x64, x2apic/intr-remap: basic apic ops support
[deliverable/linux.git] / arch / x86 / kernel / apic_64.c
1 /*
2 * Local APIC handling, local APIC timers
3 *
4 * (c) 1999, 2000 Ingo Molnar <mingo@redhat.com>
5 *
6 * Fixes
7 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
8 * thanks to Eric Gilmore
9 * and Rolf G. Tews
10 * for testing these extensively.
11 * Maciej W. Rozycki : Various updates and fixes.
12 * Mikael Pettersson : Power Management for UP-APIC.
13 * Pavel Machek and
14 * Mikael Pettersson : PM converted to driver model.
15 */
16
17 #include <linux/init.h>
18
19 #include <linux/mm.h>
20 #include <linux/delay.h>
21 #include <linux/bootmem.h>
22 #include <linux/interrupt.h>
23 #include <linux/mc146818rtc.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/sysdev.h>
26 #include <linux/ioport.h>
27 #include <linux/clockchips.h>
28 #include <linux/acpi_pmtmr.h>
29 #include <linux/module.h>
30
31 #include <asm/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/mtrr.h>
34 #include <asm/mpspec.h>
35 #include <asm/hpet.h>
36 #include <asm/pgalloc.h>
37 #include <asm/nmi.h>
38 #include <asm/idle.h>
39 #include <asm/proto.h>
40 #include <asm/timex.h>
41 #include <asm/apic.h>
42
43 #include <mach_ipi.h>
44 #include <mach_apic.h>
45
46 static int disable_apic_timer __cpuinitdata;
47 static int apic_calibrate_pmtmr __initdata;
48 int disable_apic;
49
50 /* Local APIC timer works in C2 */
51 int local_apic_timer_c2_ok;
52 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
53
54 /*
55 * Debug level, exported for io_apic.c
56 */
57 int apic_verbosity;
58
59 /* Have we found an MP table */
60 int smp_found_config;
61
62 static struct resource lapic_resource = {
63 .name = "Local APIC",
64 .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
65 };
66
67 static unsigned int calibration_result;
68
69 static int lapic_next_event(unsigned long delta,
70 struct clock_event_device *evt);
71 static void lapic_timer_setup(enum clock_event_mode mode,
72 struct clock_event_device *evt);
73 static void lapic_timer_broadcast(cpumask_t mask);
74 static void apic_pm_activate(void);
75
76 static struct clock_event_device lapic_clockevent = {
77 .name = "lapic",
78 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT
79 | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_DUMMY,
80 .shift = 32,
81 .set_mode = lapic_timer_setup,
82 .set_next_event = lapic_next_event,
83 .broadcast = lapic_timer_broadcast,
84 .rating = 100,
85 .irq = -1,
86 };
87 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
88
89 static unsigned long apic_phys;
90
91 unsigned long mp_lapic_addr;
92
93 unsigned int __cpuinitdata maxcpus = NR_CPUS;
94 /*
95 * Get the LAPIC version
96 */
97 static inline int lapic_get_version(void)
98 {
99 return GET_APIC_VERSION(apic_read(APIC_LVR));
100 }
101
102 /*
103 * Check, if the APIC is integrated or a seperate chip
104 */
105 static inline int lapic_is_integrated(void)
106 {
107 return 1;
108 }
109
110 /*
111 * Check, whether this is a modern or a first generation APIC
112 */
113 static int modern_apic(void)
114 {
115 /* AMD systems use old APIC versions, so check the CPU */
116 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
117 boot_cpu_data.x86 >= 0xf)
118 return 1;
119 return lapic_get_version() >= 0x14;
120 }
121
122 void xapic_wait_icr_idle(void)
123 {
124 while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
125 cpu_relax();
126 }
127
128 u32 safe_xapic_wait_icr_idle(void)
129 {
130 u32 send_status;
131 int timeout;
132
133 timeout = 0;
134 do {
135 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
136 if (!send_status)
137 break;
138 udelay(100);
139 } while (timeout++ < 1000);
140
141 return send_status;
142 }
143
144 void xapic_icr_write(u32 low, u32 id)
145 {
146 apic_write(APIC_ICR2, id << 24);
147 apic_write(APIC_ICR, low);
148 }
149
150 u64 xapic_icr_read(void)
151 {
152 u32 icr1, icr2;
153
154 icr2 = apic_read(APIC_ICR2);
155 icr1 = apic_read(APIC_ICR);
156
157 return (icr1 | ((u64)icr2 << 32));
158 }
159
160 static struct apic_ops xapic_ops = {
161 .read = native_apic_mem_read,
162 .write = native_apic_mem_write,
163 .write_atomic = native_apic_mem_write_atomic,
164 .icr_read = xapic_icr_read,
165 .icr_write = xapic_icr_write,
166 .wait_icr_idle = xapic_wait_icr_idle,
167 .safe_wait_icr_idle = safe_xapic_wait_icr_idle,
168 };
169
170 struct apic_ops __read_mostly *apic_ops = &xapic_ops;
171
172 EXPORT_SYMBOL_GPL(apic_ops);
173
174 /**
175 * enable_NMI_through_LVT0 - enable NMI through local vector table 0
176 */
177 void __cpuinit enable_NMI_through_LVT0(void)
178 {
179 unsigned int v;
180
181 /* unmask and set to NMI */
182 v = APIC_DM_NMI;
183 apic_write(APIC_LVT0, v);
184 }
185
186 /**
187 * lapic_get_maxlvt - get the maximum number of local vector table entries
188 */
189 int lapic_get_maxlvt(void)
190 {
191 unsigned int v, maxlvt;
192
193 v = apic_read(APIC_LVR);
194 maxlvt = GET_APIC_MAXLVT(v);
195 return maxlvt;
196 }
197
198 /*
199 * This function sets up the local APIC timer, with a timeout of
200 * 'clocks' APIC bus clock. During calibration we actually call
201 * this function twice on the boot CPU, once with a bogus timeout
202 * value, second time for real. The other (noncalibrating) CPUs
203 * call this function only once, with the real, calibrated value.
