2cbbf88d8f2cb1084d25dcecb776793b8f715bc7
[deliverable/linux.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <asm/vsyscall.h>
24 #include <linux/topology.h>
25 #include <linux/cpumask.h>
26 #include <asm/pgtable.h>
27 #include <linux/atomic.h>
28 #include <asm/proto.h>
29 #include <asm/setup.h>
30 #include <asm/apic.h>
31 #include <asm/desc.h>
32 #include <asm/i387.h>
33 #include <asm/fpu-internal.h>
34 #include <asm/mtrr.h>
35 #include <linux/numa.h>
36 #include <asm/asm.h>
37 #include <asm/cpu.h>
38 #include <asm/mce.h>
39 #include <asm/msr.h>
40 #include <asm/pat.h>
41 #include <asm/microcode.h>
42 #include <asm/microcode_intel.h>
43
44 #ifdef CONFIG_X86_LOCAL_APIC
45 #include <asm/uv/uv.h>
46 #endif
47
48 #include "cpu.h"
49
50 /* all of these masks are initialized in setup_cpu_local_masks() */
51 cpumask_var_t cpu_initialized_mask;
52 cpumask_var_t cpu_callout_mask;
53 cpumask_var_t cpu_callin_mask;
54
55 /* representing cpus for which sibling maps can be computed */
56 cpumask_var_t cpu_sibling_setup_mask;
57
58 /* correctly size the local cpu masks */
59 void __init setup_cpu_local_masks(void)
60 {
61 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
62 alloc_bootmem_cpumask_var(&cpu_callin_mask);
63 alloc_bootmem_cpumask_var(&cpu_callout_mask);
64 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
65 }
66
67 static void default_init(struct cpuinfo_x86 *c)
68 {
69 #ifdef CONFIG_X86_64
70 cpu_detect_cache_sizes(c);
71 #else
72 /* Not much we can do here... */
73 /* Check if at least it has cpuid */
74 if (c->cpuid_level == -1) {
75 /* No cpuid. It must be an ancient CPU */
76 if (c->x86 == 4)
77 strcpy(c->x86_model_id, "486");
78 else if (c->x86 == 3)
79 strcpy(c->x86_model_id, "386");
80 }
81 #endif
82 }
83
84 static const struct cpu_dev default_cpu = {
85 .c_init = default_init,
86 .c_vendor = "Unknown",
87 .c_x86_vendor = X86_VENDOR_UNKNOWN,
88 };
89
90 static const struct cpu_dev *this_cpu = &default_cpu;
91
92 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
93 #ifdef CONFIG_X86_64
94 /*
95 * We need valid kernel segments for data and code in long mode too
96 * IRET will check the segment types kkeil 2000/10/28
97 * Also sysret mandates a special GDT layout
98 *
99 * TLS descriptors are currently at a different place compared to i386.
100 * Hopefully nobody expects them at a fixed place (Wine?)
101 */
102 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
103 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
104 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
107 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
108 #else
109 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
110 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
111 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
112 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
113 /*
114 * Segments used for calling PnP BIOS have byte granularity.
115 * They code segments and data segments have fixed 64k limits,
116 * the transfer segment sizes are set at run time.
117 */
118 /* 32-bit code */
119 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
120 /* 16-bit code */
121 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
122 /* 16-bit data */
123 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
124 /* 16-bit data */
125 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
126 /* 16-bit data */
127 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
128 /*
129 * The APM segments have byte granularity and their bases
130 * are set at run time. All have 64k limits.
131 */
132 /* 32-bit code */
133 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
134 /* 16-bit code */
135 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
136 /* data */
137 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
138
139 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
140 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141 GDT_STACK_CANARY_INIT
142 #endif
143 } };
144 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
145
146 static int __init x86_xsave_setup(char *s)
147 {
148 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
149 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
150 setup_clear_cpu_cap(X86_FEATURE_AVX);
151 setup_clear_cpu_cap(X86_FEATURE_AVX2);
152 return 1;
153 }
154 __setup("noxsave", x86_xsave_setup);
155
156 static int __init x86_xsaveopt_setup(char *s)
157 {
158 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
159 return 1;
160 }
161 __setup("noxsaveopt", x86_xsaveopt_setup);
162
163 #ifdef CONFIG_X86_32
164 static int cachesize_override = -1;
165 static int disable_x86_serial_nr = 1;
166
167 static int __init cachesize_setup(char *str)
168 {
169 get_option(&str, &cachesize_override);
170 return 1;
171 }
172 __setup("cachesize=", cachesize_setup);
173
174 static int __init x86_fxsr_setup(char *s)
175 {
176 setup_clear_cpu_cap(X86_FEATURE_FXSR);
177 setup_clear_cpu_cap(X86_FEATURE_XMM);
178 return 1;
179 }
180 __setup("nofxsr", x86_fxsr_setup);
181
182 static int __init x86_sep_setup(char *s)
183 {
184 setup_clear_cpu_cap(X86_FEATURE_SEP);
185 return 1;
186 }
187 __setup("nosep", x86_sep_setup);
188
189 /* Standard macro to see if a specific flag is changeable */
190 static inline int flag_is_changeable_p(u32 flag)
191 {
192 u32 f1, f2;
193
194 /*
195 * Cyrix and IDT cpus allow disabling of CPUID
196 * so the code below may return different results
197 * when it is executed before and after enabling
198 * the CPUID. Add "volatile" to not allow gcc to
199 * optimize the subsequent calls to this function.
