509e6a7db719999e12461f4907f7b7af0396682a
[deliverable/linux.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <trace/power.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48
49 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
50 "acpi-cpufreq", msg)
51
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
55
56 enum {
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE (0xffff)
63
64 struct acpi_cpufreq_data {
65 struct acpi_processor_performance *acpi_data;
66 struct cpufreq_frequency_table *freq_table;
67 unsigned int resume;
68 unsigned int cpu_feature;
69 };
70
71 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
72
73 struct acpi_msr_data {
74 u64 saved_aperf, saved_mperf;
75 };
76
77 static DEFINE_PER_CPU(struct acpi_msr_data, msr_data);
78
79 DEFINE_TRACE(power_mark);
80
81 /* acpi_perf_data is a pointer to percpu data. */
82 static struct acpi_processor_performance *acpi_perf_data;
83
84 static struct cpufreq_driver acpi_cpufreq_driver;
85
86 static unsigned int acpi_pstate_strict;
87
88 static int check_est_cpu(unsigned int cpuid)
89 {
90 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
91
92 return cpu_has(cpu, X86_FEATURE_EST);
93 }
94
95 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
96 {
97 struct acpi_processor_performance *perf;
98 int i;
99
100 perf = data->acpi_data;
101
102 for (i = 0; i < perf->state_count; i++) {
103 if (value == perf->states[i].status)
104 return data->freq_table[i].frequency;
105 }
106 return 0;
107 }
108
109 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
110 {
111 int i;
112 struct acpi_processor_performance *perf;
113
114 msr &= INTEL_MSR_RANGE;
115 perf = data->acpi_data;
116
117 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
118 if (msr == perf->states[data->freq_table[i].index].status)
119 return data->freq_table[i].frequency;
120 }
121 return data->freq_table[0].frequency;
122 }
123
124 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
125 {
126 switch (data->cpu_feature) {
127 case SYSTEM_INTEL_MSR_CAPABLE:
128 return extract_msr(val, data);
129 case SYSTEM_IO_CAPABLE:
130 return extract_io(val, data);
131 default:
132 return 0;
133 }
134 }
135
136 struct msr_addr {
137 u32 reg;
138 };
139
140 struct io_addr {
141 u16 port;
142 u8 bit_width;
143 };
144
145 struct drv_cmd {
146 unsigned int type;
147 const struct cpumask *mask;
148 union {
149 struct msr_addr msr;
150 struct io_addr io;
151 } addr;
152 u32 val;
153 };
154
155 /* Called via smp_call_function_single(), on the target CPU */
156 static void do_drv_read(void *_cmd)
157 {
158 struct drv_cmd *cmd = _cmd;
159 u32 h;
160
161 switch (cmd->type) {
162 case SYSTEM_INTEL_MSR_CAPABLE:
163 rdmsr(cmd->addr.msr.reg, cmd->val, h);
164 break;
165 case SYSTEM_IO_CAPABLE:
166 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
167 &cmd->val,
168 (u32)cmd->addr.io.bit_width);
169 break;
170 default:
171 break;
172 }
173 }
174
175 /* Called via smp_call_function_many(), on the target CPUs */
176 static void do_drv_write(void *_cmd)
177 {
178 struct drv_cmd *cmd = _cmd;
179 u32 lo, hi;
180
181 switch (cmd->type) {
182 case SYSTEM_INTEL_MSR_CAPABLE:
183 rdmsr(cmd->addr.msr.reg, lo, hi);
184 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
185 wrmsr(cmd->addr.msr.reg, lo, hi);
186 break;
187 case SYSTEM_IO_CAPABLE:
188 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
189 cmd->val,
190 (u32)cmd->addr.io.bit_width);
191 break;
192 default:
193 break;
194 }
195 }
196
197 static void drv_read(struct drv_cmd *cmd)
198 {
199 cmd->val = 0;
200
201 smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
202 }
203
204 static void drv_write(struct drv_cmd *cmd)
205 {
206 int this_cpu;
207
208 this_cpu = get_cpu();
209 if (cpumask_test_cpu(this_cpu, cmd->mask))
210 do_drv_write(cmd);
211 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
212 put_cpu();
213 }
214
215 static u32 get_cur_val(const struct cpumask *mask)
216 {
217 struct acpi_processor_performance *perf;
218 struct drv_cmd cmd;
219
220 if (unlikely(cpumask_empty(mask)))