204 *
205 * We do reads before writes even if unnecessary, to get around the
206 * P5 APIC double write bug.
207 */
208
209 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
210 {
211 unsigned int lvtt_value, tmp_value;
212
213 lvtt_value = LOCAL_TIMER_VECTOR;
214 if (!oneshot)
215 lvtt_value |= APIC_LVT_TIMER_PERIODIC;
216 if (!irqen)
217 lvtt_value |= APIC_LVT_MASKED;
218
219 apic_write(APIC_LVTT, lvtt_value);
220
221 /*
222 * Divide PICLK by 16
223 */
224 tmp_value = apic_read(APIC_TDCR);
225 apic_write(APIC_TDCR, (tmp_value
226 & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE))
227 | APIC_TDR_DIV_16);
228
229 if (!oneshot)
230 apic_write(APIC_TMICT, clocks);
231 }
232
233 /*
234 * Setup extended LVT, AMD specific (K8, family 10h)
235 *
236 * Vector mappings are hard coded. On K8 only offset 0 (APIC500) and
237 * MCE interrupts are supported. Thus MCE offset must be set to 0.
238 */
239
240 #define APIC_EILVT_LVTOFF_MCE 0
241 #define APIC_EILVT_LVTOFF_IBS 1
242
243 static void setup_APIC_eilvt(u8 lvt_off, u8 vector, u8 msg_type, u8 mask)
244 {
245 unsigned long reg = (lvt_off << 4) + APIC_EILVT0;
246 unsigned int v = (mask << 16) | (msg_type << 8) | vector;
247
248 apic_write(reg, v);
249 }
250
251 u8 setup_APIC_eilvt_mce(u8 vector, u8 msg_type, u8 mask)
252 {
253 setup_APIC_eilvt(APIC_EILVT_LVTOFF_MCE, vector, msg_type, mask);
254 return APIC_EILVT_LVTOFF_MCE;
255 }
256
257 u8 setup_APIC_eilvt_ibs(u8 vector, u8 msg_type, u8 mask)
258 {
259 setup_APIC_eilvt(APIC_EILVT_LVTOFF_IBS, vector, msg_type, mask);
260 return APIC_EILVT_LVTOFF_IBS;
261 }
262
263 /*
264 * Program the next event, relative to now
265 */
266 static int lapic_next_event(unsigned long delta,
267 struct clock_event_device *evt)
268 {
269 apic_write(APIC_TMICT, delta);
270 return 0;
271 }
272
273 /*
274 * Setup the lapic timer in periodic or oneshot mode
275 */
276 static void lapic_timer_setup(enum clock_event_mode mode,
277 struct clock_event_device *evt)
278 {
279 unsigned long flags;
280 unsigned int v;
281
282 /* Lapic used as dummy for broadcast ? */
283 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
284 return;
285
286 local_irq_save(flags);
287
288 switch (mode) {
289 case CLOCK_EVT_MODE_PERIODIC:
290 case CLOCK_EVT_MODE_ONESHOT:
291 __setup_APIC_LVTT(calibration_result,
292 mode != CLOCK_EVT_MODE_PERIODIC, 1);
293 break;
294 case CLOCK_EVT_MODE_UNUSED:
295 case CLOCK_EVT_MODE_SHUTDOWN:
296 v = apic_read(APIC_LVTT);
297 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
298 apic_write(APIC_LVTT, v);
299 break;
300 case CLOCK_EVT_MODE_RESUME:
301 /* Nothing to do here */
302 break;
303 }
304
305 local_irq_restore(flags);
306 }
307
308 /*
309 * Local APIC timer broadcast function
310 */
311 static void lapic_timer_broadcast(cpumask_t mask)
312 {
313 #ifdef CONFIG_SMP
314 send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
315 #endif
316 }
317
318 /*
319 * Setup the local APIC timer for this CPU. Copy the initilized values
320 * of the boot CPU and register the clock event in the framework.
321 */
322 static void setup_APIC_timer(void)
323 {
324 struct clock_event_device *levt = &__get_cpu_var(lapic_events);
325
326 memcpy(levt, &lapic_clockevent, sizeof(*levt));
327 levt->cpumask = cpumask_of_cpu(smp_processor_id());
328
329 clockevents_register_device(levt);
330 }
331
332 /*
333 * In this function we calibrate APIC bus clocks to the external
334 * timer. Unfortunately we cannot use jiffies and the timer irq
335 * to calibrate, since some later bootup code depends on getting
336 * the first irq? Ugh.
337 *
338 * We want to do the calibration only once since we
339 * want to have local timer irqs syncron. CPUs connected
340 * by the same APIC bus have the very same bus frequency.
341 * And we want to have irqs off anyways, no accidental
342 * APIC irq that way.
343 */
344
345 #define TICK_COUNT 100000000
346
347 static void __init calibrate_APIC_clock(void)
348 {
349 unsigned apic, apic_start;
350 unsigned long tsc, tsc_start;
351 int result;
352
353 local_irq_disable();
354
355 /*
356 * Put whatever arbitrary (but long enough) timeout
357 * value into the APIC clock, we just want to get the
358 * counter running for calibration.