200 */
201 asm volatile ("pushfl \n\t"
202 "pushfl \n\t"
203 "popl %0 \n\t"
204 "movl %0, %1 \n\t"
205 "xorl %2, %0 \n\t"
206 "pushl %0 \n\t"
207 "popfl \n\t"
208 "pushfl \n\t"
209 "popl %0 \n\t"
210 "popfl \n\t"
211
212 : "=&r" (f1), "=&r" (f2)
213 : "ir" (flag));
214
215 return ((f1^f2) & flag) != 0;
216 }
217
218 /* Probe for the CPUID instruction */
219 int have_cpuid_p(void)
220 {
221 return flag_is_changeable_p(X86_EFLAGS_ID);
222 }
223
224 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
225 {
226 unsigned long lo, hi;
227
228 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
229 return;
230
231 /* Disable processor serial number: */
232
233 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
234 lo |= 0x200000;
235 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
236
237 printk(KERN_NOTICE "CPU serial number disabled.\n");
238 clear_cpu_cap(c, X86_FEATURE_PN);
239
240 /* Disabling the serial number may affect the cpuid level */
241 c->cpuid_level = cpuid_eax(0);
242 }
243
244 static int __init x86_serial_nr_setup(char *s)
245 {
246 disable_x86_serial_nr = 0;
247 return 1;
248 }
249 __setup("serialnumber", x86_serial_nr_setup);
250 #else
251 static inline int flag_is_changeable_p(u32 flag)
252 {
253 return 1;
254 }
255 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
256 {
257 }
258 #endif
259
260 static __init int setup_disable_smep(char *arg)
261 {
262 setup_clear_cpu_cap(X86_FEATURE_SMEP);
263 return 1;
264 }
265 __setup("nosmep", setup_disable_smep);
266
267 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
268 {
269 if (cpu_has(c, X86_FEATURE_SMEP))
270 set_in_cr4(X86_CR4_SMEP);
271 }
272
273 static __init int setup_disable_smap(char *arg)
274 {
275 setup_clear_cpu_cap(X86_FEATURE_SMAP);
276 return 1;
277 }
278 __setup("nosmap", setup_disable_smap);
279
280 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
281 {
282 unsigned long eflags;
283
284 /* This should have been cleared long ago */
285 raw_local_save_flags(eflags);
286 BUG_ON(eflags & X86_EFLAGS_AC);
287
288 if (cpu_has(c, X86_FEATURE_SMAP)) {
289 #ifdef CONFIG_X86_SMAP
290 set_in_cr4(X86_CR4_SMAP);
291 #else
292 clear_in_cr4(X86_CR4_SMAP);
293 #endif
294 }
295 }
296
297 /*
298 * Some CPU features depend on higher CPUID levels, which may not always
299 * be available due to CPUID level capping or broken virtualization
300 * software. Add those features to this table to auto-disable them.
301 */
302 struct cpuid_dependent_feature {
303 u32 feature;
304 u32 level;
305 };
306
307 static const struct cpuid_dependent_feature
308 cpuid_dependent_features[] = {
309 { X86_FEATURE_MWAIT, 0x00000005 },
310 { X86_FEATURE_DCA, 0x00000009 },
311 { X86_FEATURE_XSAVE, 0x0000000d },
312 { 0, 0 }
313 };
314
315 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
316 {
317 const struct cpuid_dependent_feature *df;
318
319 for (df = cpuid_dependent_features; df->feature; df++) {
320
321 if (!cpu_has(c, df->feature))
322 continue;
323 /*
324 * Note: cpuid_level is set to -1 if unavailable, but
325 * extended_extended_level is set to 0 if unavailable
326 * and the legitimate extended levels are all negative
327 * when signed; hence the weird messing around with
328 * signs here...
329 */
330 if (!((s32)df->level < 0 ?
331 (u32)df->level > (u32)c->extended_cpuid_level :
332 (s32)df->level > (s32)c->cpuid_level))
333 continue;
334
335 clear_cpu_cap(c, df->feature);
336 if (!warn)
337 continue;
338
339 printk(KERN_WARNING
340 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
341 x86_cap_flags[df->feature], df->level);
342 }
343 }
344
345 /*
346 * Naming convention should be: <Name> [(<Codename>)]
347 * This table only is used unless init_<vendor>() below doesn't set it;
348 * in particular, if CPUID levels 0x80000002..4 are supported, this
349 * isn't used
350 */
351
352 /* Look up CPU names by table lookup. */
353 static const char *table_lookup_model(struct cpuinfo_x86 *c)
354 {
355 #ifdef CONFIG_X86_32
356 const struct legacy_cpu_model_info *info;
357
358 if (c->x86_model >= 16)
359 return NULL; /* Range check */
360
361 if (!this_cpu)
362 return NULL;
363
364 info = this_cpu->legacy_models;
365
366 while (info->family) {
367 if (info->family == c->x86)
368 return info->model_names[c->x86_model];
369 info++;
370 }
371 #endif
372 return NULL; /* Not found */
373 }
374
375 __u32 cpu_caps_cleared[NCAPINTS];
376 __u32 cpu_caps_set[NCAPINTS];
377
378 void load_percpu_segment(int cpu)
379 {
380 #ifdef CONFIG_X86_32
381 loadsegment(fs, __KERNEL_PERCPU);
382 #else
383 loadsegment(gs, 0);
384 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
385 #endif
386 load_stack_canary_segment();
387 }
388
389 /*
390 * Current gdt points %fs at the "master" per-cpu area: after this,
391 * it's on the real one.