221 return 0;
222
223 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
224 case SYSTEM_INTEL_MSR_CAPABLE:
225 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
226 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
227 break;
228 case SYSTEM_IO_CAPABLE:
229 cmd.type = SYSTEM_IO_CAPABLE;
230 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
231 cmd.addr.io.port = perf->control_register.address;
232 cmd.addr.io.bit_width = perf->control_register.bit_width;
233 break;
234 default:
235 return 0;
236 }
237
238 cmd.mask = mask;
239 drv_read(&cmd);
240
241 dprintk("get_cur_val = %u\n", cmd.val);
242
243 return cmd.val;
244 }
245
246 struct perf_pair {
247 union {
248 struct {
249 u32 lo;
250 u32 hi;
251 } split;
252 u64 whole;
253 } aperf, mperf;
254 };
255
256 /* Called via smp_call_function_single(), on the target CPU */
257 static void read_measured_perf_ctrs(void *_cur)
258 {
259 struct perf_pair *cur = _cur;
260
261 rdmsr(MSR_IA32_APERF, cur->aperf.split.lo, cur->aperf.split.hi);
262 rdmsr(MSR_IA32_MPERF, cur->mperf.split.lo, cur->mperf.split.hi);
263 }
264
265 /*
266 * Return the measured active (C0) frequency on this CPU since last call
267 * to this function.
268 * Input: cpu number
269 * Return: Average CPU frequency in terms of max frequency (zero on error)
270 *
271 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
272 * over a period of time, while CPU is in C0 state.
273 * IA32_MPERF counts at the rate of max advertised frequency
274 * IA32_APERF counts at the rate of actual CPU frequency
275 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
276 * no meaning should be associated with absolute values of these MSRs.
277 */
278 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
279 unsigned int cpu)
280 {
281 struct perf_pair readin, cur;
282 unsigned int perf_percent;
283 unsigned int retval;
284
285 if (smp_call_function_single(cpu, read_measured_perf_ctrs, &readin, 1))
286 return 0;
287
288 cur.aperf.whole = readin.aperf.whole -
289 per_cpu(msr_data, cpu).saved_aperf;
290 cur.mperf.whole = readin.mperf.whole -
291 per_cpu(msr_data, cpu).saved_mperf;
292 per_cpu(msr_data, cpu).saved_aperf = readin.aperf.whole;
293 per_cpu(msr_data, cpu).saved_mperf = readin.mperf.whole;
294
295 #ifdef __i386__
296 /*
297 * We dont want to do 64 bit divide with 32 bit kernel
298 * Get an approximate value. Return failure in case we cannot get
299 * an approximate value.
300 */
301 if (unlikely(cur.aperf.split.hi || cur.mperf.split.hi)) {
302 int shift_count;
303 u32 h;
304
305 h = max_t(u32, cur.aperf.split.hi, cur.mperf.split.hi);
306 shift_count = fls(h);
307
308 cur.aperf.whole >>= shift_count;
309 cur.mperf.whole >>= shift_count;
310 }
311
312 if (((unsigned long)(-1) / 100) < cur.aperf.split.lo) {
313 int shift_count = 7;
314 cur.aperf.split.lo >>= shift_count;
315 cur.mperf.split.lo >>= shift_count;
316 }
317
318 if (cur.aperf.split.lo && cur.mperf.split.lo)
319 perf_percent = (cur.aperf.split.lo * 100) / cur.mperf.split.lo;
320 else
321 perf_percent = 0;
322
323 #else
324 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf.whole)) {
325 int shift_count = 7;
326 cur.aperf.whole >>= shift_count;
327 cur.mperf.whole >>= shift_count;
328 }
329
330 if (cur.aperf.whole && cur.mperf.whole)
331 perf_percent = (cur.aperf.whole * 100) / cur.mperf.whole;
332 else
333 perf_percent = 0;
334
335 #endif
336
337 retval = (policy->cpuinfo.max_freq * perf_percent) / 100;
338
339 return retval;
340 }
341
342 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
343 {
344 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
345 unsigned int freq;
346 unsigned int cached_freq;
347
348 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
349
350 if (unlikely(data == NULL ||
351 data->acpi_data == NULL || data->freq_table == NULL)) {
352 return 0;
353 }
354
355 cached_freq = data->freq_table[data->acpi_data->state].frequency;
356 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
357 if (freq != cached_freq) {
358 /*
359 * The dreaded BIOS frequency change behind our back.