359 *
360 * No interrupt enable !
361 */
362 __setup_APIC_LVTT(250000000, 0, 0);
363
364 apic_start = apic_read(APIC_TMCCT);
365 #ifdef CONFIG_X86_PM_TIMER
366 if (apic_calibrate_pmtmr && pmtmr_ioport) {
367 pmtimer_wait(5000); /* 5ms wait */
368 apic = apic_read(APIC_TMCCT);
369 result = (apic_start - apic) * 1000L / 5;
370 } else
371 #endif
372 {
373 rdtscll(tsc_start);
374
375 do {
376 apic = apic_read(APIC_TMCCT);
377 rdtscll(tsc);
378 } while ((tsc - tsc_start) < TICK_COUNT &&
379 (apic_start - apic) < TICK_COUNT);
380
381 result = (apic_start - apic) * 1000L * tsc_khz /
382 (tsc - tsc_start);
383 }
384
385 local_irq_enable();
386
387 printk(KERN_DEBUG "APIC timer calibration result %d\n", result);
388
389 printk(KERN_INFO "Detected %d.%03d MHz APIC timer.\n",
390 result / 1000 / 1000, result / 1000 % 1000);
391
392 /* Calculate the scaled math multiplication factor */
393 lapic_clockevent.mult = div_sc(result, NSEC_PER_SEC,
394 lapic_clockevent.shift);
395 lapic_clockevent.max_delta_ns =
396 clockevent_delta2ns(0x7FFFFF, &lapic_clockevent);
397 lapic_clockevent.min_delta_ns =
398 clockevent_delta2ns(0xF, &lapic_clockevent);
399
400 calibration_result = result / HZ;
401 }
402
403 /*
404 * Setup the boot APIC
405 *
406 * Calibrate and verify the result.
407 */
408 void __init setup_boot_APIC_clock(void)
409 {
410 /*
411 * The local apic timer can be disabled via the kernel commandline.
412 * Register the lapic timer as a dummy clock event source on SMP
413 * systems, so the broadcast mechanism is used. On UP systems simply
414 * ignore it.
415 */
416 if (disable_apic_timer) {
417 printk(KERN_INFO "Disabling APIC timer\n");
418 /* No broadcast on UP ! */
419 if (num_possible_cpus() > 1) {
420 lapic_clockevent.mult = 1;
421 setup_APIC_timer();
422 }
423 return;
424 }
425
426 printk(KERN_INFO "Using local APIC timer interrupts.\n");
427 calibrate_APIC_clock();
428
429 /*
430 * Do a sanity check on the APIC calibration result
431 */
432 if (calibration_result < (1000000 / HZ)) {
433 printk(KERN_WARNING
434 "APIC frequency too slow, disabling apic timer\n");
435 /* No broadcast on UP ! */
436 if (num_possible_cpus() > 1)
437 setup_APIC_timer();
438 return;
439 }
440
441 /*
442 * If nmi_watchdog is set to IO_APIC, we need the
443 * PIT/HPET going. Otherwise register lapic as a dummy
444 * device.
445 */
446 if (nmi_watchdog != NMI_IO_APIC)
447 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
448 else
449 printk(KERN_WARNING "APIC timer registered as dummy,"
450 " due to nmi_watchdog=%d!\n", nmi_watchdog);
451
452 setup_APIC_timer();
453 }
454
455 void __cpuinit setup_secondary_APIC_clock(void)
456 {
457 setup_APIC_timer();
458 }
459
460 /*
461 * The guts of the apic timer interrupt
462 */
463 static void local_apic_timer_interrupt(void)
464 {
465 int cpu = smp_processor_id();
466 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
467
468 /*
469 * Normally we should not be here till LAPIC has been initialized but
470 * in some cases like kdump, its possible that there is a pending LAPIC
471 * timer interrupt from previous kernel's context and is delivered in
472 * new kernel the moment interrupts are enabled.
473 *
474 * Interrupts are enabled early and LAPIC is setup much later, hence
475 * its possible that when we get here evt->event_handler is NULL.
476 * Check for event_handler being NULL and discard the interrupt as
477 * spurious.
478 */
479 if (!evt->event_handler) {
480 printk(KERN_WARNING
481 "Spurious LAPIC timer interrupt on cpu %d\n", cpu);
482 /* Switch it off */
483 lapic_timer_setup(CLOCK_EVT_MODE_SHUTDOWN, evt);
484 return;
485 }
486
487 /*
488 * the NMI deadlock-detector uses this.
489 */
490 add_pda(apic_timer_irqs, 1);
491
492 evt->event_handler(evt);
493 }
494
495 /*
496 * Local APIC timer interrupt. This is the most natural way for doing
497 * local interrupts, but local timer interrupts can be emulated by
498 * broadcast interrupts too. [in case the hw doesn't support APIC timers]
499 *
500 * [ if a single-CPU system runs an SMP kernel then we call the local
501 * interrupt as well. Thus we cannot inline the local irq ... ]
502 */
503 void smp_apic_timer_interrupt(struct pt_regs *regs)
504 {
505 struct pt_regs *old_regs = set_irq_regs(regs);
506
507 /*
508 * NOTE! We'd better ACK the irq immediately,
509 * because timer handling can be slow.
510 */
511 ack_APIC_irq();
512 /*
513 * update_process_times() expects us to have done irq_enter().
514 * Besides, if we don't timer interrupts ignore the global
515 * interrupt lock, which is the WrongThing (tm) to do.
