x86: cleanup early per cpu variables/accesses v4
[deliverable/linux.git] / arch / x86 / kernel / apic_64.c
1 /*
2 * Local APIC handling, local APIC timers
3 *
4 * (c) 1999, 2000 Ingo Molnar <mingo@redhat.com>
5 *
6 * Fixes
7 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
8 * thanks to Eric Gilmore
9 * and Rolf G. Tews
10 * for testing these extensively.
11 * Maciej W. Rozycki : Various updates and fixes.
12 * Mikael Pettersson : Power Management for UP-APIC.
13 * Pavel Machek and
14 * Mikael Pettersson : PM converted to driver model.
15 */
16
17 #include <linux/init.h>
18
19 #include <linux/mm.h>
20 #include <linux/delay.h>
21 #include <linux/bootmem.h>
22 #include <linux/interrupt.h>
23 #include <linux/mc146818rtc.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/sysdev.h>
26 #include <linux/ioport.h>
27 #include <linux/clockchips.h>
28 #include <linux/acpi_pmtmr.h>
29 #include <linux/module.h>
30
31 #include <asm/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/mtrr.h>
34 #include <asm/mpspec.h>
35 #include <asm/hpet.h>
36 #include <asm/pgalloc.h>
37 #include <asm/nmi.h>
38 #include <asm/idle.h>
39 #include <asm/proto.h>
40 #include <asm/timex.h>
41 #include <asm/apic.h>
42
43 #include <mach_ipi.h>
44 #include <mach_apic.h>
45
46 int disable_apic_timer __cpuinitdata;
47 static int apic_calibrate_pmtmr __initdata;
48 int disable_apic;
49
50 /* Local APIC timer works in C2 */
51 int local_apic_timer_c2_ok;
52 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
53
54 /*
55 * Debug level, exported for io_apic.c
56 */
57 int apic_verbosity;
58
59 static struct resource lapic_resource = {
60 .name = "Local APIC",
61 .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
62 };
63
64 static unsigned int calibration_result;
65
66 static int lapic_next_event(unsigned long delta,
67 struct clock_event_device *evt);
68 static void lapic_timer_setup(enum clock_event_mode mode,
69 struct clock_event_device *evt);
70 static void lapic_timer_broadcast(cpumask_t mask);
71 static void apic_pm_activate(void);
72
73 static struct clock_event_device lapic_clockevent = {
74 .name = "lapic",
75 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT
76 | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_DUMMY,
77 .shift = 32,
78 .set_mode = lapic_timer_setup,
79 .set_next_event = lapic_next_event,
80 .broadcast = lapic_timer_broadcast,
81 .rating = 100,
82 .irq = -1,
83 };
84 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
85
86 static unsigned long apic_phys;
87
88 unsigned long mp_lapic_addr;
89
90 unsigned int __cpuinitdata maxcpus = NR_CPUS;
91 /*
92 * Get the LAPIC version
93 */
94 static inline int lapic_get_version(void)
95 {
96 return GET_APIC_VERSION(apic_read(APIC_LVR));
97 }
98
99 /*
100 * Check, if the APIC is integrated or a seperate chip
101 */
102 static inline int lapic_is_integrated(void)
103 {
104 return 1;
105 }
106
107 /*
108 * Check, whether this is a modern or a first generation APIC
109 */
110 static int modern_apic(void)
111 {
112 /* AMD systems use old APIC versions, so check the CPU */
113 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
114 boot_cpu_data.x86 >= 0xf)
115 return 1;
116 return lapic_get_version() >= 0x14;
117 }
118
119 void apic_wait_icr_idle(void)
120 {
121 while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
122 cpu_relax();
123 }
124
125 u32 safe_apic_wait_icr_idle(void)
126 {
127 u32 send_status;
128 int timeout;
129
130 timeout = 0;
131 do {
132 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
133 if (!send_status)
134 break;
135 udelay(100);
136 } while (timeout++ < 1000);
137
138 return send_status;
139 }
140
141 /**
142 * enable_NMI_through_LVT0 - enable NMI through local vector table 0
143 */
144 void __cpuinit enable_NMI_through_LVT0(void)
145 {
146 unsigned int v;
147
148 /* unmask and set to NMI */
149 v = APIC_DM_NMI;
150 apic_write(APIC_LVT0, v);
151 }
152
153 /**
154 * lapic_get_maxlvt - get the maximum number of local vector table entries
155 */
156 int lapic_get_maxlvt(void)
157 {
158 unsigned int v, maxlvt;
159
160 v = apic_read(APIC_LVR);
161 maxlvt = GET_APIC_MAXLVT(v);
162 return maxlvt;
163 }
164
165 /*
166 * This function sets up the local APIC timer, with a timeout of
167 * 'clocks' APIC bus clock. During calibration we actually call
168 * this function twice on the boot CPU, once with a bogus timeout
169 * value, second time for real. The other (noncalibrating) CPUs
170 * call this function only once, with the real, calibrated value.
171 *
172 * We do reads before writes even if unnecessary, to get around the
173 * P5 APIC double write bug.