360 * Force set the frequency on next target call.
361 */
362 data->resume = 1;
363 }
364
365 dprintk("cur freq = %u\n", freq);
366
367 return freq;
368 }
369
370 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
371 struct acpi_cpufreq_data *data)
372 {
373 unsigned int cur_freq;
374 unsigned int i;
375
376 for (i = 0; i < 100; i++) {
377 cur_freq = extract_freq(get_cur_val(mask), data);
378 if (cur_freq == freq)
379 return 1;
380 udelay(10);
381 }
382 return 0;
383 }
384
385 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
386 unsigned int target_freq, unsigned int relation)
387 {
388 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
389 struct acpi_processor_performance *perf;
390 struct cpufreq_freqs freqs;
391 struct drv_cmd cmd;
392 unsigned int next_state = 0; /* Index into freq_table */
393 unsigned int next_perf_state = 0; /* Index into perf table */
394 unsigned int i;
395 int result = 0;
396 struct power_trace it;
397
398 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
399
400 if (unlikely(data == NULL ||
401 data->acpi_data == NULL || data->freq_table == NULL)) {
402 return -ENODEV;
403 }
404
405 perf = data->acpi_data;
406 result = cpufreq_frequency_table_target(policy,
407 data->freq_table,
408 target_freq,
409 relation, &next_state);
410 if (unlikely(result)) {
411 result = -ENODEV;
412 goto out;
413 }
414
415 next_perf_state = data->freq_table[next_state].index;
416 if (perf->state == next_perf_state) {
417 if (unlikely(data->resume)) {
418 dprintk("Called after resume, resetting to P%d\n",
419 next_perf_state);
420 data->resume = 0;
421 } else {
422 dprintk("Already at target state (P%d)\n",
423 next_perf_state);
424 goto out;
425 }
426 }
427
428 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
429
430 switch (data->cpu_feature) {
431 case SYSTEM_INTEL_MSR_CAPABLE:
432 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
433 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
434 cmd.val = (u32) perf->states[next_perf_state].control;
435 break;
436 case SYSTEM_IO_CAPABLE:
437 cmd.type = SYSTEM_IO_CAPABLE;
438 cmd.addr.io.port = perf->control_register.address;
439 cmd.addr.io.bit_width = perf->control_register.bit_width;
440 cmd.val = (u32) perf->states[next_perf_state].control;
441 break;
442 default:
443 result = -ENODEV;
444 goto out;
445 }
446
447 /* cpufreq holds the hotplug lock, so we are safe from here on */
448 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
449 cmd.mask = policy->cpus;
450 else
451 cmd.mask = cpumask_of(policy->cpu);
452
453 freqs.old = perf->states[perf->state].core_frequency * 1000;
454 freqs.new = data->freq_table[next_state].frequency;
455 for_each_cpu(i, cmd.mask) {
456 freqs.cpu = i;
457 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
458 }
459
460 drv_write(&cmd);
461
462 if (acpi_pstate_strict) {
463 if (!check_freqs(cmd.mask, freqs.new, data)) {
464 dprintk("acpi_cpufreq_target failed (%d)\n",
465 policy->cpu);
466 result = -EAGAIN;
467 goto out;
468 }
469 }
470
471 for_each_cpu(i, cmd.mask) {
472 freqs.cpu = i;
473 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
474 }
475 perf->state = next_perf_state;
476
477 out:
478 return result;
479 }
480
481 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
482 {
483 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
484
485 dprintk("acpi_cpufreq_verify\n");
486
487 return cpufreq_frequency_table_verify(policy, data->freq_table);
488 }
489
490 static unsigned long
491 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
492 {
493 struct acpi_processor_performance *perf = data->acpi_data;
494
495 if (cpu_khz) {
496 /* search the closest match to cpu_khz */