392 */
393 void switch_to_new_gdt(int cpu)
394 {
395 struct desc_ptr gdt_descr;
396
397 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
398 gdt_descr.size = GDT_SIZE - 1;
399 load_gdt(&gdt_descr);
400 /* Reload the per-cpu base */
401
402 load_percpu_segment(cpu);
403 }
404
405 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
406
407 static void get_model_name(struct cpuinfo_x86 *c)
408 {
409 unsigned int *v;
410 char *p, *q;
411
412 if (c->extended_cpuid_level < 0x80000004)
413 return;
414
415 v = (unsigned int *)c->x86_model_id;
416 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
417 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
418 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
419 c->x86_model_id[48] = 0;
420
421 /*
422 * Intel chips right-justify this string for some dumb reason;
423 * undo that brain damage:
424 */
425 p = q = &c->x86_model_id[0];
426 while (*p == ' ')
427 p++;
428 if (p != q) {
429 while (*p)
430 *q++ = *p++;
431 while (q <= &c->x86_model_id[48])
432 *q++ = '\0'; /* Zero-pad the rest */
433 }
434 }
435
436 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
437 {
438 unsigned int n, dummy, ebx, ecx, edx, l2size;
439
440 n = c->extended_cpuid_level;
441
442 if (n >= 0x80000005) {
443 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
444 c->x86_cache_size = (ecx>>24) + (edx>>24);
445 #ifdef CONFIG_X86_64
446 /* On K8 L1 TLB is inclusive, so don't count it */
447 c->x86_tlbsize = 0;
448 #endif
449 }
450
451 if (n < 0x80000006) /* Some chips just has a large L1. */
452 return;
453
454 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
455 l2size = ecx >> 16;
456
457 #ifdef CONFIG_X86_64
458 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
459 #else
460 /* do processor-specific cache resizing */
461 if (this_cpu->legacy_cache_size)
462 l2size = this_cpu->legacy_cache_size(c, l2size);
463
464 /* Allow user to override all this if necessary. */
465 if (cachesize_override != -1)
466 l2size = cachesize_override;
467
468 if (l2size == 0)
469 return; /* Again, no L2 cache is possible */
470 #endif
471
472 c->x86_cache_size = l2size;
473 }
474
475 u16 __read_mostly tlb_lli_4k[NR_INFO];
476 u16 __read_mostly tlb_lli_2m[NR_INFO];
477 u16 __read_mostly tlb_lli_4m[NR_INFO];
478 u16 __read_mostly tlb_lld_4k[NR_INFO];
479 u16 __read_mostly tlb_lld_2m[NR_INFO];
480 u16 __read_mostly tlb_lld_4m[NR_INFO];
481 u16 __read_mostly tlb_lld_1g[NR_INFO];
482
483 /*
484 * tlb_flushall_shift shows the balance point in replacing cr3 write
485 * with multiple 'invlpg'. It will do this replacement when
486 * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
487 * If tlb_flushall_shift is -1, means the replacement will be disabled.