174 */
175
176 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
177 {
178 unsigned int lvtt_value, tmp_value;
179
180 lvtt_value = LOCAL_TIMER_VECTOR;
181 if (!oneshot)
182 lvtt_value |= APIC_LVT_TIMER_PERIODIC;
183 if (!irqen)
184 lvtt_value |= APIC_LVT_MASKED;
185
186 apic_write(APIC_LVTT, lvtt_value);
187
188 /*
189 * Divide PICLK by 16
190 */
191 tmp_value = apic_read(APIC_TDCR);
192 apic_write(APIC_TDCR, (tmp_value
193 & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE))
194 | APIC_TDR_DIV_16);
195
196 if (!oneshot)
197 apic_write(APIC_TMICT, clocks);
198 }
199
200 /*
201 * Setup extended LVT, AMD specific (K8, family 10h)
202 *
203 * Vector mappings are hard coded. On K8 only offset 0 (APIC500) and
204 * MCE interrupts are supported. Thus MCE offset must be set to 0.
205 */
206
207 #define APIC_EILVT_LVTOFF_MCE 0
208 #define APIC_EILVT_LVTOFF_IBS 1
209
210 static void setup_APIC_eilvt(u8 lvt_off, u8 vector, u8 msg_type, u8 mask)
211 {
212 unsigned long reg = (lvt_off << 4) + APIC_EILVT0;
213 unsigned int v = (mask << 16) | (msg_type << 8) | vector;
214
215 apic_write(reg, v);
216 }
217
218 u8 setup_APIC_eilvt_mce(u8 vector, u8 msg_type, u8 mask)
219 {
220 setup_APIC_eilvt(APIC_EILVT_LVTOFF_MCE, vector, msg_type, mask);
221 return APIC_EILVT_LVTOFF_MCE;
222 }
223
224 u8 setup_APIC_eilvt_ibs(u8 vector, u8 msg_type, u8 mask)
225 {
226 setup_APIC_eilvt(APIC_EILVT_LVTOFF_IBS, vector, msg_type, mask);
227 return APIC_EILVT_LVTOFF_IBS;
228 }
229
230 /*
231 * Program the next event, relative to now
232 */
233 static int lapic_next_event(unsigned long delta,
234 struct clock_event_device *evt)
235 {
236 apic_write(APIC_TMICT, delta);
237 return 0;
238 }
239
240 /*
241 * Setup the lapic timer in periodic or oneshot mode
242 */
243 static void lapic_timer_setup(enum clock_event_mode mode,
244 struct clock_event_device *evt)
245 {
246 unsigned long flags;
247 unsigned int v;
248
249 /* Lapic used as dummy for broadcast ? */
250 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
251 return;
252
253 local_irq_save(flags);
254
255 switch (mode) {
256 case CLOCK_EVT_MODE_PERIODIC:
257 case CLOCK_EVT_MODE_ONESHOT:
258 __setup_APIC_LVTT(calibration_result,
259 mode != CLOCK_EVT_MODE_PERIODIC, 1);
260 break;
261 case CLOCK_EVT_MODE_UNUSED:
262 case CLOCK_EVT_MODE_SHUTDOWN:
263 v = apic_read(APIC_LVTT);
264 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
265 apic_write(APIC_LVTT, v);
266 break;
267 case CLOCK_EVT_MODE_RESUME:
268 /* Nothing to do here */
269 break;
270 }
271
272 local_irq_restore(flags);
273 }
274
275 /*
276 * Local APIC timer broadcast function
277 */
278 static void lapic_timer_broadcast(cpumask_t mask)
279 {
280 #ifdef CONFIG_SMP
281 send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
282 #endif
283 }
284
285 /*
286 * Setup the local APIC timer for this CPU. Copy the initilized values
287 * of the boot CPU and register the clock event in the framework.
288 */
289 static void setup_APIC_timer(void)
290 {
291 struct clock_event_device *levt = &__get_cpu_var(lapic_events);
292
293 memcpy(levt, &lapic_clockevent, sizeof(*levt));
294 levt->cpumask = cpumask_of_cpu(smp_processor_id());
295
296 clockevents_register_device(levt);
297 }
298
299 /*
300 * In this function we calibrate APIC bus clocks to the external
301 * timer. Unfortunately we cannot use jiffies and the timer irq
302 * to calibrate, since some later bootup code depends on getting
303 * the first irq? Ugh.
304 *
305 * We want to do the calibration only once since we
306 * want to have local timer irqs syncron. CPUs connected
307 * by the same APIC bus have the very same bus frequency.
308 * And we want to have irqs off anyways, no accidental
309 * APIC irq that way.
310 */
311
312 #define TICK_COUNT 100000000
313
314 static void __init calibrate_APIC_clock(void)
315 {
316 unsigned apic, apic_start;
317 unsigned long tsc, tsc_start;
318 int result;
319
320 local_irq_disable();
321
322 /*
323 * Put whatever arbitrary (but long enough) timeout
324 * value into the APIC clock, we just want to get the
325 * counter running for calibration.
326 *
327 * No interrupt enable !
328 */
329 __setup_APIC_LVTT(250000000, 0, 0);
330
331 apic_start = apic_read(APIC_TMCCT);
332 #ifdef CONFIG_X86_PM_TIMER
333 if (apic_calibrate_pmtmr && pmtmr_ioport) {
334 pmtimer_wait(5000); /* 5ms wait */
335 apic = apic_read(APIC_TMCCT);
336 result = (apic_start - apic) * 1000L / 5;
337 } else
338 #endif
339 {
340 rdtscll(tsc_start);
341
342 do {
343 apic = apic_read(APIC_TMCCT);
344 rdtscll(tsc);
345 } while ((tsc - tsc_start) < TICK_COUNT &&
346 (apic_start - apic) < TICK_COUNT);
347
348 result = (apic_start - apic) * 1000L * tsc_khz /
349 (tsc - tsc_start);
350 }
351
352 local_irq_enable();
353
354 printk(KERN_DEBUG "APIC timer calibration result %d\n", result);
355
356 printk(KERN_INFO "Detected %d.%03d MHz APIC timer.\n",
357 result / 1000 / 1000, result / 1000 % 1000);
358
359 /* Calculate the scaled math multiplication factor */
360 lapic_clockevent.mult = div_sc(result, NSEC_PER_SEC,
361 lapic_clockevent.shift);
362 lapic_clockevent.max_delta_ns =
363 clockevent_delta2ns(0x7FFFFF, &lapic_clockevent);
364 lapic_clockevent.min_delta_ns =
365 clockevent_delta2ns(0xF, &lapic_clockevent);
366
367 calibration_result = result / HZ;
368 }
369
370 /*
371 * Setup the boot APIC
372 *
373 * Calibrate and verify the result.