497 unsigned int i;
498 unsigned long freq;
499 unsigned long freqn = perf->states[0].core_frequency * 1000;
500
501 for (i = 0; i < (perf->state_count-1); i++) {
502 freq = freqn;
503 freqn = perf->states[i+1].core_frequency * 1000;
504 if ((2 * cpu_khz) > (freqn + freq)) {
505 perf->state = i;
506 return freq;
507 }
508 }
509 perf->state = perf->state_count-1;
510 return freqn;
511 } else {
512 /* assume CPU is at P0... */
513 perf->state = 0;
514 return perf->states[0].core_frequency * 1000;
515 }
516 }
517
518 static void free_acpi_perf_data(void)
519 {
520 unsigned int i;
521
522 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
523 for_each_possible_cpu(i)
524 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
525 ->shared_cpu_map);
526 free_percpu(acpi_perf_data);
527 }
528
529 /*
530 * acpi_cpufreq_early_init - initialize ACPI P-States library
531 *
532 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
533 * in order to determine correct frequency and voltage pairings. We can
534 * do _PDC and _PSD and find out the processor dependency for the
535 * actual init that will happen later...
536 */
537 static int __init acpi_cpufreq_early_init(void)
538 {
539 unsigned int i;
540 dprintk("acpi_cpufreq_early_init\n");
541
542 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
543 if (!acpi_perf_data) {
544 dprintk("Memory allocation error for acpi_perf_data.\n");
545 return -ENOMEM;
546 }
547 for_each_possible_cpu(i) {
548 if (!zalloc_cpumask_var_node(
549 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
550 GFP_KERNEL, cpu_to_node(i))) {
551
552 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
553 free_acpi_perf_data();
554 return -ENOMEM;
555 }
556 }
557
558 /* Do initialization in ACPI core */
559 acpi_processor_preregister_performance(acpi_perf_data);
560 return 0;
561 }
562
563 #ifdef CONFIG_SMP
564 /*
565 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
566 * or do it in BIOS firmware and won't inform about it to OS. If not
567 * detected, this has a side effect of making CPU run at a different speed
568 * than OS intended it to run at. Detect it and handle it cleanly.
569 */
570 static int bios_with_sw_any_bug;
571
572 static int sw_any_bug_found(const struct dmi_system_id *d)
573 {
574 bios_with_sw_any_bug = 1;
575 return 0;
576 }
577
578 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
579 {
580 .callback = sw_any_bug_found,
581 .ident = "Supermicro Server X6DLP",
582 .matches = {
583 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
584 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
585 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
586 },
587 },
588 { }
589 };
590 #endif
591
592 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
593 {
594 unsigned int i;
595 unsigned int valid_states = 0;
596 unsigned int cpu = policy->cpu;
597 struct acpi_cpufreq_data *data;
598 unsigned int result = 0;
599 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
600 struct acpi_processor_performance *perf;
601
602 dprintk("acpi_cpufreq_cpu_init\n");
603
604 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
605 if (!data)
606 return -ENOMEM;
607
608 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
609 per_cpu(drv_data, cpu) = data;
610
611 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
612 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
613
614 result = acpi_processor_register_performance(data->acpi_data, cpu);
615 if (result)
616 goto err_free;
617
618 perf = data->acpi_data;
619 policy->shared_type = perf->shared_type;
620
621 /*
622 * Will let policy->cpus know about dependency only when software
623 * coordination is required.