488 */
489 s8 __read_mostly tlb_flushall_shift = -1;
490
491 void cpu_detect_tlb(struct cpuinfo_x86 *c)
492 {
493 if (this_cpu->c_detect_tlb)
494 this_cpu->c_detect_tlb(c);
495
496 printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
497 "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n"
498 "tlb_flushall_shift: %d\n",
499 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
500 tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
501 tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
502 tlb_lld_1g[ENTRIES], tlb_flushall_shift);
503 }
504
505 void detect_ht(struct cpuinfo_x86 *c)
506 {
507 #ifdef CONFIG_X86_HT
508 u32 eax, ebx, ecx, edx;
509 int index_msb, core_bits;
510 static bool printed;
511
512 if (!cpu_has(c, X86_FEATURE_HT))
513 return;
514
515 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
516 goto out;
517
518 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
519 return;
520
521 cpuid(1, &eax, &ebx, &ecx, &edx);
522
523 smp_num_siblings = (ebx & 0xff0000) >> 16;
524
525 if (smp_num_siblings == 1) {
526 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
527 goto out;
528 }
529
530 if (smp_num_siblings <= 1)
531 goto out;
532
533 index_msb = get_count_order(smp_num_siblings);
534 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
535
536 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
537
538 index_msb = get_count_order(smp_num_siblings);
539
540 core_bits = get_count_order(c->x86_max_cores);
541
542 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
543 ((1 << core_bits) - 1);
544
545 out:
546 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
547 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
548 c->phys_proc_id);
549 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
550 c->cpu_core_id);
551 printed = 1;
552 }
553 #endif
554 }
555
556 static void get_cpu_vendor(struct cpuinfo_x86 *c)
557 {
558 char *v = c->x86_vendor_id;
559 int i;
560
561 for (i = 0; i < X86_VENDOR_NUM; i++) {
562 if (!cpu_devs[i])
563 break;
564
565 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
566 (cpu_devs[i]->c_ident[1] &&
567 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
568
569 this_cpu = cpu_devs[i];
570 c->x86_vendor = this_cpu->c_x86_vendor;
571 return;
572 }
573 }
574
575 printk_once(KERN_ERR
576 "CPU: vendor_id '%s' unknown, using generic init.\n" \
577 "CPU: Your system may be unstable.\n", v);
578
579 c->x86_vendor = X86_VENDOR_UNKNOWN;
580 this_cpu = &default_cpu;
581 }
582
583 void cpu_detect(struct cpuinfo_x86 *c)
584 {
585 /* Get vendor name */
586 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
587 (unsigned int *)&c->x86_vendor_id[0],
588 (unsigned int *)&c->x86_vendor_id[8],
589 (unsigned int *)&c->x86_vendor_id[4]);
590
591 c->x86 = 4;
592 /* Intel-defined flags: level 0x00000001 */
593 if (c->cpuid_level >= 0x00000001) {
594 u32 junk, tfms, cap0, misc;
595
596 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
597 c->x86 = (tfms >> 8) & 0xf;
598 c->x86_model = (tfms >> 4) & 0xf;
599 c->x86_mask = tfms & 0xf;
600
601 if (c->x86 == 0xf)
602 c->x86 += (tfms >> 20) & 0xff;
603 if (c->x86 >= 0x6)
604 c->x86_model += ((tfms >> 16) & 0xf) << 4;
605
606 if (cap0 & (1<<19)) {
607 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
608 c->x86_cache_alignment = c->x86_clflush_size;
609 }
610 }
611 }
612
613 void get_cpu_cap(struct cpuinfo_x86 *c)
614 {
615 u32 tfms, xlvl;
616 u32 ebx;
617
618 /* Intel-defined flags: level 0x00000001 */
619 if (c->cpuid_level >= 0x00000001) {
620 u32 capability, excap;
621
622 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
623 c->x86_capability[0] = capability;
624 c->x86_capability[4] = excap;
625 }
626
627 /* Additional Intel-defined flags: level 0x00000007 */
628 if (c->cpuid_level >= 0x00000007) {
629 u32 eax, ebx, ecx, edx;
630
631 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
632
633 c->x86_capability[9] = ebx;
634 }
635
636 /* AMD-defined flags: level 0x80000001 */
637 xlvl = cpuid_eax(0x80000000);
638 c->extended_cpuid_level = xlvl;
639
640 if ((xlvl & 0xffff0000) == 0x80000000) {
641 if (xlvl >= 0x80000001) {
642 c->x86_capability[1] = cpuid_edx(0x80000001);
643 c->x86_capability[6] = cpuid_ecx(0x80000001);
644 }
645 }
646
647 if (c->extended_cpuid_level >= 0x80000008) {
648 u32 eax = cpuid_eax(0x80000008);
649
650 c->x86_virt_bits = (eax >> 8) & 0xff;
651 c->x86_phys_bits = eax & 0xff;
652 }
653 #ifdef CONFIG_X86_32
654 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
655 c->x86_phys_bits = 36;
656 #endif
657
658 if (c->extended_cpuid_level >= 0x80000007)
659 c->x86_power = cpuid_edx(0x80000007);
660
661 init_scattered_cpuid_features(c);
662 }
663
664 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
665 {
666 #ifdef CONFIG_X86_32
667 int i;
668
669 /*
670 * First of all, decide if this is a 486 or higher
671 * It's a 486 if we can modify the AC flag
672 */
673 if (flag_is_changeable_p(X86_EFLAGS_AC))
674 c->x86 = 4;
675 else
676 c->x86 = 3;
677
678 for (i = 0; i < X86_VENDOR_NUM; i++)
679 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
680 c->x86_vendor_id[0] = 0;
681 cpu_devs[i]->c_identify(c);
682 if (c->x86_vendor_id[0]) {
683 get_cpu_vendor(c);
684 break;
685 }
686 }
687 #endif
688 }
689
690 /*
691 * Do minimum CPU detection early.
692 * Fields really needed: vendor, cpuid_level, family, model, mask,
693 * cache alignment.
694 * The others are not touched to avoid unwanted side effects.
695 *
696 * WARNING: this function is only called on the BP. Don't add code here
697 * that is supposed to run on all CPUs.
