexistent IRQs are edge default
1220 */
1221 return 0;
1222 }
1223 #else
1224 static inline int IO_APIC_irq_trigger(int irq)
1225 {
1226 return 1;
1227 }
1228 #endif
1229
1230 static void ioapic_register_intr(unsigned int irq, unsigned long trigger)
1231 {
1232
1233 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1234 trigger == IOAPIC_LEVEL)
1235 irq_set_status_flags(irq, IRQ_LEVEL);
1236 else
1237 irq_clear_status_flags(irq, IRQ_LEVEL);
1238
1239 if (irq_remapped(get_irq_chip_data(irq))) {
1240 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1241 if (trigger)
1242 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1243 handle_fasteoi_irq,
1244 "fasteoi");
1245 else
1246 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1247 handle_edge_irq, "edge");
1248 return;
1249 }
1250
1251 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1252 trigger == IOAPIC_LEVEL)
1253 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1254 handle_fasteoi_irq,
1255 "fasteoi");
1256 else
1257 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1258 handle_edge_irq, "edge");
1259 }
1260
1261 static int setup_ioapic_entry(int apic_id, int irq,
1262 struct IO_APIC_route_entry *entry,
1263 unsigned int destination, int trigger,
1264 int polarity, int vector, int pin)
1265 {
1266 /*
1267 * add it to the IO-APIC irq-routing table:
1268 */
1269 memset(entry,0,sizeof(*entry));
1270
1271 if (intr_remapping_enabled) {
1272 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1273 struct irte irte;
1274 struct IR_IO_APIC_route_entry *ir_entry =
1275 (struct IR_IO_APIC_route_entry *) entry;
1276 int index;
1277
1278 if (!iommu)
1279 panic("No mapping iommu for ioapic %d\n", apic_id);
1280
1281 index = alloc_irte(iommu, irq, 1);
1282 if (index < 0)
1283 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1284
1285 prepare_irte(&irte, vector, destination);
1286
1287 /* Set source-id of interrupt request */
1288 set_ioapic_sid(&irte, apic_id);
1289
1290 modify_irte(irq, &irte);
1291
1292 ir_entry->index2 = (index >> 15) & 0x1;
1293 ir_entry->zero = 0;
1294 ir_entry->format = 1;
1295 ir_entry->index = (index & 0x7fff);
1296 /*
1297 * IO-APIC RTE will be configured with virtual vector.
1298 * irq handler will do the explicit EOI to the io-apic.
1299 */
1300 ir_entry->vector = pin;
1301 } else {
1302 entry->delivery_mode = apic->irq_delivery_mode;
1303 entry->dest_mode = apic->irq_dest_mode;
1304 entry->dest = destination;
1305 entry->vector = vector;
1306 }
1307
1308 entry->mask = 0; /* enable IRQ */
1309 entry->trigger = trigger;
1310 entry->polarity = polarity;
1311
1312 /* Mask level triggered irqs.
1313 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1314 */
1315 if (trigger)
1316 entry->mask = 1;
1317 return 0;
1318 }
1319
1320 static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1321 struct irq_cfg *cfg, int trigger, int polarity)
1322 {
1323 struct IO_APIC_route_entry entry;
1324 unsigned int dest;
1325
1326 if (!IO_APIC_IRQ(irq))
1327 return;
1328 /*
1329 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1330 * controllers like 8259. Now that IO-APIC can handle this irq, update
1331 * the cfg->domain.
1332 */
1333 if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1334 apic->vector_allocation_domain(0, cfg->domain);
1335
1336 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1337 return;
1338
1339 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1340
1341 apic_printk(APIC_VERBOSE,KERN_DEBUG
1342 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1343 "IRQ %d Mode:%i Active:%i)\n",
1344 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1345 irq, trigger, polarity);
1346
1347
1348 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1349 dest, trigger, polarity, cfg->vector, pin)) {
1350 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1351 mp_ioapics[apic_id].apicid, pin);
1352 __clear_irq_vector(irq, cfg);
1353 return;
1354 }
1355
1356 ioapic_register_intr(irq, trigger);
1357 if (irq < legacy_pic->nr_legacy_irqs)
1358 legacy_pic->mask(irq);
1359
1360 ioapic_write_entry(apic_id, pin, entry);
1361 }
1362
1363 static struct {
1364 DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1365 } mp_ioapic_routing[MAX_IO_APICS];
1366
1367 static void __init setup_IO_APIC_irqs(void)
1368 {
1369 int apic_id, pin, idx, irq, notcon = 0;
1370 int node = cpu_to_node(0);
1371 struct irq_cfg *cfg;
1372
1373 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1374
1375 for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1376 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1377 idx = find_irq_entry(apic_id, pin, mp_INT);
1378 if (idx == -1) {
1379 if (!notcon) {
1380 notcon = 1;
1381 apic_printk(APIC_VERBOSE,
1382 KERN_DEBUG " %d-%d",
1383 mp_ioapics[apic_id].apicid, pin);
1384 } else
1385 apic_printk(APIC_VERBOSE, " %d-%d",
1386 mp_ioapics[apic_id].apicid, pin);
1387 continue;
1388 }
1389 if (notcon) {
1390 apic_printk(APIC_VERBOSE,
1391 " (apicid-pin) not connected\n");
1392 notcon = 0;
1393 }
1394
1395 irq = pin_2_irq(idx, apic_id, pin);
1396
1397 if ((apic_id > 0) && (irq > 16))
1398 continue;
1399
1400 /*
1401 * Skip the timer IRQ if there's a quirk handler
1402 * installed and if it returns 1:
1403 */
1404 if (apic->multi_timer_check &&
1405 apic->multi_timer_check(apic_id, irq))
1406 continue;
1407
1408 cfg = alloc_irq_and_cfg_at(irq, node);
1409 if (!cfg)
1410 continue;
1411
1412 add_pin_to_irq_node(cfg, node, apic_id, pin);
1413 /*
1414 * don't mark it in pin_programmed, so later acpi could
1415 * set it correctly when irq < 16
1416 */
1417 setup_ioapic_irq(apic_id, pin, irq, cfg, irq_trigger(idx),
1418 irq_polarity(idx));
1419 }
1420
1421 if (notcon)
1422 apic_printk(APIC_VERBOSE,
1423 " (apicid-pin) not connected\n");
1424 }
1425
1426 /*
1427 * for the gsit that is not in first ioapic
1428 * but could not use acpi_register_gsi()
1429 * like some special sci in IBM x3330
1430 */
1431 void setup_IO_APIC_irq_extra(u32 gsi)
1432 {
1433 int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1434 struct irq_cfg *cfg;
1435
1436 /*
1437 * Convert 'gsi' to 'ioapic.pin'.
1438 */
1439 apic_id = mp_find_ioapic(gsi);
1440 if (apic_id < 0)
1441 return;
1442
1443 pin = mp_find_ioapic_pin(apic_id, gsi);
1444 idx = find_irq_entry(apic_id, pin, mp_INT);
1445 if (idx == -1)
1446 return;
1447
1448 irq = pin_2_irq(idx, apic_id, pin);
1449
1450 /* Only handle the non legacy irqs on secondary ioapics */
1451 if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1452 return;
1453
1454 cfg = alloc_irq_and_cfg_at(irq, node);
1455 if (!cfg)
1456 return;
1457
1458 add_pin_to_irq_node(cfg, node, apic_id, pin);
1459
1460 if (test_bit(pin, mp_ioapic_routing[apic_id].pin_programmed)) {
1461 pr_debug("Pin %d-%d already programmed\n",
1462 mp_ioapics[apic_id].apicid, pin);
1463 return;
1464 }
1465 set_bit(pin, mp_ioapic_routing[apic_id].pin_programmed);
1466
1467 setup_ioapic_irq(apic_id, pin, irq, cfg,
1468 irq_trigger(idx), irq_polarity(idx));
1469 }
1470
1471 /*
1472 * Set up the timer pin, possibly with the 8259A-master behind.
1473 */
1474 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1475 int vector)
1476 {
1477 struct IO_APIC_route_entry entry;
1478
1479 if (intr_remapping_enabled)
1480 return;
1481
1482 memset(&entry, 0, sizeof(entry));
1483
1484 /*
1485 * We use logical delivery to get the timer IRQ
1486 * to the first CPU.
1487 */
1488 entry.dest_mode = apic->irq_dest_mode;
1489 entry.mask = 0; /* don't mask IRQ for edge */
1490 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1491 entry.delivery_mode = apic->irq_delivery_mode;
1492 entry.polarity = 0;
1493 entry.trigger = 0;
1494 entry.vector = vector;
1495
1496 /*
1497 * The timer IRQ doesn't have to know that behind the
1498 * scene we may have a 8259A-master in AEOI mode ...
1499 */
1500 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1501
1502 /*
1503 * Add it to the IO-APIC irq-routing table:
1504 */
1505 ioapic_write_entry(apic_id, pin, entry);
1506 }
1507
1508
1509 __apicdebuginit(void) print_IO_APIC(void)
1510 {
1511 int apic, i;
1512 union IO_APIC_reg_00 reg_00;
1513 union IO_APIC_reg_01 reg_01;
1514 union IO_APIC_reg_02 reg_02;
1515 union IO_APIC_reg_03 reg_03;
1516 unsigned long flags;
1517 struct irq_cfg *cfg;
1518 unsigned int irq;
1519
1520 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1521 for (i = 0; i < nr_ioapics; i++)
1522 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1523 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1524
1525 /*
1526 * We are a bit conservative about what we expect. We have to
1527 * know about every hardware change ASAP.
1528 */
1529 printk(KERN_INFO "testing the IO APIC.......................\n");
1530
1531 for (apic = 0; apic < nr_ioapics; apic++) {
1532
1533 raw_spin_lock_irqsave(&ioapic_lock, flags);
1534 reg_00.raw = io_apic_read(apic, 0);
1535 reg_01.raw = io_apic_read(apic, 1);
1536 if (reg_01.bits.version >= 0x10)
1537 reg_02.raw = io_apic_read(apic, 2);
1538 if (reg_01.bits.version >= 0x20)
1539 reg_03.raw = io_apic_read(apic, 3);
1540 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1541
1542 printk("\n");
1543 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1544 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1545 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1546 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1547 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1548
1549 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1550 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1551
1552 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1553 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1554
1555 /*
1556 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1557 * but the value of reg_02 is read as the previous read register
1558 * value, so ignore it if reg_02 == reg_01.
1559 */
1560 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1561 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1562 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1563 }
1564
1565 /*
1566 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1567 * or reg_03, but the value of reg_0[23] is read as the previous read
1568 * register value, so ignore it if reg_03 == reg_0[12].