374 */
375 void __init setup_boot_APIC_clock(void)
376 {
377 /*
378 * The local apic timer can be disabled via the kernel commandline.
379 * Register the lapic timer as a dummy clock event source on SMP
380 * systems, so the broadcast mechanism is used. On UP systems simply
381 * ignore it.
382 */
383 if (disable_apic_timer) {
384 printk(KERN_INFO "Disabling APIC timer\n");
385 /* No broadcast on UP ! */
386 if (num_possible_cpus() > 1) {
387 lapic_clockevent.mult = 1;
388 setup_APIC_timer();
389 }
390 return;
391 }
392
393 printk(KERN_INFO "Using local APIC timer interrupts.\n");
394 calibrate_APIC_clock();
395
396 /*
397 * Do a sanity check on the APIC calibration result
398 */
399 if (calibration_result < (1000000 / HZ)) {
400 printk(KERN_WARNING
401 "APIC frequency too slow, disabling apic timer\n");
402 /* No broadcast on UP ! */
403 if (num_possible_cpus() > 1)
404 setup_APIC_timer();
405 return;
406 }
407
408 /*
409 * If nmi_watchdog is set to IO_APIC, we need the
410 * PIT/HPET going. Otherwise register lapic as a dummy
411 * device.
412 */
413 if (nmi_watchdog != NMI_IO_APIC)
414 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
415 else
416 printk(KERN_WARNING "APIC timer registered as dummy,"
417 " due to nmi_watchdog=1!\n");
418
419 setup_APIC_timer();
420 }
421
422 /*
423 * AMD C1E enabled CPUs have a real nasty problem: Some BIOSes set the
424 * C1E flag only in the secondary CPU, so when we detect the wreckage
425 * we already have enabled the boot CPU local apic timer. Check, if
426 * disable_apic_timer is set and the DUMMY flag is cleared. If yes,
427 * set the DUMMY flag again and force the broadcast mode in the
428 * clockevents layer.
429 */
430 static void __cpuinit check_boot_apic_timer_broadcast(void)
431 {
432 if (!disable_apic_timer ||
433 (lapic_clockevent.features & CLOCK_EVT_FEAT_DUMMY))
434 return;
435
436 printk(KERN_INFO "AMD C1E detected late. Force timer broadcast.\n");
437 lapic_clockevent.features |= CLOCK_EVT_FEAT_DUMMY;
438
439 local_irq_enable();
440 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
441 &boot_cpu_physical_apicid);
442 local_irq_disable();
443 }
444
445 void __cpuinit setup_secondary_APIC_clock(void)
446 {
447 check_boot_apic_timer_broadcast();
448 setup_APIC_timer();
449 }
450
451 /*
452 * The guts of the apic timer interrupt
453 */
454 static void local_apic_timer_interrupt(void)
455 {
456 int cpu = smp_processor_id();
457 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
458
459 /*
460 * Normally we should not be here till LAPIC has been initialized but
461 * in some cases like kdump, its possible that there is a pending LAPIC
462 * timer interrupt from previous kernel's context and is delivered in
463 * new kernel the moment interrupts are enabled.
464 *
465 * Interrupts are enabled early and LAPIC is setup much later, hence
466 * its possible that when we get here evt->event_handler is NULL.
467 * Check for event_handler being NULL and discard the interrupt as
468 * spurious.
469 */
470 if (!evt->event_handler) {
471 printk(KERN_WARNING
472 "Spurious LAPIC timer interrupt on cpu %d\n", cpu);
473 /* Switch it off */
474 lapic_timer_setup(CLOCK_EVT_MODE_SHUTDOWN, evt);
475 return;
476 }
477
478 /*
479 * the NMI deadlock-detector uses this.
480 */
481 add_pda(apic_timer_irqs, 1);
482
483 evt->event_handler(evt);
484 }
485
486 /*
487 * Local APIC timer interrupt. This is the most natural way for doing
488 * local interrupts, but local timer interrupts can be emulated by
489 * broadcast interrupts too. [in case the hw doesn't support APIC timers]
490 *
491 * [ if a single-CPU system runs an SMP kernel then we call the local
492 * interrupt as well. Thus we cannot inline the local irq ... ]
493 */
494 void smp_apic_timer_interrupt(struct pt_regs *regs)
495 {
496 struct pt_regs *old_regs = set_irq_regs(regs);
497
498 /*
499 * NOTE! We'd better ACK the irq immediately,
500 * because timer handling can be slow.
501 */
502 ack_APIC_irq();
503 /*
504 * update_process_times() expects us to have done irq_enter().
505 * Besides, if we don't timer interrupts ignore the global
506 * interrupt lock, which is the WrongThing (tm) to do.