698 */
699 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
700 {
701 #ifdef CONFIG_X86_64
702 c->x86_clflush_size = 64;
703 c->x86_phys_bits = 36;
704 c->x86_virt_bits = 48;
705 #else
706 c->x86_clflush_size = 32;
707 c->x86_phys_bits = 32;
708 c->x86_virt_bits = 32;
709 #endif
710 c->x86_cache_alignment = c->x86_clflush_size;
711
712 memset(&c->x86_capability, 0, sizeof c->x86_capability);
713 c->extended_cpuid_level = 0;
714
715 if (!have_cpuid_p())
716 identify_cpu_without_cpuid(c);
717
718 /* cyrix could have cpuid enabled via c_identify()*/
719 if (!have_cpuid_p())
720 return;
721
722 cpu_detect(c);
723 get_cpu_vendor(c);
724 get_cpu_cap(c);
725 fpu_detect(c);
726
727 if (this_cpu->c_early_init)
728 this_cpu->c_early_init(c);
729
730 c->cpu_index = 0;
731 filter_cpuid_features(c, false);
732
733 if (this_cpu->c_bsp_init)
734 this_cpu->c_bsp_init(c);
735
736 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
737 }
738
739 void __init early_cpu_init(void)
740 {
741 const struct cpu_dev *const *cdev;
742 int count = 0;
743
744 #ifdef CONFIG_PROCESSOR_SELECT
745 printk(KERN_INFO "KERNEL supported cpus:\n");
746 #endif
747
748 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
749 const struct cpu_dev *cpudev = *cdev;
750
751 if (count >= X86_VENDOR_NUM)
752 break;
753 cpu_devs[count] = cpudev;
754 count++;
755
756 #ifdef CONFIG_PROCESSOR_SELECT
757 {
758 unsigned int j;
759
760 for (j = 0; j < 2; j++) {
761 if (!cpudev->c_ident[j])
762 continue;
763 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
764 cpudev->c_ident[j]);
765 }
766 }
767 #endif
768 }
769 early_identify_cpu(&boot_cpu_data);
770 }
771
772 /*
773 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
774 * unfortunately, that's not true in practice because of early VIA
775 * chips and (more importantly) broken virtualizers that are not easy
776 * to detect. In the latter case it doesn't even *fail* reliably, so
777 * probing for it doesn't even work. Disable it completely on 32-bit
778 * unless we can find a reliable way to detect all the broken cases.
779 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
780 */
781 static void detect_nopl(struct cpuinfo_x86 *c)
782 {
783 #ifdef CONFIG_X86_32
784 clear_cpu_cap(c, X86_FEATURE_NOPL);
785 #else
786 set_cpu_cap(c, X86_FEATURE_NOPL);
787 #endif
788 }
789
790 static void generic_identify(struct cpuinfo_x86 *c)
791 {
792 c->extended_cpuid_level = 0;
793
794 if (!have_cpuid_p())
795 identify_cpu_without_cpuid(c);
796
797 /* cyrix could have cpuid enabled via c_identify()*/
798 if (!have_cpuid_p())
799 return;
800
801 cpu_detect(c);
802
803 get_cpu_vendor(c);
804
805 get_cpu_cap(c);
806
807 if (c->cpuid_level >= 0x00000001) {
808 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
809 #ifdef CONFIG_X86_32
810 # ifdef CONFIG_X86_HT
811 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
812 # else
813 c->apicid = c->initial_apicid;
814 # endif
815 #endif
816 c->phys_proc_id = c->initial_apicid;
817 }
818
819 get_model_name(c); /* Default name */
820
821 detect_nopl(c);
822 }
823
824 /*
825 * This does the hard work of actually picking apart the CPU stuff...
826 */
827 static void identify_cpu(struct cpuinfo_x86 *c)
828 {
829 int i;
830
831 c->loops_per_jiffy = loops_per_jiffy;
832 c->x86_cache_size = -1;
833 c->x86_vendor = X86_VENDOR_UNKNOWN;
834 c->x86_model = c->x86_mask = 0; /* So far unknown... */
835 c->x86_vendor_id[0] = '\0'; /* Unset */
836 c->x86_model_id[0] = '\0'; /* Unset */
837 c->x86_max_cores = 1;
838 c->x86_coreid_bits = 0;
839 #ifdef CONFIG_X86_64
840 c->x86_clflush_size = 64;
841 c->x86_phys_bits = 36;
842 c->x86_virt_bits = 48;
843 #else
844 c->cpuid_level = -1; /* CPUID not detected */
845 c->x86_clflush_size = 32;
846 c->x86_phys_bits = 32;
847 c->x86_virt_bits = 32;
848 #endif
849 c->x86_cache_alignment = c->x86_clflush_size;
850 memset(&c->x86_capability, 0, sizeof c->x86_capability);
851
852 generic_identify(c);
853
854 if (this_cpu->c_identify)
855 this_cpu->c_identify(c);
856
857 /* Clear/Set all flags overriden by options, after probe */
858 for (i = 0; i < NCAPINTS; i++) {
859 c->x86_capability[i] &= ~cpu_caps_cleared[i];
860 c->x86_capability[i] |= cpu_caps_set[i];
861 }
862
863 #ifdef CONFIG_X86_64
864 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
865 #endif
866
867 /*
868 * Vendor-specific initialization. In this section we
869 * canonicalize the feature flags, meaning if there are
870 * features a certain CPU supports which CPUID doesn't
871 * tell us, CPUID claiming incorrect flags, or other bugs,
872 * we handle them here.