1569 */
1570 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1571 reg_03.raw != reg_01.raw) {
1572 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1573 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1574 }
1575
1576 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1577
1578 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1579 " Stat Dmod Deli Vect:\n");
1580
1581 for (i = 0; i <= reg_01.bits.entries; i++) {
1582 struct IO_APIC_route_entry entry;
1583
1584 entry = ioapic_read_entry(apic, i);
1585
1586 printk(KERN_DEBUG " %02x %03X ",
1587 i,
1588 entry.dest
1589 );
1590
1591 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1592 entry.mask,
1593 entry.trigger,
1594 entry.irr,
1595 entry.polarity,
1596 entry.delivery_status,
1597 entry.dest_mode,
1598 entry.delivery_mode,
1599 entry.vector
1600 );
1601 }
1602 }
1603 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1604 for_each_active_irq(irq) {
1605 struct irq_pin_list *entry;
1606
1607 cfg = get_irq_chip_data(irq);
1608 if (!cfg)
1609 continue;
1610 entry = cfg->irq_2_pin;
1611 if (!entry)
1612 continue;
1613 printk(KERN_DEBUG "IRQ%d ", irq);
1614 for_each_irq_pin(entry, cfg->irq_2_pin)
1615 printk("-> %d:%d", entry->apic, entry->pin);
1616 printk("\n");
1617 }
1618
1619 printk(KERN_INFO ".................................... done.\n");
1620
1621 return;
1622 }
1623
1624 __apicdebuginit(void) print_APIC_field(int base)
1625 {
1626 int i;
1627
1628 printk(KERN_DEBUG);
1629
1630 for (i = 0; i < 8; i++)
1631 printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1632
1633 printk(KERN_CONT "\n");
1634 }
1635
1636 __apicdebuginit(void) print_local_APIC(void *dummy)
1637 {
1638 unsigned int i, v, ver, maxlvt;
1639 u64 icr;
1640
1641 printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1642 smp_processor_id(), hard_smp_processor_id());
1643 v = apic_read(APIC_ID);
1644 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1645 v = apic_read(APIC_LVR);
1646 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1647 ver = GET_APIC_VERSION(v);
1648 maxlvt = lapic_get_maxlvt();
1649
1650 v = apic_read(APIC_TASKPRI);
1651 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1652
1653 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1654 if (!APIC_XAPIC(ver)) {
1655 v = apic_read(APIC_ARBPRI);
1656 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1657 v & APIC_ARBPRI_MASK);
1658 }
1659 v = apic_read(APIC_PROCPRI);
1660 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1661 }
1662
1663 /*
1664 * Remote read supported only in the 82489DX and local APIC for
1665 * Pentium processors.
1666 */
1667 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1668 v = apic_read(APIC_RRR);
1669 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1670 }
1671
1672 v = apic_read(APIC_LDR);
1673 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1674 if (!x2apic_enabled()) {
1675 v = apic_read(APIC_DFR);
1676 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1677 }
1678 v = apic_read(APIC_SPIV);
1679 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1680
1681 printk(KERN_DEBUG "... APIC ISR field:\n");
1682 print_APIC_field(APIC_ISR);
1683 printk(KERN_DEBUG "... APIC TMR field:\n");
1684 print_APIC_field(APIC_TMR);
1685 printk(KERN_DEBUG "... APIC IRR field:\n");
1686 print_APIC_field(APIC_IRR);
1687
1688 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1689 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1690 apic_write(APIC_ESR, 0);
1691
1692 v = apic_read(APIC_ESR);
1693 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1694 }
1695
1696 icr = apic_icr_read();
1697 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1698 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1699
1700 v = apic_read(APIC_LVTT);
1701 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1702
1703 if (maxlvt > 3) { /* PC is LVT#4. */
1704 v = apic_read(APIC_LVTPC);
1705 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1706 }
1707 v = apic_read(APIC_LVT0);
1708 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1709 v = apic_read(APIC_LVT1);
1710 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1711
1712 if (maxlvt > 2) { /* ERR is LVT#3. */
1713 v = apic_read(APIC_LVTERR);
1714 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1715 }
1716
1717 v = apic_read(APIC_TMICT);
1718 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1719 v = apic_read(APIC_TMCCT);
1720 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1721 v = apic_read(APIC_TDCR);
1722 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1723
1724 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1725 v = apic_read(APIC_EFEAT);
1726 maxlvt = (v >> 16) & 0xff;
1727 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1728 v = apic_read(APIC_ECTRL);
1729 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1730 for (i = 0; i < maxlvt; i++) {
1731 v = apic_read(APIC_EILVTn(i));
1732 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1733 }
1734 }
1735 printk("\n");
1736 }
1737
1738 __apicdebuginit(void) print_local_APICs(int maxcpu)
1739 {
1740 int cpu;
1741
1742 if (!maxcpu)
1743 return;
1744
1745 preempt_disable();
1746 for_each_online_cpu(cpu) {
1747 if (cpu >= maxcpu)
1748 break;
1749 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1750 }
1751 preempt_enable();
1752 }
1753
1754 __apicdebuginit(void) print_PIC(void)
1755 {
1756 unsigned int v;
1757 unsigned long flags;
1758
1759 if (!legacy_pic->nr_legacy_irqs)
1760 return;
1761
1762 printk(KERN_DEBUG "\nprinting PIC contents\n");
1763
1764 raw_spin_lock_irqsave(&i8259A_lock, flags);
1765
1766 v = inb(0xa1) << 8 | inb(0x21);
1767 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1768
1769 v = inb(0xa0) << 8 | inb(0x20);
1770 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1771
1772 outb(0x0b,0xa0);
1773 outb(0x0b,0x20);
1774 v = inb(0xa0) << 8 | inb(0x20);
1775 outb(0x0a,0xa0);
1776 outb(0x0a,0x20);
1777
1778 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1779
1780 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1781
1782 v = inb(0x4d1) << 8 | inb(0x4d0);
1783 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1784 }
1785
1786 static int __initdata show_lapic = 1;
1787 static __init int setup_show_lapic(char *arg)
1788 {
1789 int num = -1;
1790
1791 if (strcmp(arg, "all") == 0) {
1792 show_lapic = CONFIG_NR_CPUS;
1793 } else {
1794 get_option(&arg, &num);
1795 if (num >= 0)
1796 show_lapic = num;
1797 }
1798
1799 return 1;
1800 }
1801 __setup("show_lapic=", setup_show_lapic);
1802
1803 __apicdebuginit(int) print_ICs(void)
1804 {
1805 if (apic_verbosity == APIC_QUIET)
1806 return 0;
1807
1808 print_PIC();
1809
1810 /* don't print out if apic is not there */
1811 if (!cpu_has_apic && !apic_from_smp_config())
1812 return 0;
1813
1814 print_local_APICs(show_lapic);
1815 print_IO_APIC();
1816
1817 return 0;
1818 }
1819
1820 fs_initcall(print_ICs);
1821
1822
1823 /* Where if anywhere is the i8259 connect in external int mode */
1824 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1825
1826 void __init enable_IO_APIC(void)
1827 {
1828 int i8259_apic, i8259_pin;
1829 int apic;
1830
1831 if (!legacy_pic->nr_legacy_irqs)
1832 return;
1833
1834 for(apic = 0; apic < nr_ioapics; apic++) {
1835 int pin;
1836 /* See if any of the pins is in ExtINT mode */
1837 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1838 struct IO_APIC_route_entry entry;
1839 entry = ioapic_read_entry(apic, pin);
1840
1841 /* If the interrupt line is enabled and in ExtInt mode
1842 * I have found the pin where the i8259 is connected.
1843 */
1844 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1845 ioapic_i8259.apic = apic;
1846 ioapic_i8259.pin = pin;
1847 goto found_i8259;
1848 }
1849 }
1850 }
1851 found_i8259:
1852 /* Look to see what if the MP table has reported the ExtINT */
1853 /* If we could not find the appropriate pin by looking at the ioapic
1854 * the i8259 probably is not connected the ioapic but give the
1855 * mptable a chance anyway.
1856 */
1857 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1858 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1859 /* Trust the MP table if nothing is setup in the hardware */
1860 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1861 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1862 ioapic_i8259.pin = i8259_pin;
1863 ioapic_i8259.apic = i8259_apic;
1864 }
1865 /* Complain if the MP table and the hardware disagree */
1866 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1867 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1868 {
1869 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1870 }
1871
1872 /*
1873 * Do not trust the IO-APIC being empty at bootup
1874 */
1875 clear_IO_APIC();
1876 }
1877
1878 /*
1879 * Not an __init, needed by the reboot code
1880 */
1881 void disable_IO_APIC(void)
1882 {
1883 /*
1884 * Clear the IO-APIC before rebooting:
1885 */
1886 clear_IO_APIC();
1887
1888 if (!legacy_pic->nr_legacy_irqs)
1889 return;
1890
1891 /*
1892 * If the i8259 is routed through an IOAPIC
1893 * Put that IOAPIC in virtual wire mode
1894 * so legacy interrupts can be delivered.
1895 *
1896 * With interrupt-remapping, for now we will use virtual wire A mode,
1897 * as virtual wire B is little complex (need to configure both
1898 * IOAPIC RTE aswell as interrupt-remapping table entry).
1899 * As this gets called during crash dump, keep this simple for now.
1900 */
1901 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1902 struct IO_APIC_route_entry entry;
1903
1904 memset(&entry, 0, sizeof(entry));
1905 entry.mask = 0; /* Enabled */
1906 entry.trigger = 0; /* Edge */
1907 entry.irr = 0;
1908 entry.polarity = 0; /* High */
1909 entry.delivery_status = 0;
1910 entry.dest_mode = 0; /* Physical */
1911 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1912 entry.vector = 0;
1913 entry.dest = read_apic_id();
1914
1915 /*
1916 * Add it to the IO-APIC irq-routing table:
1917 */
1918 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1919 }
1920
1921 /*
1922 * Use virtual wire A mode when interrupt remapping is enabled.
1923 */
1924 if (cpu_has_apic || apic_from_smp_config())
1925 disconnect_bsp_APIC(!intr_remapping_enabled &&
1926 ioapic_i8259.pin != -1);
1927 }
1928
1929 #ifdef CONFIG_X86_32
1930 /*
1931 * function to set the IO-APIC physical IDs based on the
1932 * values stored in the MPC table.
1933 *
1934 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
1935 */
1936
1937 void __init setup_ioapic_ids_from_mpc(void)
1938 {
1939 union IO_APIC_reg_00 reg_00;
1940 physid_mask_t phys_id_present_map;
1941 int apic_id;
1942 int i;
1943 unsigned char old_id;
1944 unsigned long flags;
1945
1946 if (acpi_ioapic)
1947 return;
1948 /*
1949 * Don't check I/O APIC IDs for xAPIC systems. They have
1950 * no meaning without the serial APIC bus.
1951 */
1952 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1953 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
1954 return;
1955 /*
1956 * This is broken; anything with a real cpu count has to
1957 * circumvent this idiocy regardless.
1958 */
1959 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
1960
1961 /*
1962 * Set the IOAPIC ID to the value stored in the MPC table.