507 */
508 exit_idle();
509 irq_enter();
510 local_apic_timer_interrupt();
511 irq_exit();
512 set_irq_regs(old_regs);
513 }
514
515 int setup_profiling_timer(unsigned int multiplier)
516 {
517 return -EINVAL;
518 }
519
520
521 /*
522 * Local APIC start and shutdown
523 */
524
525 /**
526 * clear_local_APIC - shutdown the local APIC
527 *
528 * This is called, when a CPU is disabled and before rebooting, so the state of
529 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
530 * leftovers during boot.
531 */
532 void clear_local_APIC(void)
533 {
534 int maxlvt;
535 u32 v;
536
537 /* APIC hasn't been mapped yet */
538 if (!apic_phys)
539 return;
540
541 maxlvt = lapic_get_maxlvt();
542 /*
543 * Masking an LVT entry can trigger a local APIC error
544 * if the vector is zero. Mask LVTERR first to prevent this.
545 */
546 if (maxlvt >= 3) {
547 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
548 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
549 }
550 /*
551 * Careful: we have to set masks only first to deassert
552 * any level-triggered sources.
553 */
554 v = apic_read(APIC_LVTT);
555 apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
556 v = apic_read(APIC_LVT0);
557 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
558 v = apic_read(APIC_LVT1);
559 apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
560 if (maxlvt >= 4) {
561 v = apic_read(APIC_LVTPC);
562 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
563 }
564
565 /*
566 * Clean APIC state for other OSs:
567 */
568 apic_write(APIC_LVTT, APIC_LVT_MASKED);
569 apic_write(APIC_LVT0, APIC_LVT_MASKED);
570 apic_write(APIC_LVT1, APIC_LVT_MASKED);
571 if (maxlvt >= 3)
572 apic_write(APIC_LVTERR, APIC_LVT_MASKED);
573 if (maxlvt >= 4)
574 apic_write(APIC_LVTPC, APIC_LVT_MASKED);
575 apic_write(APIC_ESR, 0);
576 apic_read(APIC_ESR);
577 }
578
579 /**
580 * disable_local_APIC - clear and disable the local APIC
581 */
582 void disable_local_APIC(void)
583 {
584 unsigned int value;
585
586 clear_local_APIC();
587
588 /*
589 * Disable APIC (implies clearing of registers
590 * for 82489DX!).
591 */
592 value = apic_read(APIC_SPIV);
593 value &= ~APIC_SPIV_APIC_ENABLED;
594 apic_write(APIC_SPIV, value);
595 }
596
597 void lapic_shutdown(void)
598 {
599 unsigned long flags;
600
601 if (!cpu_has_apic)
602 return;
603
604 local_irq_save(flags);
605
606 disable_local_APIC();
607
608 local_irq_restore(flags);
609 }
610
611 /*
612 * This is to verify that we're looking at a real local APIC.
613 * Check these against your board if the CPUs aren't getting
614 * started for no apparent reason.
615 */
616 int __init verify_local_APIC(void)
617 {
618 unsigned int reg0, reg1;
619
620 /*
621 * The version register is read-only in a real APIC.
622 */
623 reg0 = apic_read(APIC_LVR);
624 apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg0);
625 apic_write(APIC_LVR, reg0 ^ APIC_LVR_MASK);
626 reg1 = apic_read(APIC_LVR);
627 apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg1);
628
629 /*
630 * The two version reads above should print the same
631 * numbers. If the second one is different, then we
632 * poke at a non-APIC.
633 */
634 if (reg1 != reg0)
635 return 0;
636
637 /*
638 * Check if the version looks reasonably.
639 */
640 reg1 = GET_APIC_VERSION(reg0);
641 if (reg1 == 0x00 || reg1 == 0xff)
642 return 0;
643 reg1 = lapic_get_maxlvt();
644 if (reg1 < 0x02 || reg1 == 0xff)
645 return 0;
646
647 /*
648 * The ID register is read/write in a real APIC.
649 */
650 reg0 = read_apic_id();
651 apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg0);
652 apic_write(APIC_ID, reg0 ^ APIC_ID_MASK);
653 reg1 = read_apic_id();
654 apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg1);
655 apic_write(APIC_ID, reg0);
656 if (reg1 != (reg0 ^ APIC_ID_MASK))
657 return 0;
658
659 /*
660 * The next two are just to see if we have sane values.
661 * They're only really relevant if we're in Virtual Wire
662 * compatibility mode, but most boxes are anymore.
663 */
664 reg0 = apic_read(APIC_LVT0);
665 apic_printk(APIC_DEBUG, "Getting LVT0: %x\n", reg0);
666 reg1 = apic_read(APIC_LVT1);
667 apic_printk(APIC_DEBUG, "Getting LVT1: %x\n", reg1);
668
669 return 1;
670 }
671
672 /**
673 * sync_Arb_IDs - synchronize APIC bus arbitration IDs
674 */
675 void __init sync_Arb_IDs(void)
676 {
677 /* Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 */
678 if (modern_apic())
679 return;
680
681 /*
682 * Wait for idle.
683 */
684 apic_wait_icr_idle();
685
686 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
687 apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG
688 | APIC_DM_INIT);
689 }
690
691 /*
692 * An initial setup of the virtual wire mode.
693 */
694 void __init init_bsp_APIC(void)
695 {
696 unsigned int value;
697
698 /*
699 * Don't do the setup now if we have a SMP BIOS as the
700 * through-I/O-APIC virtual wire mode might be active.