873 *
874 * At the end of this section, c->x86_capability better
875 * indicate the features this CPU genuinely supports!
876 */
877 if (this_cpu->c_init)
878 this_cpu->c_init(c);
879
880 /* Disable the PN if appropriate */
881 squash_the_stupid_serial_number(c);
882
883 /* Set up SMEP/SMAP */
884 setup_smep(c);
885 setup_smap(c);
886
887 /*
888 * The vendor-specific functions might have changed features.
889 * Now we do "generic changes."
890 */
891
892 /* Filter out anything that depends on CPUID levels we don't have */
893 filter_cpuid_features(c, true);
894
895 /* If the model name is still unset, do table lookup. */
896 if (!c->x86_model_id[0]) {
897 const char *p;
898 p = table_lookup_model(c);
899 if (p)
900 strcpy(c->x86_model_id, p);
901 else
902 /* Last resort... */
903 sprintf(c->x86_model_id, "%02x/%02x",
904 c->x86, c->x86_model);
905 }
906
907 #ifdef CONFIG_X86_64
908 detect_ht(c);
909 #endif
910
911 init_hypervisor(c);
912 x86_init_rdrand(c);
913
914 /*
915 * Clear/Set all flags overriden by options, need do it
916 * before following smp all cpus cap AND.
917 */
918 for (i = 0; i < NCAPINTS; i++) {
919 c->x86_capability[i] &= ~cpu_caps_cleared[i];
920 c->x86_capability[i] |= cpu_caps_set[i];
921 }
922
923 /*
924 * On SMP, boot_cpu_data holds the common feature set between
925 * all CPUs; so make sure that we indicate which features are
926 * common between the CPUs. The first time this routine gets
927 * executed, c == &boot_cpu_data.
928 */
929 if (c != &boot_cpu_data) {
930 /* AND the already accumulated flags with these */
931 for (i = 0; i < NCAPINTS; i++)
932 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
933
934 /* OR, i.e. replicate the bug flags */
935 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
936 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
937 }
938
939 /* Init Machine Check Exception if available. */
940 mcheck_cpu_init(c);
941
942 select_idle_routine(c);
943
944 #ifdef CONFIG_NUMA
945 numa_add_cpu(smp_processor_id());
946 #endif
947 }
948
949 #ifdef CONFIG_X86_64
950 static void vgetcpu_set_mode(void)
951 {
952 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
953 vgetcpu_mode = VGETCPU_RDTSCP;
954 else
955 vgetcpu_mode = VGETCPU_LSL;
956 }
957
958 /* May not be __init: called during resume */
959 static void syscall32_cpu_init(void)
960 {
961 /* Load these always in case some future AMD CPU supports
962 SYSENTER from compat mode too. */
963 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
964 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
965 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
966
967 wrmsrl(MSR_CSTAR, ia32_cstar_target);
968 }
969 #endif
970
971 #ifdef CONFIG_X86_32
972 void enable_sep_cpu(void)
973 {
974 int cpu = get_cpu();
975 struct tss_struct *tss = &per_cpu(init_tss, cpu);
976
977 if (!boot_cpu_has(X86_FEATURE_SEP)) {
978 put_cpu();
979 return;
980 }
981
982 tss->x86_tss.ss1 = __KERNEL_CS;
983 tss->x86_tss.sp1 = sizeof(struct tss_struct) + (unsigned long) tss;
984 wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
985 wrmsr(MSR_IA32_SYSENTER_ESP, tss->x86_tss.sp1, 0);
986 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long) ia32_sysenter_target, 0);
987 put_cpu();
988 }
989 #endif
990
991 void __init identify_boot_cpu(void)
992 {
993 identify_cpu(&boot_cpu_data);
994 init_amd_e400_c1e_mask();
995 #ifdef CONFIG_X86_32
996 sysenter_setup();
997 enable_sep_cpu();
998 #else
999 vgetcpu_set_mode();
1000 #endif
1001 cpu_detect_tlb(&boot_cpu_data);
1002 }
1003
1004 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1005 {
1006 BUG_ON(c == &boot_cpu_data);
1007 identify_cpu(c);
1008 #ifdef CONFIG_X86_32
1009 enable_sep_cpu();
1010 #endif
1011 mtrr_ap_init();
1012 }
1013
1014 struct msr_range {
1015 unsigned min;
1016 unsigned max;
1017 };
1018
1019 static const struct msr_range msr_range_array[] = {
1020 { 0x00000000, 0x00000418},
1021 { 0xc0000000, 0xc000040b},
1022 { 0xc0010000, 0xc0010142},
1023 { 0xc0011000, 0xc001103b},
1024 };
1025
1026 static void __print_cpu_msr(void)
1027 {
1028 unsigned index_min, index_max;
1029 unsigned index;
1030 u64 val;
1031 int i;
1032
1033 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1034 index_min = msr_range_array[i].min;
1035 index_max = msr_range_array[i].max;
1036
1037 for (index = index_min; index < index_max; index++) {
1038 if (rdmsrl_safe(index, &val))
1039 continue;
1040 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1041 }
1042 }
1043 }
1044
1045 static int show_msr;
1046
1047 static __init int setup_show_msr(char *arg)
1048 {
1049 int num;
1050
1051 get_option(&arg, &num);
1052
1053 if (num > 0)
1054 show_msr = num;
1055 return 1;
1056 }
1057 __setup("show_msr=", setup_show_msr);
1058
1059 static __init int setup_noclflush(char *arg)
1060 {
1061 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1062 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1063 return 1;
1064 }
1065 __setup("noclflush", setup_noclflush);
1066
1067 void print_cpu_info(struct cpuinfo_x86 *c)
1068 {
1069 const char *vendor = NULL;
1070
1071 if (c->x86_vendor < X86_VENDOR_NUM) {