1963 */
1964 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1965
1966 /* Read the register 0 value */
1967 raw_spin_lock_irqsave(&ioapic_lock, flags);
1968 reg_00.raw = io_apic_read(apic_id, 0);
1969 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1970
1971 old_id = mp_ioapics[apic_id].apicid;
1972
1973 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
1974 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1975 apic_id, mp_ioapics[apic_id].apicid);
1976 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1977 reg_00.bits.ID);
1978 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
1979 }
1980
1981 /*
1982 * Sanity check, is the ID really free? Every APIC in a
1983 * system must have a unique ID or we get lots of nice
1984 * 'stuck on smp_invalidate_needed IPI wait' messages.
1985 */
1986 if (apic->check_apicid_used(&phys_id_present_map,
1987 mp_ioapics[apic_id].apicid)) {
1988 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
1989 apic_id, mp_ioapics[apic_id].apicid);
1990 for (i = 0; i < get_physical_broadcast(); i++)
1991 if (!physid_isset(i, phys_id_present_map))
1992 break;
1993 if (i >= get_physical_broadcast())
1994 panic("Max APIC ID exceeded!\n");
1995 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1996 i);
1997 physid_set(i, phys_id_present_map);
1998 mp_ioapics[apic_id].apicid = i;
1999 } else {
2000 physid_mask_t tmp;
2001 apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
2002 apic_printk(APIC_VERBOSE, "Setting %d in the "
2003 "phys_id_present_map\n",
2004 mp_ioapics[apic_id].apicid);
2005 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2006 }
2007
2008
2009 /*
2010 * We need to adjust the IRQ routing table
2011 * if the ID changed.
2012 */
2013 if (old_id != mp_ioapics[apic_id].apicid)
2014 for (i = 0; i < mp_irq_entries; i++)
2015 if (mp_irqs[i].dstapic == old_id)
2016 mp_irqs[i].dstapic
2017 = mp_ioapics[apic_id].apicid;
2018
2019 /*
2020 * Read the right value from the MPC table and
2021 * write it into the ID register.
2022 */
2023 apic_printk(APIC_VERBOSE, KERN_INFO
2024 "...changing IO-APIC physical APIC ID to %d ...",
2025 mp_ioapics[apic_id].apicid);
2026
2027 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2028 raw_spin_lock_irqsave(&ioapic_lock, flags);
2029 io_apic_write(apic_id, 0, reg_00.raw);
2030 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2031
2032 /*
2033 * Sanity check
2034 */
2035 raw_spin_lock_irqsave(&ioapic_lock, flags);
2036 reg_00.raw = io_apic_read(apic_id, 0);
2037 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2038 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2039 printk("could not set ID!\n");
2040 else
2041 apic_printk(APIC_VERBOSE, " ok.\n");
2042 }
2043 }
2044 #endif
2045
2046 int no_timer_check __initdata;
2047
2048 static int __init notimercheck(char *s)
2049 {
2050 no_timer_check = 1;
2051 return 1;
2052 }
2053 __setup("no_timer_check", notimercheck);
2054
2055 /*
2056 * There is a nasty bug in some older SMP boards, their mptable lies
2057 * about the timer IRQ. We do the following to work around the situation:
2058 *
2059 * - timer IRQ defaults to IO-APIC IRQ
2060 * - if this function detects that timer IRQs are defunct, then we fall
2061 * back to ISA timer IRQs
2062 */
2063 static int __init timer_irq_works(void)
2064 {
2065 unsigned long t1 = jiffies;
2066 unsigned long flags;
2067
2068 if (no_timer_check)
2069 return 1;
2070
2071 local_save_flags(flags);
2072 local_irq_enable();
2073 /* Let ten ticks pass... */
2074 mdelay((10 * 1000) / HZ);
2075 local_irq_restore(flags);
2076
2077 /*
2078 * Expect a few ticks at least, to be sure some possible
2079 * glue logic does not lock up after one or two first
2080 * ticks in a non-ExtINT mode. Also the local APIC
2081 * might have cached one ExtINT interrupt. Finally, at
2082 * least one tick may be lost due to delays.
2083 */
2084
2085 /* jiffies wrap? */
2086 if (time_after(jiffies, t1 + 4))
2087 return 1;
2088 return 0;
2089 }
2090
2091 /*
2092 * In the SMP+IOAPIC case it might happen that there are an unspecified
2093 * number of pending IRQ events unhandled. These cases are very rare,
2094 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2095 * better to do it this way as thus we do not have to be aware of
2096 * 'pending' interrupts in the IRQ path, except at this point.
2097 */
2098 /*
2099 * Edge triggered needs to resend any interrupt
2100 * that was delayed but this is now handled in the device
2101 * independent code.
2102 */
2103
2104 /*
2105 * Starting up a edge-triggered IO-APIC interrupt is
2106 * nasty - we need to make sure that we get the edge.
2107 * If it is already asserted for some reason, we need
2108 * return 1 to indicate that is was pending.
2109 *
2110 * This is not complete - we should be able to fake
2111 * an edge even if it isn't on the 8259A...
2112 */
2113
2114 static unsigned int startup_ioapic_irq(struct irq_data *data)
2115 {
2116 int was_pending = 0, irq = data->irq;
2117 unsigned long flags;
2118
2119 raw_spin_lock_irqsave(&ioapic_lock, flags);
2120 if (irq < legacy_pic->nr_legacy_irqs) {
2121 legacy_pic->mask(irq);
2122 if (legacy_pic->irq_pending(irq))
2123 was_pending = 1;
2124 }
2125 __unmask_ioapic(data->chip_data);
2126 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2127
2128 return was_pending;
2129 }
2130
2131 static int ioapic_retrigger_irq(struct irq_data *data)
2132 {
2133 struct irq_cfg *cfg = data->chip_data;
2134 unsigned long flags;
2135
2136 raw_spin_lock_irqsave(&vector_lock, flags);
2137 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2138 raw_spin_unlock_irqrestore(&vector_lock, flags);
2139
2140 return 1;
2141 }
2142
2143 /*
2144 * Level and edge triggered IO-APIC interrupts need different handling,
2145 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2146 * handled with the level-triggered descriptor, but that one has slightly
2147 * more overhead. Level-triggered interrupts cannot be handled with the
2148 * edge-triggered handler, without risking IRQ storms and other ugly
2149 * races.
2150 */
2151
2152 #ifdef CONFIG_SMP
2153 void send_cleanup_vector(struct irq_cfg *cfg)
2154 {
2155 cpumask_var_t cleanup_mask;
2156
2157 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2158 unsigned int i;
2159 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2160 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2161 } else {
2162 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2163 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2164 free_cpumask_var(cleanup_mask);
2165 }
2166 cfg->move_in_progress = 0;
2167 }
2168
2169 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2170 {
2171 int apic, pin;
2172 struct irq_pin_list *entry;
2173 u8 vector = cfg->vector;
2174
2175 for_each_irq_pin(entry, cfg->irq_2_pin) {
2176 unsigned int reg;
2177
2178 apic = entry->apic;
2179 pin = entry->pin;
2180 /*
2181 * With interrupt-remapping, destination information comes
2182 * from interrupt-remapping table entry.
2183 */
2184 if (!irq_remapped(cfg))
2185 io_apic_write(apic, 0x11 + pin*2, dest);
2186 reg = io_apic_read(apic, 0x10 + pin*2);
2187 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2188 reg |= vector;
2189 io_apic_modify(apic, 0x10 + pin*2, reg);
2190 }
2191 }
2192
2193 /*
2194 * Either sets data->affinity to a valid value, and returns
2195 * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2196 * leaves data->affinity untouched.
2197 */
2198 int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2199 unsigned int *dest_id)
2200 {
2201 struct irq_cfg *cfg = data->chip_data;
2202
2203 if (!cpumask_intersects(mask, cpu_online_mask))
2204 return -1;
2205
2206 if (assign_irq_vector(data->irq, data->chip_data, mask))
2207 return -1;
2208
2209 cpumask_copy(data->affinity, mask);
2210
2211 *dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2212 return 0;
2213 }
2214
2215 static int
2216 ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2217 bool force)
2218 {
2219 unsigned int dest, irq = data->irq;
2220 unsigned long flags;
2221 int ret;
2222
2223 raw_spin_lock_irqsave(&ioapic_lock, flags);
2224 ret = __ioapic_set_affinity(data, mask, &dest);
2225 if (!ret) {
2226 /* Only the high 8 bits are valid. */
2227 dest = SET_APIC_LOGICAL_ID(dest);
2228 __target_IO_APIC_irq(irq, dest, data->chip_data);
2229 }
2230 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2231 return ret;
2232 }
2233
2234 #ifdef CONFIG_INTR_REMAP
2235
2236 /*
2237 * Migrate the IO-APIC irq in the presence of intr-remapping.
2238 *
2239 * For both level and edge triggered, irq migration is a simple atomic
2240 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2241 *
2242 * For level triggered, we eliminate the io-apic RTE modification (with the
2243 * updated vector information), by using a virtual vector (io-apic pin number).
2244 * Real vector that is used for interrupting cpu will be coming from
2245 * the interrupt-remapping table entry.
2246 */
2247 static int
2248 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2249 bool force)
2250 {
2251 struct irq_cfg *cfg = data->chip_data;
2252 unsigned int dest, irq = data->irq;
2253 struct irte irte;
2254
2255 if (!cpumask_intersects(mask, cpu_online_mask))
2256 return -EINVAL;
2257
2258 if (get_irte(irq, &irte))
2259 return -EBUSY;
2260
2261 if (assign_irq_vector(irq, cfg, mask))
2262 return -EBUSY;
2263
2264 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2265
2266 irte.vector = cfg->vector;
2267 irte.dest_id = IRTE_DEST(dest);
2268
2269 /*
2270 * Modified the IRTE and flushes the Interrupt entry cache.
2271 */
2272 modify_irte(irq, &irte);
2273
2274 if (cfg->move_in_progress)
2275 send_cleanup_vector(cfg);
2276
2277 cpumask_copy(data->affinity, mask);
2278 return 0;
2279 }
2280
2281 #else
2282 static inline int
2283 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2284 bool force)
2285 {
2286 return 0;
2287 }
2288 #endif
2289
2290 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2291 {
2292 unsigned vector, me;
2293
2294 ack_APIC_irq();
2295 exit_idle();
2296 irq_enter();
2297
2298 me = smp_processor_id();
2299 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2300 unsigned int irq;
2301 unsigned int irr;
2302 struct irq_desc *desc;
2303 struct irq_cfg *cfg;
2304 irq = __get_cpu_var(vector_irq)[vector];
2305
2306 if (irq == -1)
2307 continue;
2308
2309 desc = irq_to_desc(irq);
2310 if (!desc)
2311 continue;
2312
2313 cfg = irq_cfg(irq);
2314 raw_spin_lock(&desc->lock);
2315
2316 /*
2317 * Check if the irq migration is in progress. If so, we
2318 * haven't received the cleanup request yet for this irq.