701 */
702 if (smp_found_config || !cpu_has_apic)
703 return;
704
705 value = apic_read(APIC_LVR);
706
707 /*
708 * Do not trust the local APIC being empty at bootup.
709 */
710 clear_local_APIC();
711
712 /*
713 * Enable APIC.
714 */
715 value = apic_read(APIC_SPIV);
716 value &= ~APIC_VECTOR_MASK;
717 value |= APIC_SPIV_APIC_ENABLED;
718 value |= APIC_SPIV_FOCUS_DISABLED;
719 value |= SPURIOUS_APIC_VECTOR;
720 apic_write(APIC_SPIV, value);
721
722 /*
723 * Set up the virtual wire mode.
724 */
725 apic_write(APIC_LVT0, APIC_DM_EXTINT);
726 value = APIC_DM_NMI;
727 apic_write(APIC_LVT1, value);
728 }
729
730 /**
731 * setup_local_APIC - setup the local APIC
732 */
733 void __cpuinit setup_local_APIC(void)
734 {
735 unsigned int value;
736 int i, j;
737
738 preempt_disable();
739 value = apic_read(APIC_LVR);
740
741 BUILD_BUG_ON((SPURIOUS_APIC_VECTOR & 0x0f) != 0x0f);
742
743 /*
744 * Double-check whether this APIC is really registered.
745 * This is meaningless in clustered apic mode, so we skip it.
746 */
747 if (!apic_id_registered())
748 BUG();
749
750 /*
751 * Intel recommends to set DFR, LDR and TPR before enabling
752 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
753 * document number 292116). So here it goes...
754 */
755 init_apic_ldr();
756
757 /*
758 * Set Task Priority to 'accept all'. We never change this
759 * later on.
760 */
761 value = apic_read(APIC_TASKPRI);
762 value &= ~APIC_TPRI_MASK;
763 apic_write(APIC_TASKPRI, value);
764
765 /*
766 * After a crash, we no longer service the interrupts and a pending
767 * interrupt from previous kernel might still have ISR bit set.
768 *
769 * Most probably by now CPU has serviced that pending interrupt and
770 * it might not have done the ack_APIC_irq() because it thought,
771 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it
772 * does not clear the ISR bit and cpu thinks it has already serivced
773 * the interrupt. Hence a vector might get locked. It was noticed
774 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR.
775 */
776 for (i = APIC_ISR_NR - 1; i >= 0; i--) {
777 value = apic_read(APIC_ISR + i*0x10);
778 for (j = 31; j >= 0; j--) {
779 if (value & (1<<j))
780 ack_APIC_irq();
781 }
782 }
783
784 /*
785 * Now that we are all set up, enable the APIC
786 */
787 value = apic_read(APIC_SPIV);
788 value &= ~APIC_VECTOR_MASK;
789 /*
790 * Enable APIC
791 */
792 value |= APIC_SPIV_APIC_ENABLED;
793
794 /* We always use processor focus */
795
796 /*
797 * Set spurious IRQ vector
798 */
799 value |= SPURIOUS_APIC_VECTOR;
800 apic_write(APIC_SPIV, value);
801
802 /*
803 * Set up LVT0, LVT1:
804 *
805 * set up through-local-APIC on the BP's LINT0. This is not
806 * strictly necessary in pure symmetric-IO mode, but sometimes
807 * we delegate interrupts to the 8259A.
808 */
809 /*
810 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
811 */
812 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
813 if (!smp_processor_id() && !value) {
814 value = APIC_DM_EXTINT;
815 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n",
816 smp_processor_id());
817 } else {
818 value = APIC_DM_EXTINT | APIC_LVT_MASKED;
819 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n",
820 smp_processor_id());
821 }
822 apic_write(APIC_LVT0, value);
823
824 /*
825 * only the BP should see the LINT1 NMI signal, obviously.
826 */
827 if (!smp_processor_id())
828 value = APIC_DM_NMI;
829 else
830 value = APIC_DM_NMI | APIC_LVT_MASKED;
831 apic_write(APIC_LVT1, value);
832 preempt_enable();
833 }
834
835 static void __cpuinit lapic_setup_esr(void)
836 {
837 unsigned maxlvt = lapic_get_maxlvt();
838
839 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR);
840 /*
841 * spec says clear errors after enabling vector.
842 */
843 if (maxlvt > 3)
844 apic_write(APIC_ESR, 0);
845 }
846
847 void __cpuinit end_local_APIC_setup(void)
848 {
849 lapic_setup_esr();
850 nmi_watchdog_default();
851 setup_apic_nmi_watchdog(NULL);
852 apic_pm_activate();
853 }
854
855 /*
856 * Detect and enable local APICs on non-SMP boards.
857 * Original code written by Keir Fraser.
858 * On AMD64 we trust the BIOS - if it says no APIC it is likely
859 * not correctly set up (usually the APIC timer won't work etc.)
860 */
861 static int __init detect_init_APIC(void)
862 {
863 if (!cpu_has_apic) {
864 printk(KERN_INFO "No local APIC present\n");
865 return -1;
866 }
867
868 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
869 boot_cpu_physical_apicid = 0;
870 return 0;
871 }
872
873 void __init early_init_lapic_mapping(void)
874 {
875 unsigned long apic_phys;
876
877 /*
878 * If no local APIC can be found then go out
879 * : it means there is no mpatable and MADT
880 */
881 if (!smp_found_config)
882 return;
883
884 apic_phys = mp_lapic_addr;
885
886 set_fixmap_nocache(FIX_APIC_BASE, apic_phys);
887 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
888 APIC_BASE, apic_phys);
889
890 /*
891 * Fetch the APIC ID of the BSP in case we have a
892 * default configuration (or the MP table is broken).