516 */
517 exit_idle();
518 irq_enter();
519 local_apic_timer_interrupt();
520 irq_exit();
521 set_irq_regs(old_regs);
522 }
523
524 int setup_profiling_timer(unsigned int multiplier)
525 {
526 return -EINVAL;
527 }
528
529
530 /*
531 * Local APIC start and shutdown
532 */
533
534 /**
535 * clear_local_APIC - shutdown the local APIC
536 *
537 * This is called, when a CPU is disabled and before rebooting, so the state of
538 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
539 * leftovers during boot.
540 */
541 void clear_local_APIC(void)
542 {
543 int maxlvt;
544 u32 v;
545
546 /* APIC hasn't been mapped yet */
547 if (!apic_phys)
548 return;
549
550 maxlvt = lapic_get_maxlvt();
551 /*
552 * Masking an LVT entry can trigger a local APIC error
553 * if the vector is zero. Mask LVTERR first to prevent this.
554 */
555 if (maxlvt >= 3) {
556 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
557 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
558 }
559 /*
560 * Careful: we have to set masks only first to deassert
561 * any level-triggered sources.
562 */
563 v = apic_read(APIC_LVTT);
564 apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
565 v = apic_read(APIC_LVT0);
566 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
567 v = apic_read(APIC_LVT1);
568 apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
569 if (maxlvt >= 4) {
570 v = apic_read(APIC_LVTPC);
571 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
572 }
573
574 /*
575 * Clean APIC state for other OSs:
576 */
577 apic_write(APIC_LVTT, APIC_LVT_MASKED);
578 apic_write(APIC_LVT0, APIC_LVT_MASKED);
579 apic_write(APIC_LVT1, APIC_LVT_MASKED);
580 if (maxlvt >= 3)
581 apic_write(APIC_LVTERR, APIC_LVT_MASKED);
582 if (maxlvt >= 4)
583 apic_write(APIC_LVTPC, APIC_LVT_MASKED);
584 apic_write(APIC_ESR, 0);
585 apic_read(APIC_ESR);
586 }
587
588 /**
589 * disable_local_APIC - clear and disable the local APIC
590 */
591 void disable_local_APIC(void)
592 {
593 unsigned int value;
594
595 clear_local_APIC();
596
597 /*
598 * Disable APIC (implies clearing of registers
599 * for 82489DX!).
600 */
601 value = apic_read(APIC_SPIV);
602 value &= ~APIC_SPIV_APIC_ENABLED;
603 apic_write(APIC_SPIV, value);
604 }
605
606 void lapic_shutdown(void)
607 {
608 unsigned long flags;
609
610 if (!cpu_has_apic)
611 return;
612
613 local_irq_save(flags);
614
615 disable_local_APIC();
616
617 local_irq_restore(flags);
618 }
619
620 /*
621 * This is to verify that we're looking at a real local APIC.
622 * Check these against your board if the CPUs aren't getting
623 * started for no apparent reason.
624 */
625 int __init verify_local_APIC(void)
626 {
627 unsigned int reg0, reg1;
628
629 /*
630 * The version register is read-only in a real APIC.
631 */
632 reg0 = apic_read(APIC_LVR);
633 apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg0);
634 apic_write(APIC_LVR, reg0 ^ APIC_LVR_MASK);
635 reg1 = apic_read(APIC_LVR);
636 apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg1);
637
638 /*
639 * The two version reads above should print the same
640 * numbers. If the second one is different, then we
641 * poke at a non-APIC.
642 */
643 if (reg1 != reg0)
644 return 0;
645
646 /*
647 * Check if the version looks reasonably.
648 */
649 reg1 = GET_APIC_VERSION(reg0);
650 if (reg1 == 0x00 || reg1 == 0xff)
651 return 0;
652 reg1 = lapic_get_maxlvt();
653 if (reg1 < 0x02 || reg1 == 0xff)
654 return 0;
655
656 /*
657 * The ID register is read/write in a real APIC.
658 */
659 reg0 = apic_read(APIC_ID);
660 apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg0);
661 apic_write(APIC_ID, reg0 ^ APIC_ID_MASK);
662 reg1 = apic_read(APIC_ID);
663 apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg1);
664 apic_write(APIC_ID, reg0);
665 if (reg1 != (reg0 ^ APIC_ID_MASK))
666 return 0;
667
668 /*
669 * The next two are just to see if we have sane values.
670 * They're only really relevant if we're in Virtual Wire
671 * compatibility mode, but most boxes are anymore.
672 */
673 reg0 = apic_read(APIC_LVT0);
674 apic_printk(APIC_DEBUG, "Getting LVT0: %x\n", reg0);
675 reg1 = apic_read(APIC_LVT1);
676 apic_printk(APIC_DEBUG, "Getting LVT1: %x\n", reg1);
677
678 return 1;
679 }
680
681 /**
682 * sync_Arb_IDs - synchronize APIC bus arbitration IDs
683 */
684 void __init sync_Arb_IDs(void)
685 {
686 /* Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 */
687 if (modern_apic())
688 return;
689
690 /*
691 * Wait for idle.
692 */
693 apic_wait_icr_idle();
694
695 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
696 apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG
697 | APIC_DM_INIT);
698 }
699
700 /*
701 * An initial setup of the virtual wire mode.
702 */
703 void __init init_bsp_APIC(void)
704 {
705 unsigned int value;
706
707 /*
708 * Don't do the setup now if we have a SMP BIOS as the
709 * through-I/O-APIC virtual wire mode might be active.
710 */
711 if (smp_found_config || !cpu_has_apic)
712 return;
713
714 value = apic_read(APIC_LVR);
715
716 /*
717 * Do not trust the local APIC being empty at bootup.
718 */
719 clear_local_APIC();
720
721 /*
722 * Enable APIC.