2319 */
2320 if (cfg->move_in_progress)
2321 goto unlock;
2322
2323 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2324 goto unlock;
2325
2326 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2327 /*
2328 * Check if the vector that needs to be cleanedup is
2329 * registered at the cpu's IRR. If so, then this is not
2330 * the best time to clean it up. Lets clean it up in the
2331 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2332 * to myself.
2333 */
2334 if (irr & (1 << (vector % 32))) {
2335 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2336 goto unlock;
2337 }
2338 __get_cpu_var(vector_irq)[vector] = -1;
2339 unlock:
2340 raw_spin_unlock(&desc->lock);
2341 }
2342
2343 irq_exit();
2344 }
2345
2346 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2347 {
2348 unsigned me;
2349
2350 if (likely(!cfg->move_in_progress))
2351 return;
2352
2353 me = smp_processor_id();
2354
2355 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2356 send_cleanup_vector(cfg);
2357 }
2358
2359 static void irq_complete_move(struct irq_cfg *cfg)
2360 {
2361 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2362 }
2363
2364 void irq_force_complete_move(int irq)
2365 {
2366 struct irq_cfg *cfg = get_irq_chip_data(irq);
2367
2368 if (!cfg)
2369 return;
2370
2371 __irq_complete_move(cfg, cfg->vector);
2372 }
2373 #else
2374 static inline void irq_complete_move(struct irq_cfg *cfg) { }
2375 #endif
2376
2377 static void ack_apic_edge(struct irq_data *data)
2378 {
2379 irq_complete_move(data->chip_data);
2380 move_native_irq(data->irq);
2381 ack_APIC_irq();
2382 }
2383
2384 atomic_t irq_mis_count;
2385
2386 /*
2387 * IO-APIC versions below 0x20 don't support EOI register.
2388 * For the record, here is the information about various versions:
2389 * 0Xh 82489DX
2390 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2391 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant
2392 * 30h-FFh Reserved
2393 *
2394 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2395 * version as 0x2. This is an error with documentation and these ICH chips
2396 * use io-apic's of version 0x20.
2397 *
2398 * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2399 * Otherwise, we simulate the EOI message manually by changing the trigger
2400 * mode to edge and then back to level, with RTE being masked during this.
2401 */
2402 static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2403 {
2404 struct irq_pin_list *entry;
2405 unsigned long flags;
2406
2407 raw_spin_lock_irqsave(&ioapic_lock, flags);
2408 for_each_irq_pin(entry, cfg->irq_2_pin) {
2409 if (mp_ioapics[entry->apic].apicver >= 0x20) {
2410 /*
2411 * Intr-remapping uses pin number as the virtual vector
2412 * in the RTE. Actual vector is programmed in
2413 * intr-remapping table entry. Hence for the io-apic
2414 * EOI we use the pin number.
2415 */
2416 if (irq_remapped(cfg))
2417 io_apic_eoi(entry->apic, entry->pin);
2418 else
2419 io_apic_eoi(entry->apic, cfg->vector);
2420 } else {
2421 __mask_and_edge_IO_APIC_irq(entry);
2422 __unmask_and_level_IO_APIC_irq(entry);
2423 }
2424 }
2425 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2426 }
2427
2428 static void ack_apic_level(struct irq_data *data)
2429 {
2430 struct irq_cfg *cfg = data->chip_data;
2431 int i, do_unmask_irq = 0, irq = data->irq;
2432 struct irq_desc *desc = irq_to_desc(irq);
2433 unsigned long v;
2434
2435 irq_complete_move(cfg);
2436 #ifdef CONFIG_GENERIC_PENDING_IRQ
2437 /* If we are moving the irq we need to mask it */
2438 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2439 do_unmask_irq = 1;
2440 mask_ioapic(cfg);
2441 }
2442 #endif
2443
2444 /*
2445 * It appears there is an erratum which affects at least version 0x11
2446 * of I/O APIC (that's the 82093AA and cores integrated into various
2447 * chipsets). Under certain conditions a level-triggered interrupt is
2448 * erroneously delivered as edge-triggered one but the respective IRR
2449 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2450 * message but it will never arrive and further interrupts are blocked
2451 * from the source. The exact reason is so far unknown, but the
2452 * phenomenon was observed when two consecutive interrupt requests
2453 * from a given source get delivered to the same CPU and the source is
2454 * temporarily disabled in between.
2455 *
2456 * A workaround is to simulate an EOI message manually. We achieve it
2457 * by setting the trigger mode to edge and then to level when the edge
2458 * trigger mode gets detected in the TMR of a local APIC for a
2459 * level-triggered interrupt. We mask the source for the time of the
2460 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2461 * The idea is from Manfred Spraul. --macro
2462 *
2463 * Also in the case when cpu goes offline, fixup_irqs() will forward
2464 * any unhandled interrupt on the offlined cpu to the new cpu
2465 * destination that is handling the corresponding interrupt. This
2466 * interrupt forwarding is done via IPI's. Hence, in this case also
2467 * level-triggered io-apic interrupt will be seen as an edge
2468 * interrupt in the IRR. And we can't rely on the cpu's EOI
2469 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2470 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2471 * supporting EOI register, we do an explicit EOI to clear the
2472 * remote IRR and on IO-APIC's which don't have an EOI register,
2473 * we use the above logic (mask+edge followed by unmask+level) from
2474 * Manfred Spraul to clear the remote IRR.
2475 */
2476 i = cfg->vector;
2477 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2478
2479 /*
2480 * We must acknowledge the irq before we move it or the acknowledge will
2481 * not propagate properly.
2482 */
2483 ack_APIC_irq();
2484
2485 /*
2486 * Tail end of clearing remote IRR bit (either by delivering the EOI
2487 * message via io-apic EOI register write or simulating it using
2488 * mask+edge followed by unnask+level logic) manually when the
2489 * level triggered interrupt is seen as the edge triggered interrupt
2490 * at the cpu.
2491 */
2492 if (!(v & (1 << (i & 0x1f)))) {
2493 atomic_inc(&irq_mis_count);
2494
2495 eoi_ioapic_irq(irq, cfg);
2496 }
2497
2498 /* Now we can move and renable the irq */
2499 if (unlikely(do_unmask_irq)) {
2500 /* Only migrate the irq if the ack has been received.
2501 *
2502 * On rare occasions the broadcast level triggered ack gets
2503 * delayed going to ioapics, and if we reprogram the
2504 * vector while Remote IRR is still set the irq will never
2505 * fire again.
2506 *
2507 * To prevent this scenario we read the Remote IRR bit
2508 * of the ioapic. This has two effects.
2509 * - On any sane system the read of the ioapic will
2510 * flush writes (and acks) going to the ioapic from
2511 * this cpu.
2512 * - We get to see if the ACK has actually been delivered.
2513 *
2514 * Based on failed experiments of reprogramming the
2515 * ioapic entry from outside of irq context starting
2516 * with masking the ioapic entry and then polling until
2517 * Remote IRR was clear before reprogramming the
2518 * ioapic I don't trust the Remote IRR bit to be
2519 * completey accurate.
2520 *
2521 * However there appears to be no other way to plug
2522 * this race, so if the Remote IRR bit is not
2523 * accurate and is causing problems then it is a hardware bug
2524 * and you can go talk to the chipset vendor about it.
2525 */
2526 if (!io_apic_level_ack_pending(cfg))
2527 move_masked_irq(irq);
2528 unmask_ioapic(cfg);
2529 }
2530 }
2531
2532 #ifdef CONFIG_INTR_REMAP
2533 static void ir_ack_apic_edge(struct irq_data *data)
2534 {
2535 ack_APIC_irq();
2536 }
2537
2538 static void ir_ack_apic_level(struct irq_data *data)
2539 {
2540 ack_APIC_irq();
2541 eoi_ioapic_irq(data->irq, data->chip_data);
2542 }
2543 #endif /* CONFIG_INTR_REMAP */
2544
2545 static struct irq_chip ioapic_chip __read_mostly = {
2546 .name = "IO-APIC",
2547 .irq_startup = startup_ioapic_irq,
2548 .irq_mask = mask_ioapic_irq,
2549 .irq_unmask = unmask_ioapic_irq,
2550 .irq_ack = ack_apic_edge,
2551 .irq_eoi = ack_apic_level,
2552 #ifdef CONFIG_SMP
2553 .irq_set_affinity = ioapic_set_affinity,
2554 #endif
2555 .irq_retrigger = ioapic_retrigger_irq,
2556 };
2557
2558 static struct irq_chip ir_ioapic_chip __read_mostly = {
2559 .name = "IR-IO-APIC",
2560 .irq_startup = startup_ioapic_irq,
2561 .irq_mask = mask_ioapic_irq,
2562 .irq_unmask = unmask_ioapic_irq,
2563 #ifdef CONFIG_INTR_REMAP
2564 .irq_ack = ir_ack_apic_edge,
2565 .irq_eoi = ir_ack_apic_level,
2566 #ifdef CONFIG_SMP
2567 .irq_set_affinity = ir_ioapic_set_affinity,
2568 #endif
2569 #endif
2570 .irq_retrigger = ioapic_retrigger_irq,
2571 };
2572
2573 static inline void init_IO_APIC_traps(void)
2574 {
2575 struct irq_cfg *cfg;
2576 unsigned int irq;
2577
2578 /*
2579 * NOTE! The local APIC isn't very good at handling
2580 * multiple interrupts at the same interrupt level.
2581 * As the interrupt level is determined by taking the
2582 * vector number and shifting that right by 4, we
2583 * want to spread these out a bit so that they don't
2584 * all fall in the same interrupt level.
2585 *
2586 * Also, we've got to be careful not to trash gate
2587 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2588 */
2589 for_each_active_irq(irq) {
2590 cfg = get_irq_chip_data(irq);
2591 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2592 /*
2593 * Hmm.. We don't have an entry for this,
2594 * so default to an old-fashioned 8259
2595 * interrupt if we can..