893 */
894 boot_cpu_physical_apicid = GET_APIC_ID(read_apic_id());
895 }
896
897 /**
898 * init_apic_mappings - initialize APIC mappings
899 */
900 void __init init_apic_mappings(void)
901 {
902 /*
903 * If no local APIC can be found then set up a fake all
904 * zeroes page to simulate the local APIC and another
905 * one for the IO-APIC.
906 */
907 if (!smp_found_config && detect_init_APIC()) {
908 apic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE);
909 apic_phys = __pa(apic_phys);
910 } else
911 apic_phys = mp_lapic_addr;
912
913 set_fixmap_nocache(FIX_APIC_BASE, apic_phys);
914 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
915 APIC_BASE, apic_phys);
916
917 /*
918 * Fetch the APIC ID of the BSP in case we have a
919 * default configuration (or the MP table is broken).
920 */
921 boot_cpu_physical_apicid = GET_APIC_ID(read_apic_id());
922 }
923
924 /*
925 * This initializes the IO-APIC and APIC hardware if this is
926 * a UP kernel.
927 */
928 int __init APIC_init_uniprocessor(void)
929 {
930 if (disable_apic) {
931 printk(KERN_INFO "Apic disabled\n");
932 return -1;
933 }
934 if (!cpu_has_apic) {
935 disable_apic = 1;
936 printk(KERN_INFO "Apic disabled by BIOS\n");
937 return -1;
938 }
939
940 verify_local_APIC();
941
942 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_physical_apicid);
943 apic_write(APIC_ID, SET_APIC_ID(boot_cpu_physical_apicid));
944
945 setup_local_APIC();
946
947 /*
948 * Now enable IO-APICs, actually call clear_IO_APIC
949 * We need clear_IO_APIC before enabling vector on BP
950 */
951 if (!skip_ioapic_setup && nr_ioapics)
952 enable_IO_APIC();
953
954 end_local_APIC_setup();
955
956 if (smp_found_config && !skip_ioapic_setup && nr_ioapics)
957 setup_IO_APIC();
958 else
959 nr_ioapics = 0;
960 setup_boot_APIC_clock();
961 check_nmi_watchdog();
962 return 0;
963 }
964
965 /*
966 * Local APIC interrupts
967 */
968
969 /*
970 * This interrupt should _never_ happen with our APIC/SMP architecture
971 */
972 asmlinkage void smp_spurious_interrupt(void)
973 {
974 unsigned int v;
975 exit_idle();
976 irq_enter();
977 /*
978 * Check if this really is a spurious interrupt and ACK it
979 * if it is a vectored one. Just in case...
980 * Spurious interrupts should not be ACKed.
981 */
982 v = apic_read(APIC_ISR + ((SPURIOUS_APIC_VECTOR & ~0x1f) >> 1));
983 if (v & (1 << (SPURIOUS_APIC_VECTOR & 0x1f)))
984 ack_APIC_irq();
985
986 add_pda(irq_spurious_count, 1);
987 irq_exit();
988 }
989
990 /*
991 * This interrupt should never happen with our APIC/SMP architecture
992 */
993 asmlinkage void smp_error_interrupt(void)
994 {
995 unsigned int v, v1;
996
997 exit_idle();
998 irq_enter();
999 /* First tickle the hardware, only then report what went on. -- REW */
1000 v = apic_read(APIC_ESR);
1001 apic_write(APIC_ESR, 0);
1002 v1 = apic_read(APIC_ESR);
1003 ack_APIC_irq();
1004 atomic_inc(&irq_err_count);
1005
1006 /* Here is what the APIC error bits mean:
1007 0: Send CS error
1008 1: Receive CS error
1009 2: Send accept error
1010 3: Receive accept error
1011 4: Reserved
1012 5: Send illegal vector
1013 6: Received illegal vector
1014 7: Illegal register address
1015 */
1016 printk(KERN_DEBUG "APIC error on CPU%d: %02x(%02x)\n",
1017 smp_processor_id(), v , v1);
1018 irq_exit();
1019 }
1020
1021 void disconnect_bsp_APIC(int virt_wire_setup)
1022 {
1023 /* Go back to Virtual Wire compatibility mode */
1024 unsigned long value;
1025
1026 /* For the spurious interrupt use vector F, and enable it */
1027 value = apic_read(APIC_SPIV);
1028 value &= ~APIC_VECTOR_MASK;
1029 value |= APIC_SPIV_APIC_ENABLED;
1030 value |= 0xf;
1031 apic_write(APIC_SPIV, value);
1032
1033 if (!virt_wire_setup) {
1034 /*
1035 * For LVT0 make it edge triggered, active high,
1036 * external and enabled
1037 */
1038 value = apic_read(APIC_LVT0);
1039 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
1040 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
1041 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
1042 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
1043 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
1044 apic_write(APIC_LVT0, value);
1045 } else {
1046 /* Disable LVT0 */
1047 apic_write(APIC_LVT0, APIC_LVT_MASKED);
1048 }
1049
1050 /* For LVT1 make it edge triggered, active high, nmi and enabled */
1051 value = apic_read(APIC_LVT1);
1052 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
1053 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
1054 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
1055 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
1056 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
1057 apic_write(APIC_LVT1, value);
1058 }
1059
1060 void __cpuinit generic_processor_info(int apicid, int version)
1061 {
1062 int cpu;
1063 cpumask_t tmp_map;
1064
1065 if (num_processors >= NR_CPUS) {
1066 printk(KERN_WARNING "WARNING: NR_CPUS limit of %i reached."