723 */
724 value = apic_read(APIC_SPIV);
725 value &= ~APIC_VECTOR_MASK;
726 value |= APIC_SPIV_APIC_ENABLED;
727 value |= APIC_SPIV_FOCUS_DISABLED;
728 value |= SPURIOUS_APIC_VECTOR;
729 apic_write(APIC_SPIV, value);
730
731 /*
732 * Set up the virtual wire mode.
733 */
734 apic_write(APIC_LVT0, APIC_DM_EXTINT);
735 value = APIC_DM_NMI;
736 apic_write(APIC_LVT1, value);
737 }
738
739 /**
740 * setup_local_APIC - setup the local APIC
741 */
742 void __cpuinit setup_local_APIC(void)
743 {
744 unsigned int value;
745 int i, j;
746
747 preempt_disable();
748 value = apic_read(APIC_LVR);
749
750 BUILD_BUG_ON((SPURIOUS_APIC_VECTOR & 0x0f) != 0x0f);
751
752 /*
753 * Double-check whether this APIC is really registered.
754 * This is meaningless in clustered apic mode, so we skip it.
755 */
756 if (!apic_id_registered())
757 BUG();
758
759 /*
760 * Intel recommends to set DFR, LDR and TPR before enabling
761 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
762 * document number 292116). So here it goes...
763 */
764 init_apic_ldr();
765
766 /*
767 * Set Task Priority to 'accept all'. We never change this
768 * later on.
769 */
770 value = apic_read(APIC_TASKPRI);
771 value &= ~APIC_TPRI_MASK;
772 apic_write(APIC_TASKPRI, value);
773
774 /*
775 * After a crash, we no longer service the interrupts and a pending
776 * interrupt from previous kernel might still have ISR bit set.
777 *
778 * Most probably by now CPU has serviced that pending interrupt and
779 * it might not have done the ack_APIC_irq() because it thought,
780 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it
781 * does not clear the ISR bit and cpu thinks it has already serivced
782 * the interrupt. Hence a vector might get locked. It was noticed
783 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR.
784 */
785 for (i = APIC_ISR_NR - 1; i >= 0; i--) {
786 value = apic_read(APIC_ISR + i*0x10);
787 for (j = 31; j >= 0; j--) {
788 if (value & (1<<j))
789 ack_APIC_irq();
790 }
791 }
792
793 /*
794 * Now that we are all set up, enable the APIC
795 */
796 value = apic_read(APIC_SPIV);
797 value &= ~APIC_VECTOR_MASK;
798 /*
799 * Enable APIC
800 */
801 value |= APIC_SPIV_APIC_ENABLED;
802
803 /* We always use processor focus */
804
805 /*
806 * Set spurious IRQ vector
807 */
808 value |= SPURIOUS_APIC_VECTOR;
809 apic_write(APIC_SPIV, value);
810
811 /*
812 * Set up LVT0, LVT1:
813 *
814 * set up through-local-APIC on the BP's LINT0. This is not
815 * strictly necessary in pure symmetric-IO mode, but sometimes
816 * we delegate interrupts to the 8259A.
817 */
818 /*
819 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
820 */
821 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
822 if (!smp_processor_id() && !value) {
823 value = APIC_DM_EXTINT;
824 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n",
825 smp_processor_id());
826 } else {
827 value = APIC_DM_EXTINT | APIC_LVT_MASKED;
828 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n",
829 smp_processor_id());
830 }
831 apic_write(APIC_LVT0, value);
832
833 /*
834 * only the BP should see the LINT1 NMI signal, obviously.
835 */
836 if (!smp_processor_id())
837 value = APIC_DM_NMI;
838 else
839 value = APIC_DM_NMI | APIC_LVT_MASKED;
840 apic_write(APIC_LVT1, value);
841 preempt_enable();
842 }
843
844 static void __cpuinit lapic_setup_esr(void)
845 {
846 unsigned maxlvt = lapic_get_maxlvt();
847
848 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR);
849 /*
850 * spec says clear errors after enabling vector.
851 */
852 if (maxlvt > 3)
853 apic_write(APIC_ESR, 0);
854 }
855
856 void __cpuinit end_local_APIC_setup(void)
857 {
858 lapic_setup_esr();
859 setup_apic_nmi_watchdog(NULL);
860 apic_pm_activate();
861 }
862
863 /*
864 * Detect and enable local APICs on non-SMP boards.
865 * Original code written by Keir Fraser.
866 * On AMD64 we trust the BIOS - if it says no APIC it is likely
867 * not correctly set up (usually the APIC timer won't work etc.)
868 */
869 static int __init detect_init_APIC(void)
870 {
871 if (!cpu_has_apic) {
872 printk(KERN_INFO "No local APIC present\n");
873 return -1;
874 }
875
876 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
877 boot_cpu_physical_apicid = 0;
878 return 0;
879 }
880
881 void __init early_init_lapic_mapping(void)
882 {
883 unsigned long phys_addr;
884
885 /*
886 * If no local APIC can be found then go out
887 * : it means there is no mpatable and MADT
888 */
889 if (!smp_found_config)
890 return;
891
892 phys_addr = mp_lapic_addr;
893
894 set_fixmap_nocache(FIX_APIC_BASE, phys_addr);
895 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
896 APIC_BASE, phys_addr);
897
898 /*
899 * Fetch the APIC ID of the BSP in case we have a
900 * default configuration (or the MP table is broken).