2596 */
2597 if (irq < legacy_pic->nr_legacy_irqs)
2598 legacy_pic->make_irq(irq);
2599 else
2600 /* Strange. Oh, well.. */
2601 set_irq_chip(irq, &no_irq_chip);
2602 }
2603 }
2604 }
2605
2606 /*
2607 * The local APIC irq-chip implementation:
2608 */
2609
2610 static void mask_lapic_irq(struct irq_data *data)
2611 {
2612 unsigned long v;
2613
2614 v = apic_read(APIC_LVT0);
2615 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2616 }
2617
2618 static void unmask_lapic_irq(struct irq_data *data)
2619 {
2620 unsigned long v;
2621
2622 v = apic_read(APIC_LVT0);
2623 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2624 }
2625
2626 static void ack_lapic_irq(struct irq_data *data)
2627 {
2628 ack_APIC_irq();
2629 }
2630
2631 static struct irq_chip lapic_chip __read_mostly = {
2632 .name = "local-APIC",
2633 .irq_mask = mask_lapic_irq,
2634 .irq_unmask = unmask_lapic_irq,
2635 .irq_ack = ack_lapic_irq,
2636 };
2637
2638 static void lapic_register_intr(int irq)
2639 {
2640 irq_clear_status_flags(irq, IRQ_LEVEL);
2641 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2642 "edge");
2643 }
2644
2645 /*
2646 * This looks a bit hackish but it's about the only one way of sending
2647 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2648 * not support the ExtINT mode, unfortunately. We need to send these
2649 * cycles as some i82489DX-based boards have glue logic that keeps the
2650 * 8259A interrupt line asserted until INTA. --macro
2651 */
2652 static inline void __init unlock_ExtINT_logic(void)
2653 {
2654 int apic, pin, i;
2655 struct IO_APIC_route_entry entry0, entry1;
2656 unsigned char save_control, save_freq_select;
2657
2658 pin = find_isa_irq_pin(8, mp_INT);
2659 if (pin == -1) {
2660 WARN_ON_ONCE(1);
2661 return;
2662 }
2663 apic = find_isa_irq_apic(8, mp_INT);
2664 if (apic == -1) {
2665 WARN_ON_ONCE(1);
2666 return;
2667 }
2668
2669 entry0 = ioapic_read_entry(apic, pin);
2670 clear_IO_APIC_pin(apic, pin);
2671
2672 memset(&entry1, 0, sizeof(entry1));
2673
2674 entry1.dest_mode = 0; /* physical delivery */
2675 entry1.mask = 0; /* unmask IRQ now */
2676 entry1.dest = hard_smp_processor_id();
2677 entry1.delivery_mode = dest_ExtINT;
2678 entry1.polarity = entry0.polarity;
2679 entry1.trigger = 0;
2680 entry1.vector = 0;
2681
2682 ioapic_write_entry(apic, pin, entry1);
2683
2684 save_control = CMOS_READ(RTC_CONTROL);
2685 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2686 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2687 RTC_FREQ_SELECT);
2688 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2689
2690 i = 100;
2691 while (i-- > 0) {
2692 mdelay(10);
2693 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2694 i -= 10;
2695 }
2696
2697 CMOS_WRITE(save_control, RTC_CONTROL);
2698 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2699 clear_IO_APIC_pin(apic, pin);
2700
2701 ioapic_write_entry(apic, pin, entry0);
2702 }
2703
2704 static int disable_timer_pin_1 __initdata;
2705 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2706 static int __init disable_timer_pin_setup(char *arg)
2707 {
2708 disable_timer_pin_1 = 1;
2709 return 0;
2710 }
2711 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2712
2713 int timer_through_8259 __initdata;
2714
2715 /*
2716 * This code may look a bit paranoid, but it's supposed to cooperate with
2717 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2718 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2719 * fanatically on his truly buggy board.
2720 *
2721 * FIXME: really need to revamp this for all platforms.
2722 */
2723 static inline void __init check_timer(void)
2724 {
2725 struct irq_cfg *cfg = get_irq_chip_data(0);
2726 int node = cpu_to_node(0);
2727 int apic1, pin1, apic2, pin2;
2728 unsigned long flags;
2729 int no_pin1 = 0;
2730
2731 local_irq_save(flags);
2732
2733 /*
2734 * get/set the timer IRQ vector:
2735 */
2736 legacy_pic->mask(0);
2737 assign_irq_vector(0, cfg, apic->target_cpus());
2738
2739 /*
2740 * As IRQ0 is to be enabled in the 8259A, the virtual
2741 * wire has to be disabled in the local APIC. Also
2742 * timer interrupts need to be acknowledged manually in
2743 * the 8259A for the i82489DX when using the NMI
2744 * watchdog as that APIC treats NMIs as level-triggered.
2745 * The AEOI mode will finish them in the 8259A
2746 * automatically.
2747 */
2748 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2749 legacy_pic->init(1);
2750
2751 pin1 = find_isa_irq_pin(0, mp_INT);
2752 apic1 = find_isa_irq_apic(0, mp_INT);
2753 pin2 = ioapic_i8259.pin;
2754 apic2 = ioapic_i8259.apic;
2755
2756 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2757 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2758 cfg->vector, apic1, pin1, apic2, pin2);
2759
2760 /*
2761 * Some BIOS writers are clueless and report the ExtINTA
2762 * I/O APIC input from the cascaded 8259A as the timer
2763 * interrupt input. So just in case, if only one pin
2764 * was found above, try it both directly and through the
2765 * 8259A.
2766 */
2767 if (pin1 == -1) {
2768 if (intr_remapping_enabled)
2769 panic("BIOS bug: timer not connected to IO-APIC");
2770 pin1 = pin2;
2771 apic1 = apic2;
2772 no_pin1 = 1;
2773 } else if (pin2 == -1) {
2774 pin2 = pin1;
2775 apic2 = apic1;
2776 }
2777
2778 if (pin1 != -1) {
2779 /*
2780 * Ok, does IRQ0 through the IOAPIC work?
2781 */
2782 if (no_pin1) {
2783 add_pin_to_irq_node(cfg, node, apic1, pin1);
2784 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2785 } else {
2786 /* for edge trigger, setup_ioapic_irq already
2787 * leave it unmasked.
2788 * so only need to unmask if it is level-trigger
2789 * do we really have level trigger timer?
2790 */
2791 int idx;
2792 idx = find_irq_entry(apic1, pin1, mp_INT);
2793 if (idx != -1 && irq_trigger(idx))
2794 unmask_ioapic(cfg);
2795 }
2796 if (timer_irq_works()) {
2797 if (disable_timer_pin_1 > 0)
2798 clear_IO_APIC_pin(0, pin1);
2799 goto out;
2800 }
2801 if (intr_remapping_enabled)
2802 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2803 local_irq_disable();
2804 clear_IO_APIC_pin(apic1, pin1);
2805 if (!no_pin1)
2806 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2807 "8254 timer not connected to IO-APIC\n");
2808
2809 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2810 "(IRQ0) through the 8259A ...\n");
2811 apic_printk(APIC_QUIET, KERN_INFO
2812 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2813 /*
2814 * legacy devices should be connected to IO APIC #0
2815 */
2816 replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2817 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2818 legacy_pic->unmask(0);
2819 if (timer_irq_works()) {
2820 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2821 timer_through_8259 = 1;
2822 goto out;
2823 }
2824 /*
2825 * Cleanup, just in case ...
2826 */
2827 local_irq_disable();
2828 legacy_pic->mask(0);
2829 clear_IO_APIC_pin(apic2, pin2);
2830 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2831 }
2832
2833 apic_printk(APIC_QUIET, KERN_INFO
2834 "...trying to set up timer as Virtual Wire IRQ...\n");
2835
2836 lapic_register_intr(0);
2837 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2838 legacy_pic->unmask(0);
2839
2840 if (timer_irq_works()) {
2841 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2842 goto out;
2843 }
2844 local_irq_disable();
2845 legacy_pic->mask(0);
2846 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2847 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2848
2849 apic_printk(APIC_QUIET, KERN_INFO
2850 "...trying to set up timer as ExtINT IRQ...\n");
2851
2852 legacy_pic->init(0);
2853 legacy_pic->make_irq(0);
2854 apic_write(APIC_LVT0, APIC_DM_EXTINT);
2855
2856 unlock_ExtINT_logic();
2857
2858 if (timer_irq_works()) {
2859 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2860 goto out;
2861 }
2862 local_irq_disable();
2863 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2864 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
2865 "report. Then try booting with the 'noapic' option.\n");
2866 out:
2867 local_irq_restore(flags);
2868 }
2869
2870 /*
2871 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2872 * to devices. However there may be an I/O APIC pin available for
2873 * this interrupt regardless. The pin may be left unconnected, but
2874 * typically it will be reused as an ExtINT cascade interrupt for
2875 * the master 8259A. In the MPS case such a pin will normally be
2876 * reported as an ExtINT interrupt in the MP table. With ACPI
2877 * there is no provision for ExtINT interrupts, and in the absence
2878 * of an override it would be treated as an ordinary ISA I/O APIC
2879 * interrupt, that is edge-triggered and unmasked by default. We
2880 * used to do this, but it caused problems on some systems because
2881 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2882 * the same ExtINT cascade interrupt to drive the local APIC of the
2883 * bootstrap processor. Therefore we refrain from routing IRQ2 to
2884 * the I/O APIC in all cases now. No actual device should request
2885 * it anyway. --macro
2886 */
2887 #define PIC_IRQS (1UL << PIC_CASCADE_IR)
2888
2889 void __init setup_IO_APIC(void)
2890 {
2891
2892 /*
2893 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2894 */
2895 io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2896
2897 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2898 /*
2899 * Set up IO-APIC IRQ routing.