1072 vendor = this_cpu->c_vendor;
1073 } else {
1074 if (c->cpuid_level >= 0)
1075 vendor = c->x86_vendor_id;
1076 }
1077
1078 if (vendor && !strstr(c->x86_model_id, vendor))
1079 printk(KERN_CONT "%s ", vendor);
1080
1081 if (c->x86_model_id[0])
1082 printk(KERN_CONT "%s", strim(c->x86_model_id));
1083 else
1084 printk(KERN_CONT "%d86", c->x86);
1085
1086 printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1087
1088 if (c->x86_mask || c->cpuid_level >= 0)
1089 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1090 else
1091 printk(KERN_CONT ")\n");
1092
1093 print_cpu_msr(c);
1094 }
1095
1096 void print_cpu_msr(struct cpuinfo_x86 *c)
1097 {
1098 if (c->cpu_index < show_msr)
1099 __print_cpu_msr();
1100 }
1101
1102 static __init int setup_disablecpuid(char *arg)
1103 {
1104 int bit;
1105
1106 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1107 setup_clear_cpu_cap(bit);
1108 else
1109 return 0;
1110
1111 return 1;
1112 }
1113 __setup("clearcpuid=", setup_disablecpuid);
1114
1115 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1116 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1117 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1118
1119 #ifdef CONFIG_X86_64
1120 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1121 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1122 (unsigned long) debug_idt_table };
1123
1124 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1125 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1126
1127 /*
1128 * The following four percpu variables are hot. Align current_task to
1129 * cacheline size such that all four fall in the same cacheline.
1130 */
1131 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1132 &init_task;
1133 EXPORT_PER_CPU_SYMBOL(current_task);
1134
1135 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1136 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1137
1138 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1139
1140 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1141 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1142
1143 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1144
1145 /*
1146 * Special IST stacks which the CPU switches to when it calls
1147 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1148 * limit), all of them are 4K, except the debug stack which
1149 * is 8K.
1150 */
1151 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1152 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1153 [DEBUG_STACK - 1] = DEBUG_STKSZ
1154 };
1155
1156 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1157 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1158
1159 /* May not be marked __init: used by software suspend */
1160 void syscall_init(void)
1161 {
1162 /*
1163 * LSTAR and STAR live in a bit strange symbiosis.
1164 * They both write to the same internal register. STAR allows to
1165 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1166 */
1167 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1168 wrmsrl(MSR_LSTAR, system_call);
1169 wrmsrl(MSR_CSTAR, ignore_sysret);
1170
1171 #ifdef CONFIG_IA32_EMULATION
1172 syscall32_cpu_init();
1173 #endif
1174
1175 /* Flags to clear on syscall */
1176 wrmsrl(MSR_SYSCALL_MASK,
1177 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1178 X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1179 }
1180
1181 /*
1182 * Copies of the original ist values from the tss are only accessed during
1183 * debugging, no special alignment required.
1184 */
1185 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1186
1187 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1188 DEFINE_PER_CPU(int, debug_stack_usage);
1189
1190 int is_debug_stack(unsigned long addr)
1191 {
1192 return __get_cpu_var(debug_stack_usage) ||
1193 (addr <= __get_cpu_var(debug_stack_addr) &&
1194 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1195 }
1196
1197 DEFINE_PER_CPU(u32, debug_idt_ctr);
1198
1199 void debug_stack_set_zero(void)
1200 {
1201 this_cpu_inc(debug_idt_ctr);
1202 load_current_idt();
1203 }
1204
1205 void debug_stack_reset(void)
1206 {
1207 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1208 return;
1209 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1210 load_current_idt();
1211 }
1212
1213 #else /* CONFIG_X86_64 */
1214
1215 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1216 EXPORT_PER_CPU_SYMBOL(current_task);
1217 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1218 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1219 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1220
1221 #ifdef CONFIG_CC_STACKPROTECTOR
1222 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1223 #endif
1224
1225 #endif /* CONFIG_X86_64 */
1226
1227 /*
1228 * Clear all 6 debug registers:
1229 */
1230 static void clear_all_debug_regs(void)
1231 {
1232 int i;
1233
1234 for (i = 0; i < 8; i++) {
1235 /* Ignore db4, db5 */
1236 if ((i == 4) || (i == 5))
1237 continue;
1238
1239 set_debugreg(0, i);
1240 }
1241 }
1242
1243 #ifdef CONFIG_KGDB
1244 /*
1245 * Restore debug regs if using kgdbwait and you have a kernel debugger
1246 * connection established.