901 */
902 boot_cpu_physical_apicid = GET_APIC_ID(read_apic_id());
903 }
904
905 /**
906 * init_apic_mappings - initialize APIC mappings
907 */
908 void __init init_apic_mappings(void)
909 {
910 /*
911 * If no local APIC can be found then set up a fake all
912 * zeroes page to simulate the local APIC and another
913 * one for the IO-APIC.
914 */
915 if (!smp_found_config && detect_init_APIC()) {
916 apic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE);
917 apic_phys = __pa(apic_phys);
918 } else
919 apic_phys = mp_lapic_addr;
920
921 set_fixmap_nocache(FIX_APIC_BASE, apic_phys);
922 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
923 APIC_BASE, apic_phys);
924
925 /*
926 * Fetch the APIC ID of the BSP in case we have a
927 * default configuration (or the MP table is broken).
928 */
929 boot_cpu_physical_apicid = GET_APIC_ID(read_apic_id());
930 }
931
932 /*
933 * This initializes the IO-APIC and APIC hardware if this is
934 * a UP kernel.
935 */
936 int __init APIC_init_uniprocessor(void)
937 {
938 if (disable_apic) {
939 printk(KERN_INFO "Apic disabled\n");
940 return -1;
941 }
942 if (!cpu_has_apic) {
943 disable_apic = 1;
944 printk(KERN_INFO "Apic disabled by BIOS\n");
945 return -1;
946 }
947
948 verify_local_APIC();
949
950 connect_bsp_APIC();
951
952 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
953 apic_write(APIC_ID, SET_APIC_ID(boot_cpu_physical_apicid));
954
955 setup_local_APIC();
956
957 /*
958 * Now enable IO-APICs, actually call clear_IO_APIC
959 * We need clear_IO_APIC before enabling vector on BP
960 */
961 if (!skip_ioapic_setup && nr_ioapics)
962 enable_IO_APIC();
963
964 if (!smp_found_config || skip_ioapic_setup || !nr_ioapics)
965 localise_nmi_watchdog();
966 end_local_APIC_setup();
967
968 if (smp_found_config && !skip_ioapic_setup && nr_ioapics)
969 setup_IO_APIC();
970 else
971 nr_ioapics = 0;
972 setup_boot_APIC_clock();
973 check_nmi_watchdog();
974 return 0;
975 }
976
977 /*
978 * Local APIC interrupts
979 */
980
981 /*
982 * This interrupt should _never_ happen with our APIC/SMP architecture
983 */
984 asmlinkage void smp_spurious_interrupt(void)
985 {
986 unsigned int v;
987 exit_idle();
988 irq_enter();
989 /*
990 * Check if this really is a spurious interrupt and ACK it
991 * if it is a vectored one. Just in case...
992 * Spurious interrupts should not be ACKed.
993 */
994 v = apic_read(APIC_ISR + ((SPURIOUS_APIC_VECTOR & ~0x1f) >> 1));
995 if (v & (1 << (SPURIOUS_APIC_VECTOR & 0x1f)))
996 ack_APIC_irq();
997
998 add_pda(irq_spurious_count, 1);
999 irq_exit();
1000 }
1001
1002 /*
1003 * This interrupt should never happen with our APIC/SMP architecture
1004 */
1005 asmlinkage void smp_error_interrupt(void)
1006 {
1007 unsigned int v, v1;
1008
1009 exit_idle();
1010 irq_enter();
1011 /* First tickle the hardware, only then report what went on. -- REW */
1012 v = apic_read(APIC_ESR);
1013 apic_write(APIC_ESR, 0);
1014 v1 = apic_read(APIC_ESR);
1015 ack_APIC_irq();
1016 atomic_inc(&irq_err_count);
1017
1018 /* Here is what the APIC error bits mean:
1019 0: Send CS error
1020 1: Receive CS error
1021 2: Send accept error
1022 3: Receive accept error
1023 4: Reserved
1024 5: Send illegal vector
1025 6: Received illegal vector
1026 7: Illegal register address
1027 */
1028 printk(KERN_DEBUG "APIC error on CPU%d: %02x(%02x)\n",
1029 smp_processor_id(), v , v1);
1030 irq_exit();
1031 }
1032
1033 /**
1034 * * connect_bsp_APIC - attach the APIC to the interrupt system
1035 * */
1036 void __init connect_bsp_APIC(void)
1037 {
1038 enable_apic_mode();
1039 }
1040
1041 void disconnect_bsp_APIC(int virt_wire_setup)
1042 {
1043 /* Go back to Virtual Wire compatibility mode */
1044 unsigned long value;
1045
1046 /* For the spurious interrupt use vector F, and enable it */
1047 value = apic_read(APIC_SPIV);
1048 value &= ~APIC_VECTOR_MASK;
1049 value |= APIC_SPIV_APIC_ENABLED;
1050 value |= 0xf;
1051 apic_write(APIC_SPIV, value);
1052
1053 if (!virt_wire_setup) {
1054 /*
1055 * For LVT0 make it edge triggered, active high,
1056 * external and enabled
1057 */
1058 value = apic_read(APIC_LVT0);
1059 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
1060 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
1061 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
1062 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
1063 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
1064 apic_write(APIC_LVT0, value);
1065 } else {
1066 /* Disable LVT0 */
1067 apic_write(APIC_LVT0, APIC_LVT_MASKED);
1068 }
1069
1070 /* For LVT1 make it edge triggered, active high, nmi and enabled */
1071 value = apic_read(APIC_LVT1);
1072 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
1073 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
1074 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
1075 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
1076 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
1077 apic_write(APIC_LVT1, value);
1078 }
1079
1080 void __cpuinit generic_processor_info(int apicid, int version)
1081 {
1082 int cpu;
1083 cpumask_t tmp_map;
1084
1085 if (num_processors >= NR_CPUS) {
1086 printk(KERN_WARNING "WARNING: NR_CPUS limit of %i reached."