2900 */
2901 x86_init.mpparse.setup_ioapic_ids();
2902
2903 sync_Arb_IDs();
2904 setup_IO_APIC_irqs();
2905 init_IO_APIC_traps();
2906 if (legacy_pic->nr_legacy_irqs)
2907 check_timer();
2908 }
2909
2910 /*
2911 * Called after all the initialization is done. If we didnt find any
2912 * APIC bugs then we can allow the modify fast path
2913 */
2914
2915 static int __init io_apic_bug_finalize(void)
2916 {
2917 if (sis_apic_bug == -1)
2918 sis_apic_bug = 0;
2919 return 0;
2920 }
2921
2922 late_initcall(io_apic_bug_finalize);
2923
2924 struct sysfs_ioapic_data {
2925 struct sys_device dev;
2926 struct IO_APIC_route_entry entry[0];
2927 };
2928 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
2929
2930 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
2931 {
2932 struct IO_APIC_route_entry *entry;
2933 struct sysfs_ioapic_data *data;
2934 int i;
2935
2936 data = container_of(dev, struct sysfs_ioapic_data, dev);
2937 entry = data->entry;
2938 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
2939 *entry = ioapic_read_entry(dev->id, i);
2940
2941 return 0;
2942 }
2943
2944 static int ioapic_resume(struct sys_device *dev)
2945 {
2946 struct IO_APIC_route_entry *entry;
2947 struct sysfs_ioapic_data *data;
2948 unsigned long flags;
2949 union IO_APIC_reg_00 reg_00;
2950 int i;
2951
2952 data = container_of(dev, struct sysfs_ioapic_data, dev);
2953 entry = data->entry;
2954
2955 raw_spin_lock_irqsave(&ioapic_lock, flags);
2956 reg_00.raw = io_apic_read(dev->id, 0);
2957 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
2958 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
2959 io_apic_write(dev->id, 0, reg_00.raw);
2960 }
2961 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2962 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
2963 ioapic_write_entry(dev->id, i, entry[i]);
2964
2965 return 0;
2966 }
2967
2968 static struct sysdev_class ioapic_sysdev_class = {
2969 .name = "ioapic",
2970 .suspend = ioapic_suspend,
2971 .resume = ioapic_resume,
2972 };
2973
2974 static int __init ioapic_init_sysfs(void)
2975 {
2976 struct sys_device * dev;
2977 int i, size, error;
2978
2979 error = sysdev_class_register(&ioapic_sysdev_class);
2980 if (error)
2981 return error;
2982
2983 for (i = 0; i < nr_ioapics; i++ ) {
2984 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
2985 * sizeof(struct IO_APIC_route_entry);
2986 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
2987 if (!mp_ioapic_data[i]) {
2988 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
2989 continue;
2990 }
2991 dev = &mp_ioapic_data[i]->dev;
2992 dev->id = i;
2993 dev->cls = &ioapic_sysdev_class;
2994 error = sysdev_register(dev);
2995 if (error) {
2996 kfree(mp_ioapic_data[i]);
2997 mp_ioapic_data[i] = NULL;
2998 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
2999 continue;
3000 }
3001 }
3002
3003 return 0;
3004 }
3005
3006 device_initcall(ioapic_init_sysfs);
3007
3008 /*
3009 * Dynamic irq allocate and deallocation
3010 */
3011 unsigned int create_irq_nr(unsigned int from, int node)
3012 {
3013 struct irq_cfg *cfg;
3014 unsigned long flags;
3015 unsigned int ret = 0;
3016 int irq;
3017
3018 if (from < nr_irqs_gsi)
3019 from = nr_irqs_gsi;
3020
3021 irq = alloc_irq_from(from, node);
3022 if (irq < 0)
3023 return 0;
3024 cfg = alloc_irq_cfg(irq, node);
3025 if (!cfg) {
3026 free_irq_at(irq, NULL);
3027 return 0;
3028 }
3029
3030 raw_spin_lock_irqsave(&vector_lock, flags);
3031 if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
3032 ret = irq;
3033 raw_spin_unlock_irqrestore(&vector_lock, flags);
3034
3035 if (ret) {
3036 set_irq_chip_data(irq, cfg);
3037 irq_clear_status_flags(irq, IRQ_NOREQUEST);
3038 } else {
3039 free_irq_at(irq, cfg);
3040 }
3041 return ret;
3042 }
3043
3044 int create_irq(void)
3045 {
3046 int node = cpu_to_node(0);
3047 unsigned int irq_want;
3048 int irq;
3049
3050 irq_want = nr_irqs_gsi;
3051 irq = create_irq_nr(irq_want, node);
3052
3053 if (irq == 0)
3054 irq = -1;
3055
3056 return irq;
3057 }
3058
3059 void destroy_irq(unsigned int irq)
3060 {
3061 struct irq_cfg *cfg = get_irq_chip_data(irq);
3062 unsigned long flags;
3063
3064 irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3065
3066 if (irq_remapped(cfg))
3067 free_irte(irq);
3068 raw_spin_lock_irqsave(&vector_lock, flags);
3069 __clear_irq_vector(irq, cfg);
3070 raw_spin_unlock_irqrestore(&vector_lock, flags);
3071 free_irq_at(irq, cfg);
3072 }
3073
3074 /*
3075 * MSI message composition
3076 */
3077 #ifdef CONFIG_PCI_MSI
3078 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3079 struct msi_msg *msg, u8 hpet_id)
3080 {
3081 struct irq_cfg *cfg;
3082 int err;
3083 unsigned dest;
3084
3085 if (disable_apic)
3086 return -ENXIO;
3087
3088 cfg = irq_cfg(irq);
3089 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3090 if (err)
3091 return err;
3092
3093 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3094
3095 if (irq_remapped(get_irq_chip_data(irq))) {
3096 struct irte irte;
3097 int ir_index;
3098 u16 sub_handle;
3099
3100 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3101 BUG_ON(ir_index == -1);
3102
3103 prepare_irte(&irte, cfg->vector, dest);
3104
3105 /* Set source-id of interrupt request */
3106 if (pdev)
3107 set_msi_sid(&irte, pdev);
3108 else
3109 set_hpet_sid(&irte, hpet_id);
3110
3111 modify_irte(irq, &irte);
3112
3113 msg->address_hi = MSI_ADDR_BASE_HI;
3114 msg->data = sub_handle;
3115 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3116 MSI_ADDR_IR_SHV |
3117 MSI_ADDR_IR_INDEX1(ir_index) |
3118 MSI_ADDR_IR_INDEX2(ir_index);
3119 } else {
3120 if (x2apic_enabled())
3121 msg->address_hi = MSI_ADDR_BASE_HI |
3122 MSI_ADDR_EXT_DEST_ID(dest);
3123 else
3124 msg->address_hi = MSI_ADDR_BASE_HI;
3125
3126 msg->address_lo =
3127 MSI_ADDR_BASE_LO |
3128 ((apic->irq_dest_mode == 0) ?
3129 MSI_ADDR_DEST_MODE_PHYSICAL:
3130 MSI_ADDR_DEST_MODE_LOGICAL) |
3131 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3132 MSI_ADDR_REDIRECTION_CPU:
3133 MSI_ADDR_REDIRECTION_LOWPRI) |
3134 MSI_ADDR_DEST_ID(dest);
3135
3136 msg->data =
3137 MSI_DATA_TRIGGER_EDGE |
3138 MSI_DATA_LEVEL_ASSERT |
3139 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3140 MSI_DATA_DELIVERY_FIXED:
3141 MSI_DATA_DELIVERY_LOWPRI) |
3142 MSI_DATA_VECTOR(cfg->vector);
3143 }
3144 return err;
3145 }
3146
3147 #ifdef CONFIG_SMP
3148 static int
3149 msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3150 {
3151 struct irq_cfg *cfg = data->chip_data;
3152 struct msi_msg msg;
3153 unsigned int dest;
3154
3155 if (__ioapic_set_affinity(data, mask, &dest))
3156 return -1;
3157
3158 __get_cached_msi_msg(data->msi_desc, &msg);
3159
3160 msg.data &= ~MSI_DATA_VECTOR_MASK;
3161 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3162 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3163 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3164
3165 __write_msi_msg(data->msi_desc, &msg);
3166
3167 return 0;
3168 }
3169 #ifdef CONFIG_INTR_REMAP
3170 /*
3171 * Migrate the MSI irq to another cpumask. This migration is
3172 * done in the process context using interrupt-remapping hardware.
3173 */
3174 static int
3175 ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3176 bool force)
3177 {
3178 struct irq_cfg *cfg = data->chip_data;
3179 unsigned int dest, irq = data->irq;
3180 struct irte irte;
3181
3182 if (get_irte(irq, &irte))
3183 return -1;
3184
3185 if (__ioapic_set_affinity(data, mask, &dest))
3186 return -1;
3187
3188 irte.vector = cfg->vector;
3189 irte.dest_id = IRTE_DEST(dest);
3190
3191 /*
3192 * atomically update the IRTE with the new destination and vector.
3193 */
3194 modify_irte(irq, &irte);
3195
3196 /*
3197 * After this point, all the interrupts will start arriving
3198 * at the new destination. So, time to cleanup the previous
3199 * vector allocation.
3200 */
3201 if (cfg->move_in_progress)
3202 send_cleanup_vector(cfg);
3203
3204 return 0;
3205 }
3206
3207 #endif
3208 #endif /* CONFIG_SMP */
3209
3210 /*
3211 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3212 * which implement the MSI or MSI-X Capability Structure.
3213 */
3214 static struct irq_chip msi_chip = {
3215 .name = "PCI-MSI",
3216 .irq_unmask = unmask_msi_irq,
3217 .irq_mask = mask_msi_irq,
3218 .irq_ack = ack_apic_edge,
3219 #ifdef CONFIG_SMP
3220 .irq_set_affinity = msi_set_affinity,
3221 #endif
3222 .irq_retrigger = ioapic_retrigger_irq,
3223 };
3224
3225 static struct irq_chip msi_ir_chip = {
3226 .name = "IR-PCI-MSI",
3227 .irq_unmask = unmask_msi_irq,
3228 .irq_mask = mask_msi_irq,
3229 #ifdef CONFIG_INTR_REMAP
3230 .irq_ack = ir_ack_apic_edge,
3231 #ifdef CONFIG_SMP
3232 .irq_set_affinity = ir_msi_set_affinity,
3233 #endif
3234 #endif
3235 .irq_retrigger = ioapic_retrigger_irq,
3236 };
3237
3238 /*
3239 * Map the PCI dev to the corresponding remapping hardware unit
3240 * and allocate 'nvec' consecutive interrupt-remapping table entries
3241 * in it.
3242 */
3243 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3244 {
3245 struct intel_iommu *iommu;
3246 int index;
3247
3248 iommu = map_dev_to_ir(dev);
3249 if (!iommu) {
3250 printk(KERN_ERR
3251 "Unable to map PCI %s to iommu\n", pci_name(dev));
3252 return -ENOENT;
3253 }
3254
3255 index = alloc_irte(iommu, irq, nvec);
3256 if (index < 0) {
3257 printk(KERN_ERR
3258 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3259 pci_name(dev));
3260 return -ENOSPC;
3261 }
3262 return index;
3263 }
3264
3265 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3266 {
3267 struct msi_msg msg;
3268 int ret;
3269
3270 ret = msi_compose_msg(dev, irq, &msg, -1);
3271 if (ret < 0)
3272 return ret;
3273
3274 set_irq_msi(irq, msidesc);
3275 write_msi_msg(irq, &msg);
3276
3277 if (irq_remapped(get_irq_chip_data(irq))) {
3278 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3279 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3280 } else
3281 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3282
3283 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3284
3285 return 0;
3286 }
3287
3288 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3289 {
3290 int node, ret, sub_handle, index = 0;
3291 unsigned int irq, irq_want;
3292 struct msi_desc *msidesc;
3293 struct intel_iommu *iommu = NULL;
3294
3295 /* x86 doesn't support multiple MSI yet */
3296 if (type == PCI_CAP_ID_MSI && nvec > 1)
3297 return 1;
3298
3299 node = dev_to_node(&dev->dev);
3300 irq_want = nr_irqs_gsi;
3301 sub_handle = 0;
3302 list_for_each_entry(msidesc, &dev->msi_list, list) {
3303 irq = create_irq_nr(irq_want, node);
3304 if (irq == 0)
3305 return -1;
3306 irq_want = irq + 1;
3307 if (!intr_remapping_enabled)
3308 goto no_ir;
3309
3310 if (!sub_handle) {
3311 /*
3312 * allocate the consecutive block of IRTE's
3313 * for 'nvec'
3314 */
3315 index = msi_alloc_irte(dev, irq, nvec);
3316 if (index < 0) {
3317 ret = index;
3318 goto error;
3319 }
3320 } else {
3321 iommu = map_dev_to_ir(dev);
3322 if (!iommu) {
3323 ret = -ENOENT;
3324 goto error;
3325 }
3326 /*
3327 * setup the mapping between the irq and the IRTE
3328 * base index, the sub_handle pointing to the
3329 * appropriate interrupt remap table entry.