1067 " Processor ignored.\n", NR_CPUS);
1068 return;
1069 }
1070
1071 if (num_processors >= maxcpus) {
1072 printk(KERN_WARNING "WARNING: maxcpus limit of %i reached."
1073 " Processor ignored.\n", maxcpus);
1074 return;
1075 }
1076
1077 num_processors++;
1078 cpus_complement(tmp_map, cpu_present_map);
1079 cpu = first_cpu(tmp_map);
1080
1081 physid_set(apicid, phys_cpu_present_map);
1082 if (apicid == boot_cpu_physical_apicid) {
1083 /*
1084 * x86_bios_cpu_apicid is required to have processors listed
1085 * in same order as logical cpu numbers. Hence the first
1086 * entry is BSP, and so on.
1087 */
1088 cpu = 0;
1089 }
1090 /* are we being called early in kernel startup? */
1091 if (early_per_cpu_ptr(x86_cpu_to_apicid)) {
1092 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
1093 u16 *bios_cpu_apicid = early_per_cpu_ptr(x86_bios_cpu_apicid);
1094
1095 cpu_to_apicid[cpu] = apicid;
1096 bios_cpu_apicid[cpu] = apicid;
1097 } else {
1098 per_cpu(x86_cpu_to_apicid, cpu) = apicid;
1099 per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
1100 }
1101
1102 cpu_set(cpu, cpu_possible_map);
1103 cpu_set(cpu, cpu_present_map);
1104 }
1105
1106 /*
1107 * Power management
1108 */
1109 #ifdef CONFIG_PM
1110
1111 static struct {
1112 /* 'active' is true if the local APIC was enabled by us and
1113 not the BIOS; this signifies that we are also responsible
1114 for disabling it before entering apm/acpi suspend */
1115 int active;
1116 /* r/w apic fields */
1117 unsigned int apic_id;
1118 unsigned int apic_taskpri;
1119 unsigned int apic_ldr;
1120 unsigned int apic_dfr;
1121 unsigned int apic_spiv;
1122 unsigned int apic_lvtt;
1123 unsigned int apic_lvtpc;
1124 unsigned int apic_lvt0;
1125 unsigned int apic_lvt1;
1126 unsigned int apic_lvterr;
1127 unsigned int apic_tmict;
1128 unsigned int apic_tdcr;
1129 unsigned int apic_thmr;
1130 } apic_pm_state;
1131
1132 static int lapic_suspend(struct sys_device *dev, pm_message_t state)
1133 {
1134 unsigned long flags;
1135 int maxlvt;
1136
1137 if (!apic_pm_state.active)
1138 return 0;
1139
1140 maxlvt = lapic_get_maxlvt();
1141
1142 apic_pm_state.apic_id = read_apic_id();
1143 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
1144 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
1145 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
1146 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
1147 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
1148 if (maxlvt >= 4)
1149 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
1150 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
1151 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
1152 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
1153 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
1154 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
1155 #ifdef CONFIG_X86_MCE_INTEL
1156 if (maxlvt >= 5)
1157 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
1158 #endif
1159 local_irq_save(flags);
1160 disable_local_APIC();
1161 local_irq_restore(flags);
1162 return 0;
1163 }
1164
1165 static int lapic_resume(struct sys_device *dev)
1166 {
1167 unsigned int l, h;
1168 unsigned long flags;
1169 int maxlvt;
1170
1171 if (!apic_pm_state.active)
1172 return 0;
1173
1174 maxlvt = lapic_get_maxlvt();
1175
1176 local_irq_save(flags);
1177 rdmsr(MSR_IA32_APICBASE, l, h);
1178 l &= ~MSR_IA32_APICBASE_BASE;
1179 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
1180 wrmsr(MSR_IA32_APICBASE, l, h);
1181 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
1182 apic_write(APIC_ID, apic_pm_state.apic_id);
1183 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
1184 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
1185 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
1186 apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
1187 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
1188 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
1189 #ifdef CONFIG_X86_MCE_INTEL
1190 if (maxlvt >= 5)
1191 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
1192 #endif
1193 if (maxlvt >= 4)
1194 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
1195 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
1196 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
1197 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
1198 apic_write(APIC_ESR, 0);
1199 apic_read(APIC_ESR);
1200 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
1201 apic_write(APIC_ESR, 0);
1202 apic_read(APIC_ESR);
1203 local_irq_restore(flags);
1204 return 0;
1205 }
1206
1207 static struct sysdev_class lapic_sysclass = {
1208 .name = "lapic",
1209 .resume = lapic_resume,
1210 .suspend = lapic_suspend,
1211 };
1212
1213 static struct sys_device device_lapic = {
1214 .id = 0,
1215 .cls = &lapic_sysclass,
1216 };
1217
1218 static void __cpuinit apic_pm_activate(void)
1219 {
1220 apic_pm_state.active = 1;
1221 }
1222
1223 static int __init init_lapic_sysfs(void)
1224 {
1225 int error;
1226
1227 if (!cpu_has_apic)
1228 return 0;
1229 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
1230
1231 error = sysdev_class_register(&lapic_sysclass);
1232 if (!error)
1233 error = sysdev_register(&device_lapic);
1234 return error;
1235 }
1236 device_initcall(init_lapic_sysfs);
1237
1238 #else /* CONFIG_PM */
1239
1240 static void apic_pm_activate(void) { }
1241
1242 #endif /* CONFIG_PM */
1243
1244 /*
1245 * apic_is_clustered_box() -- Check if we can expect good TSC
1246 *
1247 * Thus far, the major user of this is IBM's Summit2 series:
1248 *
1249 * Clustered boxes may have unsynced TSC problems if they are
1250 * multi-chassis. Use available data to take a good guess.