1087 " Processor ignored.\n", NR_CPUS);
1088 return;
1089 }
1090
1091 if (num_processors >= maxcpus) {
1092 printk(KERN_WARNING "WARNING: maxcpus limit of %i reached."
1093 " Processor ignored.\n", maxcpus);
1094 return;
1095 }
1096
1097 num_processors++;
1098 cpus_complement(tmp_map, cpu_present_map);
1099 cpu = first_cpu(tmp_map);
1100
1101 physid_set(apicid, phys_cpu_present_map);
1102 if (apicid == boot_cpu_physical_apicid) {
1103 /*
1104 * x86_bios_cpu_apicid is required to have processors listed
1105 * in same order as logical cpu numbers. Hence the first
1106 * entry is BSP, and so on.
1107 */
1108 cpu = 0;
1109 }
1110 if (apicid > max_physical_apicid)
1111 max_physical_apicid = apicid;
1112
1113 /* are we being called early in kernel startup? */
1114 if (early_per_cpu_ptr(x86_cpu_to_apicid)) {
1115 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
1116 u16 *bios_cpu_apicid = early_per_cpu_ptr(x86_bios_cpu_apicid);
1117
1118 cpu_to_apicid[cpu] = apicid;
1119 bios_cpu_apicid[cpu] = apicid;
1120 } else {
1121 per_cpu(x86_cpu_to_apicid, cpu) = apicid;
1122 per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
1123 }
1124
1125 cpu_set(cpu, cpu_possible_map);
1126 cpu_set(cpu, cpu_present_map);
1127 }
1128
1129 int hard_smp_processor_id(void)
1130 {
1131 return read_apic_id();
1132 }
1133
1134 /*
1135 * Power management
1136 */
1137 #ifdef CONFIG_PM
1138
1139 static struct {
1140 /* 'active' is true if the local APIC was enabled by us and
1141 not the BIOS; this signifies that we are also responsible
1142 for disabling it before entering apm/acpi suspend */
1143 int active;
1144 /* r/w apic fields */
1145 unsigned int apic_id;
1146 unsigned int apic_taskpri;
1147 unsigned int apic_ldr;
1148 unsigned int apic_dfr;
1149 unsigned int apic_spiv;
1150 unsigned int apic_lvtt;
1151 unsigned int apic_lvtpc;
1152 unsigned int apic_lvt0;
1153 unsigned int apic_lvt1;
1154 unsigned int apic_lvterr;
1155 unsigned int apic_tmict;
1156 unsigned int apic_tdcr;
1157 unsigned int apic_thmr;
1158 } apic_pm_state;
1159
1160 static int lapic_suspend(struct sys_device *dev, pm_message_t state)
1161 {
1162 unsigned long flags;
1163 int maxlvt;
1164
1165 if (!apic_pm_state.active)
1166 return 0;
1167
1168 maxlvt = lapic_get_maxlvt();
1169
1170 apic_pm_state.apic_id = apic_read(APIC_ID);
1171 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
1172 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
1173 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
1174 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
1175 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
1176 if (maxlvt >= 4)
1177 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
1178 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
1179 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
1180 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
1181 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
1182 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
1183 #ifdef CONFIG_X86_MCE_INTEL
1184 if (maxlvt >= 5)
1185 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
1186 #endif
1187 local_irq_save(flags);
1188 disable_local_APIC();
1189 local_irq_restore(flags);
1190 return 0;
1191 }
1192
1193 static int lapic_resume(struct sys_device *dev)
1194 {
1195 unsigned int l, h;
1196 unsigned long flags;
1197 int maxlvt;
1198
1199 if (!apic_pm_state.active)
1200 return 0;
1201
1202 maxlvt = lapic_get_maxlvt();
1203
1204 local_irq_save(flags);
1205 rdmsr(MSR_IA32_APICBASE, l, h);
1206 l &= ~MSR_IA32_APICBASE_BASE;
1207 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
1208 wrmsr(MSR_IA32_APICBASE, l, h);
1209 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
1210 apic_write(APIC_ID, apic_pm_state.apic_id);
1211 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
1212 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
1213 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
1214 apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
1215 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
1216 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
1217 #ifdef CONFIG_X86_MCE_INTEL
1218 if (maxlvt >= 5)
1219 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
1220 #endif
1221 if (maxlvt >= 4)
1222 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
1223 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
1224 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
1225 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
1226 apic_write(APIC_ESR, 0);
1227 apic_read(APIC_ESR);
1228 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
1229 apic_write(APIC_ESR, 0);
1230 apic_read(APIC_ESR);
1231 local_irq_restore(flags);
1232 return 0;
1233 }
1234
1235 static struct sysdev_class lapic_sysclass = {
1236 .name = "lapic",
1237 .resume = lapic_resume,
1238 .suspend = lapic_suspend,
1239 };
1240
1241 static struct sys_device device_lapic = {
1242 .id = 0,
1243 .cls = &lapic_sysclass,
1244 };
1245
1246 static void __cpuinit apic_pm_activate(void)
1247 {
1248 apic_pm_state.active = 1;
1249 }
1250
1251 static int __init init_lapic_sysfs(void)
1252 {
1253 int error;
1254
1255 if (!cpu_has_apic)
1256 return 0;
1257 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
1258
1259 error = sysdev_class_register(&lapic_sysclass);
1260 if (!error)
1261 error = sysdev_register(&device_lapic);
1262 return error;
1263 }
1264 device_initcall(init_lapic_sysfs);
1265
1266 #else /* CONFIG_PM */
1267
1268 static void apic_pm_activate(void) { }
1269
1270 #endif /* CONFIG_PM */
1271
1272 /*
1273 * apic_is_clustered_box() -- Check if we can expect good TSC
1274 *
1275 * Thus far, the major user of this is IBM's Summit2 series:
1276 *
1277 * Clustered boxes may have unsynced TSC problems if they are
1278 * multi-chassis. Use available data to take a good guess.