1247 */
1248 static void dbg_restore_debug_regs(void)
1249 {
1250 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1251 arch_kgdb_ops.correct_hw_break();
1252 }
1253 #else /* ! CONFIG_KGDB */
1254 #define dbg_restore_debug_regs()
1255 #endif /* ! CONFIG_KGDB */
1256
1257 /*
1258 * cpu_init() initializes state that is per-CPU. Some data is already
1259 * initialized (naturally) in the bootstrap process, such as the GDT
1260 * and IDT. We reload them nevertheless, this function acts as a
1261 * 'CPU state barrier', nothing should get across.
1262 * A lot of state is already set up in PDA init for 64 bit
1263 */
1264 #ifdef CONFIG_X86_64
1265
1266 void cpu_init(void)
1267 {
1268 struct orig_ist *oist;
1269 struct task_struct *me;
1270 struct tss_struct *t;
1271 unsigned long v;
1272 int cpu;
1273 int i;
1274
1275 /*
1276 * Load microcode on this cpu if a valid microcode is available.
1277 * This is early microcode loading procedure.
1278 */
1279 load_ucode_ap();
1280
1281 cpu = stack_smp_processor_id();
1282 t = &per_cpu(init_tss, cpu);
1283 oist = &per_cpu(orig_ist, cpu);
1284
1285 #ifdef CONFIG_NUMA
1286 if (this_cpu_read(numa_node) == 0 &&
1287 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1288 set_numa_node(early_cpu_to_node(cpu));
1289 #endif
1290
1291 me = current;
1292
1293 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1294 panic("CPU#%d already initialized!\n", cpu);
1295
1296 pr_debug("Initializing CPU#%d\n", cpu);
1297
1298 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1299
1300 /*
1301 * Initialize the per-CPU GDT with the boot GDT,
1302 * and set up the GDT descriptor:
1303 */
1304
1305 switch_to_new_gdt(cpu);
1306 loadsegment(fs, 0);
1307
1308 load_current_idt();
1309
1310 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1311 syscall_init();
1312
1313 wrmsrl(MSR_FS_BASE, 0);
1314 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1315 barrier();
1316
1317 x86_configure_nx();
1318 enable_x2apic();
1319
1320 /*
1321 * set up and load the per-CPU TSS
1322 */
1323 if (!oist->ist[0]) {
1324 char *estacks = per_cpu(exception_stacks, cpu);
1325
1326 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1327 estacks += exception_stack_sizes[v];
1328 oist->ist[v] = t->x86_tss.ist[v] =
1329 (unsigned long)estacks;
1330 if (v == DEBUG_STACK-1)
1331 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1332 }
1333 }
1334
1335 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1336
1337 /*
1338 * <= is required because the CPU will access up to
1339 * 8 bits beyond the end of the IO permission bitmap.
1340 */
1341 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1342 t->io_bitmap[i] = ~0UL;
1343
1344 atomic_inc(&init_mm.mm_count);
1345 me->active_mm = &init_mm;
1346 BUG_ON(me->mm);
1347 enter_lazy_tlb(&init_mm, me);
1348
1349 load_sp0(t, &current->thread);
1350 set_tss_desc(cpu, t);
1351 load_TR_desc();
1352 load_LDT(&init_mm.context);
1353
1354 clear_all_debug_regs();
1355 dbg_restore_debug_regs();
1356
1357 fpu_init();
1358
1359 if (is_uv_system())
1360 uv_cpu_init();
1361 }
1362
1363 #else
1364
1365 void cpu_init(void)
1366 {
1367 int cpu = smp_processor_id();
1368 struct task_struct *curr = current;
1369 struct tss_struct *t = &per_cpu(init_tss, cpu);
1370 struct thread_struct *thread = &curr->thread;
1371
1372 show_ucode_info_early();
1373
1374 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1375 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1376 for (;;)
1377 local_irq_enable();
1378 }
1379
1380 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1381
1382 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1383 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1384
1385 load_current_idt();
1386 switch_to_new_gdt(cpu);
1387
1388 /*
1389 * Set up and load the per-CPU TSS and LDT
1390 */
1391 atomic_inc(&init_mm.mm_count);
1392 curr->active_mm = &init_mm;
1393 BUG_ON(curr->mm);
1394 enter_lazy_tlb(&init_mm, curr);
1395
1396 load_sp0(t, thread);
1397 set_tss_desc(cpu, t);
1398 load_TR_desc();
1399 load_LDT(&init_mm.context);
1400
1401 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1402
1403 #ifdef CONFIG_DOUBLEFAULT
1404 /* Set up doublefault TSS pointer in the GDT */
1405 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1406 #endif
1407
1408 clear_all_debug_regs();
1409 dbg_restore_debug_regs();
1410
1411 fpu_init();
1412 }
1413 #endif
1414
1415 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1416 void warn_pre_alternatives(void)
1417 {
1418 WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1419 }
1420 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1421 #endif
1422
1423 inline bool __static_cpu_has_safe(u16 bit)
1424 {
1425 return boot_cpu_has(bit);
1426 }
1427 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
This page took 0.05817 seconds and 4 git commands to generate.