3330 */
3331 set_irte_irq(irq, iommu, index, sub_handle);
3332 }
3333 no_ir:
3334 ret = setup_msi_irq(dev, msidesc, irq);
3335 if (ret < 0)
3336 goto error;
3337 sub_handle++;
3338 }
3339 return 0;
3340
3341 error:
3342 destroy_irq(irq);
3343 return ret;
3344 }
3345
3346 void native_teardown_msi_irq(unsigned int irq)
3347 {
3348 destroy_irq(irq);
3349 }
3350
3351 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3352 #ifdef CONFIG_SMP
3353 static int
3354 dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3355 bool force)
3356 {
3357 struct irq_cfg *cfg = data->chip_data;
3358 unsigned int dest, irq = data->irq;
3359 struct msi_msg msg;
3360
3361 if (__ioapic_set_affinity(data, mask, &dest))
3362 return -1;
3363
3364 dmar_msi_read(irq, &msg);
3365
3366 msg.data &= ~MSI_DATA_VECTOR_MASK;
3367 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3368 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3369 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3370
3371 dmar_msi_write(irq, &msg);
3372
3373 return 0;
3374 }
3375
3376 #endif /* CONFIG_SMP */
3377
3378 static struct irq_chip dmar_msi_type = {
3379 .name = "DMAR_MSI",
3380 .irq_unmask = dmar_msi_unmask,
3381 .irq_mask = dmar_msi_mask,
3382 .irq_ack = ack_apic_edge,
3383 #ifdef CONFIG_SMP
3384 .irq_set_affinity = dmar_msi_set_affinity,
3385 #endif
3386 .irq_retrigger = ioapic_retrigger_irq,
3387 };
3388
3389 int arch_setup_dmar_msi(unsigned int irq)
3390 {
3391 int ret;
3392 struct msi_msg msg;
3393
3394 ret = msi_compose_msg(NULL, irq, &msg, -1);
3395 if (ret < 0)
3396 return ret;
3397 dmar_msi_write(irq, &msg);
3398 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3399 "edge");
3400 return 0;
3401 }
3402 #endif
3403
3404 #ifdef CONFIG_HPET_TIMER
3405
3406 #ifdef CONFIG_SMP
3407 static int hpet_msi_set_affinity(struct irq_data *data,
3408 const struct cpumask *mask, bool force)
3409 {
3410 struct irq_cfg *cfg = data->chip_data;
3411 struct msi_msg msg;
3412 unsigned int dest;
3413
3414 if (__ioapic_set_affinity(data, mask, &dest))
3415 return -1;
3416
3417 hpet_msi_read(data->handler_data, &msg);
3418
3419 msg.data &= ~MSI_DATA_VECTOR_MASK;
3420 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3421 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3422 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3423
3424 hpet_msi_write(data->handler_data, &msg);
3425
3426 return 0;
3427 }
3428
3429 #endif /* CONFIG_SMP */
3430
3431 static struct irq_chip ir_hpet_msi_type = {
3432 .name = "IR-HPET_MSI",
3433 .irq_unmask = hpet_msi_unmask,
3434 .irq_mask = hpet_msi_mask,
3435 #ifdef CONFIG_INTR_REMAP
3436 .irq_ack = ir_ack_apic_edge,
3437 #ifdef CONFIG_SMP
3438 .irq_set_affinity = ir_msi_set_affinity,
3439 #endif
3440 #endif
3441 .irq_retrigger = ioapic_retrigger_irq,
3442 };
3443
3444 static struct irq_chip hpet_msi_type = {
3445 .name = "HPET_MSI",
3446 .irq_unmask = hpet_msi_unmask,
3447 .irq_mask = hpet_msi_mask,
3448 .irq_ack = ack_apic_edge,
3449 #ifdef CONFIG_SMP
3450 .irq_set_affinity = hpet_msi_set_affinity,
3451 #endif
3452 .irq_retrigger = ioapic_retrigger_irq,
3453 };
3454
3455 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3456 {
3457 struct msi_msg msg;
3458 int ret;
3459
3460 if (intr_remapping_enabled) {
3461 struct intel_iommu *iommu = map_hpet_to_ir(id);
3462 int index;
3463
3464 if (!iommu)
3465 return -1;
3466
3467 index = alloc_irte(iommu, irq, 1);
3468 if (index < 0)
3469 return -1;
3470 }
3471
3472 ret = msi_compose_msg(NULL, irq, &msg, id);
3473 if (ret < 0)
3474 return ret;
3475
3476 hpet_msi_write(get_irq_data(irq), &msg);
3477 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3478 if (irq_remapped(get_irq_chip_data(irq)))
3479 set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type,
3480 handle_edge_irq, "edge");
3481 else
3482 set_irq_chip_and_handler_name(irq, &hpet_msi_type,
3483 handle_edge_irq, "edge");
3484
3485 return 0;
3486 }
3487 #endif
3488
3489 #endif /* CONFIG_PCI_MSI */
3490 /*
3491 * Hypertransport interrupt support
3492 */
3493 #ifdef CONFIG_HT_IRQ
3494
3495 #ifdef CONFIG_SMP
3496
3497 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3498 {
3499 struct ht_irq_msg msg;
3500 fetch_ht_irq_msg(irq, &msg);
3501
3502 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3503 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3504
3505 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3506 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3507
3508 write_ht_irq_msg(irq, &msg);
3509 }
3510
3511 static int
3512 ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3513 {
3514 struct irq_cfg *cfg = data->chip_data;
3515 unsigned int dest;
3516
3517 if (__ioapic_set_affinity(data, mask, &dest))
3518 return -1;
3519
3520 target_ht_irq(data->irq, dest, cfg->vector);
3521 return 0;
3522 }
3523
3524 #endif
3525
3526 static struct irq_chip ht_irq_chip = {
3527 .name = "PCI-HT",
3528 .irq_mask = mask_ht_irq,
3529 .irq_unmask = unmask_ht_irq,
3530 .irq_ack = ack_apic_edge,
3531 #ifdef CONFIG_SMP
3532 .irq_set_affinity = ht_set_affinity,
3533 #endif
3534 .irq_retrigger = ioapic_retrigger_irq,
3535 };
3536
3537 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3538 {
3539 struct irq_cfg *cfg;
3540 int err;
3541
3542 if (disable_apic)
3543 return -ENXIO;
3544
3545 cfg = irq_cfg(irq);
3546 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3547 if (!err) {
3548 struct ht_irq_msg msg;
3549 unsigned dest;
3550
3551 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3552 apic->target_cpus());
3553
3554 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3555
3556 msg.address_lo =
3557 HT_IRQ_LOW_BASE |
3558 HT_IRQ_LOW_DEST_ID(dest) |
3559 HT_IRQ_LOW_VECTOR(cfg->vector) |
3560 ((apic->irq_dest_mode == 0) ?
3561 HT_IRQ_LOW_DM_PHYSICAL :
3562 HT_IRQ_LOW_DM_LOGICAL) |
3563 HT_IRQ_LOW_RQEOI_EDGE |
3564 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3565 HT_IRQ_LOW_MT_FIXED :
3566 HT_IRQ_LOW_MT_ARBITRATED) |
3567 HT_IRQ_LOW_IRQ_MASKED;
3568
3569 write_ht_irq_msg(irq, &msg);
3570
3571 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3572 handle_edge_irq, "edge");
3573
3574 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3575 }
3576 return err;
3577 }
3578 #endif /* CONFIG_HT_IRQ */
3579
3580 int __init io_apic_get_redir_entries (int ioapic)
3581 {
3582 union IO_APIC_reg_01 reg_01;
3583 unsigned long flags;
3584
3585 raw_spin_lock_irqsave(&ioapic_lock, flags);
3586 reg_01.raw = io_apic_read(ioapic, 1);
3587 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3588
3589 /* The register returns the maximum index redir index
3590 * supported, which is one less than the total number of redir
3591 * entries.
3592 */
3593 return reg_01.bits.entries + 1;
3594 }
3595
3596 void __init probe_nr_irqs_gsi(void)
3597 {
3598 int nr;
3599
3600 nr = gsi_top + NR_IRQS_LEGACY;
3601 if (nr > nr_irqs_gsi)
3602 nr_irqs_gsi = nr;
3603
3604 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3605 }
3606
3607 int get_nr_irqs_gsi(void)
3608 {
3609 return nr_irqs_gsi;
3610 }
3611
3612 #ifdef CONFIG_SPARSE_IRQ
3613 int __init arch_probe_nr_irqs(void)
3614 {
3615 int nr;
3616
3617 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3618 nr_irqs = NR_VECTORS * nr_cpu_ids;
3619
3620 nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3621 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3622 /*
3623 * for MSI and HT dyn irq
3624 */
3625 nr += nr_irqs_gsi * 16;
3626 #endif
3627 if (nr < nr_irqs)
3628 nr_irqs = nr;
3629
3630 return NR_IRQS_LEGACY;
3631 }
3632 #endif
3633
3634 static int __io_apic_set_pci_routing(struct device *dev, int irq,
3635 struct io_apic_irq_attr *irq_attr)
3636 {
3637 struct irq_cfg *cfg;
3638 int node;
3639 int ioapic, pin;
3640 int trigger, polarity;
3641
3642 ioapic = irq_attr->ioapic;
3643 if (!IO_APIC_IRQ(irq)) {
3644 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3645 ioapic);
3646 return -EINVAL;
3647 }
3648
3649 if (dev)
3650 node = dev_to_node(dev);
3651 else
3652 node = cpu_to_node(0);
3653
3654 cfg = alloc_irq_and_cfg_at(irq, node);
3655 if (!cfg)
3656 return 0;
3657
3658 pin = irq_attr->ioapic_pin;
3659 trigger = irq_attr->trigger;
3660 polarity = irq_attr->polarity;
3661
3662 /*
3663 * IRQs < 16 are already in the irq_2_pin[] map
3664 */
3665 if (irq >= legacy_pic->nr_legacy_irqs) {
3666 if (__add_pin_to_irq_node(cfg, node, ioapic, pin)) {
3667 printk(KERN_INFO "can not add pin %d for irq %d\n",
3668 pin, irq);
3669 return 0;
3670 }
3671 }
3672
3673 setup_ioapic_irq(ioapic, pin, irq, cfg, trigger, polarity);
3674
3675 return 0;
3676 }
3677
3678 int io_apic_set_pci_routing(struct device *dev, int irq,
3679 struct io_apic_irq_attr *irq_attr)
3680 {
3681 int ioapic, pin;
3682 /*
3683 * Avoid pin reprogramming. PRTs typically include entries
3684 * with redundant pin->gsi mappings (but unique PCI devices);
3685 * we only program the IOAPIC on the first.