1279 * If in doubt, go HPET.
1280 */
1281 __cpuinit int apic_is_clustered_box(void)
1282 {
1283 int i, clusters, zeros;
1284 unsigned id;
1285 u16 *bios_cpu_apicid;
1286 DECLARE_BITMAP(clustermap, NUM_APIC_CLUSTERS);
1287
1288 /*
1289 * there is not this kind of box with AMD CPU yet.
1290 * Some AMD box with quadcore cpu and 8 sockets apicid
1291 * will be [4, 0x23] or [8, 0x27] could be thought to
1292 * vsmp box still need checking...
1293 */
1294 if ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && !is_vsmp_box())
1295 return 0;
1296
1297 bios_cpu_apicid = early_per_cpu_ptr(x86_bios_cpu_apicid);
1298 bitmap_zero(clustermap, NUM_APIC_CLUSTERS);
1299
1300 for (i = 0; i < NR_CPUS; i++) {
1301 /* are we being called early in kernel startup? */
1302 if (bios_cpu_apicid) {
1303 id = bios_cpu_apicid[i];
1304 }
1305 else if (i < nr_cpu_ids) {
1306 if (cpu_present(i))
1307 id = per_cpu(x86_bios_cpu_apicid, i);
1308 else
1309 continue;
1310 }
1311 else
1312 break;
1313
1314 if (id != BAD_APICID)
1315 __set_bit(APIC_CLUSTERID(id), clustermap);
1316 }
1317
1318 /* Problem: Partially populated chassis may not have CPUs in some of
1319 * the APIC clusters they have been allocated. Only present CPUs have
1320 * x86_bios_cpu_apicid entries, thus causing zeroes in the bitmap.
1321 * Since clusters are allocated sequentially, count zeros only if
1322 * they are bounded by ones.
1323 */
1324 clusters = 0;
1325 zeros = 0;
1326 for (i = 0; i < NUM_APIC_CLUSTERS; i++) {
1327 if (test_bit(i, clustermap)) {
1328 clusters += 1 + zeros;
1329 zeros = 0;
1330 } else
1331 ++zeros;
1332 }
1333
1334 /* ScaleMP vSMPowered boxes have one cluster per board and TSCs are
1335 * not guaranteed to be synced between boards
1336 */
1337 if (is_vsmp_box() && clusters > 1)
1338 return 1;
1339
1340 /*
1341 * If clusters > 2, then should be multi-chassis.
1342 * May have to revisit this when multi-core + hyperthreaded CPUs come
1343 * out, but AFAIK this will work even for them.
1344 */
1345 return (clusters > 2);
1346 }
1347
1348 /*
1349 * APIC command line parameters
1350 */
1351 static int __init apic_set_verbosity(char *str)
1352 {
1353 if (str == NULL) {
1354 skip_ioapic_setup = 0;
1355 ioapic_force = 1;
1356 return 0;
1357 }
1358 if (strcmp("debug", str) == 0)
1359 apic_verbosity = APIC_DEBUG;
1360 else if (strcmp("verbose", str) == 0)
1361 apic_verbosity = APIC_VERBOSE;
1362 else {
1363 printk(KERN_WARNING "APIC Verbosity level %s not recognised"
1364 " use apic=verbose or apic=debug\n", str);
1365 return -EINVAL;
1366 }
1367
1368 return 0;
1369 }
1370 early_param("apic", apic_set_verbosity);
1371
1372 static __init int setup_disableapic(char *str)
1373 {
1374 disable_apic = 1;
1375 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1376 return 0;
1377 }
1378 early_param("disableapic", setup_disableapic);
1379
1380 /* same as disableapic, for compatibility */
1381 static __init int setup_nolapic(char *str)
1382 {
1383 return setup_disableapic(str);
1384 }
1385 early_param("nolapic", setup_nolapic);
1386
1387 static int __init parse_lapic_timer_c2_ok(char *arg)
1388 {
1389 local_apic_timer_c2_ok = 1;
1390 return 0;
1391 }
1392 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
1393
1394 static __init int setup_noapictimer(char *str)
1395 {
1396 if (str[0] != ' ' && str[0] != 0)
1397 return 0;
1398 disable_apic_timer = 1;
1399 return 1;
1400 }
1401 __setup("noapictimer", setup_noapictimer);
1402
1403 static __init int setup_apicpmtimer(char *s)
1404 {
1405 apic_calibrate_pmtmr = 1;
1406 notsc_setup(NULL);
1407 return 0;
1408 }
1409 __setup("apicpmtimer", setup_apicpmtimer);
1410
1411 static int __init lapic_insert_resource(void)
1412 {
1413 if (!apic_phys)
1414 return -1;
1415
1416 /* Put local APIC into the resource map. */
1417 lapic_resource.start = apic_phys;
1418 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
1419 insert_resource(&iomem_resource, &lapic_resource);
1420
1421 return 0;
1422 }
1423
1424 /*
1425 * need call insert after e820_reserve_resources()
1426 * that is using request_resource
1427 */
1428 late_initcall(lapic_insert_resource);
This page took 0.078375 seconds and 5 git commands to generate.