1251 * If in doubt, go HPET.
1252 */
1253 __cpuinit int apic_is_clustered_box(void)
1254 {
1255 int i, clusters, zeros;
1256 unsigned id;
1257 u16 *bios_cpu_apicid;
1258 DECLARE_BITMAP(clustermap, NUM_APIC_CLUSTERS);
1259
1260 /*
1261 * there is not this kind of box with AMD CPU yet.
1262 * Some AMD box with quadcore cpu and 8 sockets apicid
1263 * will be [4, 0x23] or [8, 0x27] could be thought to
1264 * vsmp box still need checking...
1265 */
1266 if ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && !is_vsmp_box())
1267 return 0;
1268
1269 bios_cpu_apicid = early_per_cpu_ptr(x86_bios_cpu_apicid);
1270 bitmap_zero(clustermap, NUM_APIC_CLUSTERS);
1271
1272 for (i = 0; i < NR_CPUS; i++) {
1273 /* are we being called early in kernel startup? */
1274 if (bios_cpu_apicid) {
1275 id = bios_cpu_apicid[i];
1276 }
1277 else if (i < nr_cpu_ids) {
1278 if (cpu_present(i))
1279 id = per_cpu(x86_bios_cpu_apicid, i);
1280 else
1281 continue;
1282 }
1283 else
1284 break;
1285
1286 if (id != BAD_APICID)
1287 __set_bit(APIC_CLUSTERID(id), clustermap);
1288 }
1289
1290 /* Problem: Partially populated chassis may not have CPUs in some of
1291 * the APIC clusters they have been allocated. Only present CPUs have
1292 * x86_bios_cpu_apicid entries, thus causing zeroes in the bitmap.
1293 * Since clusters are allocated sequentially, count zeros only if
1294 * they are bounded by ones.
1295 */
1296 clusters = 0;
1297 zeros = 0;
1298 for (i = 0; i < NUM_APIC_CLUSTERS; i++) {
1299 if (test_bit(i, clustermap)) {
1300 clusters += 1 + zeros;
1301 zeros = 0;
1302 } else
1303 ++zeros;
1304 }
1305
1306 /* ScaleMP vSMPowered boxes have one cluster per board and TSCs are
1307 * not guaranteed to be synced between boards
1308 */
1309 if (is_vsmp_box() && clusters > 1)
1310 return 1;
1311
1312 /*
1313 * If clusters > 2, then should be multi-chassis.
1314 * May have to revisit this when multi-core + hyperthreaded CPUs come
1315 * out, but AFAIK this will work even for them.
1316 */
1317 return (clusters > 2);
1318 }
1319
1320 /*
1321 * APIC command line parameters
1322 */
1323 static int __init apic_set_verbosity(char *str)
1324 {
1325 if (str == NULL) {
1326 skip_ioapic_setup = 0;
1327 ioapic_force = 1;
1328 return 0;
1329 }
1330 if (strcmp("debug", str) == 0)
1331 apic_verbosity = APIC_DEBUG;
1332 else if (strcmp("verbose", str) == 0)
1333 apic_verbosity = APIC_VERBOSE;
1334 else {
1335 printk(KERN_WARNING "APIC Verbosity level %s not recognised"
1336 " use apic=verbose or apic=debug\n", str);
1337 return -EINVAL;
1338 }
1339
1340 return 0;
1341 }
1342 early_param("apic", apic_set_verbosity);
1343
1344 static __init int setup_disableapic(char *str)
1345 {
1346 disable_apic = 1;
1347 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1348 return 0;
1349 }
1350 early_param("disableapic", setup_disableapic);
1351
1352 /* same as disableapic, for compatibility */
1353 static __init int setup_nolapic(char *str)
1354 {
1355 return setup_disableapic(str);
1356 }
1357 early_param("nolapic", setup_nolapic);
1358
1359 static int __init parse_lapic_timer_c2_ok(char *arg)
1360 {
1361 local_apic_timer_c2_ok = 1;
1362 return 0;
1363 }
1364 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
1365
1366 static __init int setup_noapictimer(char *str)
1367 {
1368 if (str[0] != ' ' && str[0] != 0)
1369 return 0;
1370 disable_apic_timer = 1;
1371 return 1;
1372 }
1373 __setup("noapictimer", setup_noapictimer);
1374
1375 static __init int setup_apicpmtimer(char *s)
1376 {
1377 apic_calibrate_pmtmr = 1;
1378 notsc_setup(NULL);
1379 return 0;
1380 }
1381 __setup("apicpmtimer", setup_apicpmtimer);
1382
1383 static int __init lapic_insert_resource(void)
1384 {
1385 if (!apic_phys)
1386 return -1;
1387
1388 /* Put local APIC into the resource map. */
1389 lapic_resource.start = apic_phys;
1390 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
1391 insert_resource(&iomem_resource, &lapic_resource);
1392
1393 return 0;
1394 }
1395
1396 /*
1397 * need call insert after e820_reserve_resources()
1398 * that is using request_resource
1399 */
1400 late_initcall(lapic_insert_resource);
This page took 0.080187 seconds and 5 git commands to generate.