3686 */
3687 ioapic = irq_attr->ioapic;
3688 pin = irq_attr->ioapic_pin;
3689 if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3690 pr_debug("Pin %d-%d already programmed\n",
3691 mp_ioapics[ioapic].apicid, pin);
3692 return 0;
3693 }
3694 set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3695
3696 return __io_apic_set_pci_routing(dev, irq, irq_attr);
3697 }
3698
3699 u8 __init io_apic_unique_id(u8 id)
3700 {
3701 #ifdef CONFIG_X86_32
3702 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3703 !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3704 return io_apic_get_unique_id(nr_ioapics, id);
3705 else
3706 return id;
3707 #else
3708 int i;
3709 DECLARE_BITMAP(used, 256);
3710
3711 bitmap_zero(used, 256);
3712 for (i = 0; i < nr_ioapics; i++) {
3713 struct mpc_ioapic *ia = &mp_ioapics[i];
3714 __set_bit(ia->apicid, used);
3715 }
3716 if (!test_bit(id, used))
3717 return id;
3718 return find_first_zero_bit(used, 256);
3719 #endif
3720 }
3721
3722 #ifdef CONFIG_X86_32
3723 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3724 {
3725 union IO_APIC_reg_00 reg_00;
3726 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3727 physid_mask_t tmp;
3728 unsigned long flags;
3729 int i = 0;
3730
3731 /*
3732 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3733 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3734 * supports up to 16 on one shared APIC bus.
3735 *
3736 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3737 * advantage of new APIC bus architecture.
3738 */
3739
3740 if (physids_empty(apic_id_map))
3741 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3742
3743 raw_spin_lock_irqsave(&ioapic_lock, flags);
3744 reg_00.raw = io_apic_read(ioapic, 0);
3745 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3746
3747 if (apic_id >= get_physical_broadcast()) {
3748 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3749 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3750 apic_id = reg_00.bits.ID;
3751 }
3752
3753 /*
3754 * Every APIC in a system must have a unique ID or we get lots of nice
3755 * 'stuck on smp_invalidate_needed IPI wait' messages.
3756 */
3757 if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3758
3759 for (i = 0; i < get_physical_broadcast(); i++) {
3760 if (!apic->check_apicid_used(&apic_id_map, i))
3761 break;
3762 }
3763
3764 if (i == get_physical_broadcast())
3765 panic("Max apic_id exceeded!\n");
3766
3767 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3768 "trying %d\n", ioapic, apic_id, i);
3769
3770 apic_id = i;
3771 }
3772
3773 apic->apicid_to_cpu_present(apic_id, &tmp);
3774 physids_or(apic_id_map, apic_id_map, tmp);
3775
3776 if (reg_00.bits.ID != apic_id) {
3777 reg_00.bits.ID = apic_id;
3778
3779 raw_spin_lock_irqsave(&ioapic_lock, flags);
3780 io_apic_write(ioapic, 0, reg_00.raw);
3781 reg_00.raw = io_apic_read(ioapic, 0);
3782 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3783
3784 /* Sanity check */
3785 if (reg_00.bits.ID != apic_id) {
3786 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3787 return -1;
3788 }
3789 }
3790
3791 apic_printk(APIC_VERBOSE, KERN_INFO
3792 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3793
3794 return apic_id;
3795 }
3796 #endif
3797
3798 int __init io_apic_get_version(int ioapic)
3799 {
3800 union IO_APIC_reg_01 reg_01;
3801 unsigned long flags;
3802
3803 raw_spin_lock_irqsave(&ioapic_lock, flags);
3804 reg_01.raw = io_apic_read(ioapic, 1);
3805 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3806
3807 return reg_01.bits.version;
3808 }
3809
3810 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3811 {
3812 int ioapic, pin, idx;
3813
3814 if (skip_ioapic_setup)
3815 return -1;
3816
3817 ioapic = mp_find_ioapic(gsi);
3818 if (ioapic < 0)
3819 return -1;
3820
3821 pin = mp_find_ioapic_pin(ioapic, gsi);
3822 if (pin < 0)
3823 return -1;
3824
3825 idx = find_irq_entry(ioapic, pin, mp_INT);
3826 if (idx < 0)
3827 return -1;
3828
3829 *trigger = irq_trigger(idx);
3830 *polarity = irq_polarity(idx);
3831 return 0;
3832 }
3833
3834 /*
3835 * This function currently is only a helper for the i386 smp boot process where
3836 * we need to reprogram the ioredtbls to cater for the cpus which have come online
3837 * so mask in all cases should simply be apic->target_cpus()
3838 */
3839 #ifdef CONFIG_SMP
3840 void __init setup_ioapic_dest(void)
3841 {
3842 int pin, ioapic, irq, irq_entry;
3843 struct irq_desc *desc;
3844 const struct cpumask *mask;
3845
3846 if (skip_ioapic_setup == 1)
3847 return;
3848
3849 for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3850 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3851 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3852 if (irq_entry == -1)
3853 continue;
3854 irq = pin_2_irq(irq_entry, ioapic, pin);
3855
3856 if ((ioapic > 0) && (irq > 16))
3857 continue;
3858
3859 desc = irq_to_desc(irq);
3860
3861 /*
3862 * Honour affinities which have been set in early boot
3863 */
3864 if (desc->status &
3865 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
3866 mask = desc->irq_data.affinity;
3867 else
3868 mask = apic->target_cpus();
3869
3870 if (intr_remapping_enabled)
3871 ir_ioapic_set_affinity(&desc->irq_data, mask, false);
3872 else
3873 ioapic_set_affinity(&desc->irq_data, mask, false);
3874 }
3875
3876 }
3877 #endif
3878
3879 #define IOAPIC_RESOURCE_NAME_SIZE 11
3880
3881 static struct resource *ioapic_resources;
3882
3883 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3884 {
3885 unsigned long n;
3886 struct resource *res;
3887 char *mem;
3888 int i;
3889
3890 if (nr_ioapics <= 0)
3891 return NULL;
3892
3893 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3894 n *= nr_ioapics;
3895
3896 mem = alloc_bootmem(n);
3897 res = (void *)mem;
3898
3899 mem += sizeof(struct resource) * nr_ioapics;
3900
3901 for (i = 0; i < nr_ioapics; i++) {
3902 res[i].name = mem;
3903 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3904 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3905 mem += IOAPIC_RESOURCE_NAME_SIZE;
3906 }
3907
3908 ioapic_resources = res;
3909
3910 return res;
3911 }
3912
3913 void __init ioapic_init_mappings(void)
3914 {
3915 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3916 struct resource *ioapic_res;
3917 int i;
3918
3919 ioapic_res = ioapic_setup_resources(nr_ioapics);
3920 for (i = 0; i < nr_ioapics; i++) {
3921 if (smp_found_config) {
3922 ioapic_phys = mp_ioapics[i].apicaddr;
3923 #ifdef CONFIG_X86_32
3924 if (!ioapic_phys) {
3925 printk(KERN_ERR
3926 "WARNING: bogus zero IO-APIC "
3927 "address found in MPTABLE, "
3928 "disabling IO/APIC support!\n");
3929 smp_found_config = 0;
3930 skip_ioapic_setup = 1;
3931 goto fake_ioapic_page;
3932 }
3933 #endif
3934 } else {
3935 #ifdef CONFIG_X86_32
3936 fake_ioapic_page:
3937 #endif
3938 ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3939 ioapic_phys = __pa(ioapic_phys);
3940 }
3941 set_fixmap_nocache(idx, ioapic_phys);
3942 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3943 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3944 ioapic_phys);
3945 idx++;
3946
3947 ioapic_res->start = ioapic_phys;
3948 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3949 ioapic_res++;
3950 }
3951 }
3952
3953 void __init ioapic_insert_resources(void)
3954 {
3955 int i;
3956 struct resource *r = ioapic_resources;
3957
3958 if (!r) {
3959 if (nr_ioapics > 0)
3960 printk(KERN_ERR
3961 "IO APIC resources couldn't be allocated.\n");
3962 return;
3963 }
3964
3965 for (i = 0; i < nr_ioapics; i++) {
3966 insert_resource(&iomem_resource, r);
3967 r++;
3968 }
3969 }
3970
3971 int mp_find_ioapic(u32 gsi)
3972 {
3973 int i = 0;
3974
3975 /* Find the IOAPIC that manages this GSI. */
3976 for (i = 0; i < nr_ioapics; i++) {
3977 if ((gsi >= mp_gsi_routing[i].gsi_base)
3978 && (gsi <= mp_gsi_routing[i].gsi_end))
3979 return i;
3980 }
3981
3982 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
3983 return -1;
3984 }
3985
3986 int mp_find_ioapic_pin(int ioapic, u32 gsi)
3987 {
3988 if (WARN_ON(ioapic == -1))
3989 return -1;
3990 if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
3991 return -1;
3992
3993 return gsi - mp_gsi_routing[ioapic].gsi_base;
3994 }
3995
3996 static int bad_ioapic(unsigned long address)
3997 {
3998 if (nr_ioapics >= MAX_IO_APICS) {
3999 printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded "
4000 "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
4001 return 1;
4002 }
4003 if (!address) {
4004 printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
4005 " found in table, skipping!\n");
4006 return 1;
4007 }
4008 return 0;
4009 }
4010
4011 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4012 {
4013 int idx = 0;
4014 int entries;
4015
4016 if (bad_ioapic(address))
4017 return;
4018
4019 idx = nr_ioapics;
4020
4021 mp_ioapics[idx].type = MP_IOAPIC;
4022 mp_ioapics[idx].flags = MPC_APIC_USABLE;
4023 mp_ioapics[idx].apicaddr = address;
4024
4025 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4026 mp_ioapics[idx].apicid = io_apic_unique_id(id);
4027 mp_ioapics[idx].apicver = io_apic_get_version(idx);
4028
4029 /*
4030 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4031 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4032 */
4033 entries = io_apic_get_redir_entries(idx);
4034 mp_gsi_routing[idx].gsi_base = gsi_base;
4035 mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
4036
4037 /*
4038 * The number of IO-APIC IRQ registers (== #pins):
4039 */
4040 nr_ioapic_registers[idx] = entries;
4041
4042 if (mp_gsi_routing[idx].gsi_end >= gsi_top)
4043 gsi_top = mp_gsi_routing[idx].gsi_end + 1;
4044
4045 printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4046 "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4047 mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4048 mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4049
4050 nr_ioapics++;
4051 }
4052
4053 /* Enable IOAPIC early just for system timer */
4054 void __init pre_init_apic_IRQ0(void)
4055 {
4056 struct irq_cfg *cfg;
4057
4058 printk(KERN_INFO "Early APIC setup for system timer0\n");
4059 #ifndef CONFIG_SMP
4060 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_physical_apicid);
4061 #endif
4062 /* Make sure the irq descriptor is set up */
4063 cfg = alloc_irq_and_cfg_at(0, 0);
4064
4065 setup_local_APIC();
4066
4067 add_pin_to_irq_node(cfg, 0, 0, 0);
4068 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
4069
4070 setup_ioapic_irq(0, 0, 0, cfg, 0, 0);
4071 }
This page took 0.280366 seconds and 5 git commands to generate.