624 */
625 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
626 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
627 cpumask_copy(policy->cpus, perf->shared_cpu_map);
628 }
629 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
630
631 #ifdef CONFIG_SMP
632 dmi_check_system(sw_any_bug_dmi_table);
633 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
634 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
635 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
636 }
637 #endif
638
639 /* capability check */
640 if (perf->state_count <= 1) {
641 dprintk("No P-States\n");
642 result = -ENODEV;
643 goto err_unreg;
644 }
645
646 if (perf->control_register.space_id != perf->status_register.space_id) {
647 result = -ENODEV;
648 goto err_unreg;
649 }
650
651 switch (perf->control_register.space_id) {
652 case ACPI_ADR_SPACE_SYSTEM_IO:
653 dprintk("SYSTEM IO addr space\n");
654 data->cpu_feature = SYSTEM_IO_CAPABLE;
655 break;
656 case ACPI_ADR_SPACE_FIXED_HARDWARE:
657 dprintk("HARDWARE addr space\n");
658 if (!check_est_cpu(cpu)) {
659 result = -ENODEV;
660 goto err_unreg;
661 }
662 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
663 break;
664 default:
665 dprintk("Unknown addr space %d\n",
666 (u32) (perf->control_register.space_id));
667 result = -ENODEV;
668 goto err_unreg;
669 }
670
671 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
672 (perf->state_count+1), GFP_KERNEL);
673 if (!data->freq_table) {
674 result = -ENOMEM;
675 goto err_unreg;
676 }
677
678 /* detect transition latency */
679 policy->cpuinfo.transition_latency = 0;
680 for (i = 0; i < perf->state_count; i++) {
681 if ((perf->states[i].transition_latency * 1000) >
682 policy->cpuinfo.transition_latency)
683 policy->cpuinfo.transition_latency =
684 perf->states[i].transition_latency * 1000;
685 }
686
687 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
688 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
689 policy->cpuinfo.transition_latency > 20 * 1000) {
690 policy->cpuinfo.transition_latency = 20 * 1000;
691 printk_once(KERN_INFO
692 "P-state transition latency capped at 20 uS\n");
693 }
694
695 /* table init */
696 for (i = 0; i < perf->state_count; i++) {
697 if (i > 0 && perf->states[i].core_frequency >=
698 data->freq_table[valid_states-1].frequency / 1000)
699 continue;
700
701 data->freq_table[valid_states].index = i;
702 data->freq_table[valid_states].frequency =
703 perf->states[i].core_frequency * 1000;
704 valid_states++;
705 }
706 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
707 perf->state = 0;
708
709 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
710 if (result)
711 goto err_freqfree;
712
713 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
714 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
715
716 switch (perf->control_register.space_id) {
717 case ACPI_ADR_SPACE_SYSTEM_IO:
718 /* Current speed is unknown and not detectable by IO port */
719 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
720 break;
721 case ACPI_ADR_SPACE_FIXED_HARDWARE:
722 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
723 policy->cur = get_cur_freq_on_cpu(cpu);
724 break;
725 default:
726 break;
727 }
728
729 /* notify BIOS that we exist */
730 acpi_processor_notify_smm(THIS_MODULE);
731
732 /* Check for APERF/MPERF support in hardware */
733 if (cpu_has(c, X86_FEATURE_APERFMPERF))
734 acpi_cpufreq_driver.getavg = get_measured_perf;
735
736 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
737 for (i = 0; i < perf->state_count; i++)
738 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
739 (i == perf->state ? '*' : ' '), i,
740 (u32) perf->states[i].core_frequency,
741 (u32) perf->states[i].power,
742 (u32) perf->states[i].transition_latency);
743
744 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
745
746 /*
747 * the first call to ->target() should result in us actually
748 * writing something to the appropriate registers.
749 */
750 data->resume = 1;
751
752 return result;
753
754 err_freqfree:
755 kfree(data->freq_table);
756 err_unreg:
757 acpi_processor_unregister_performance(perf, cpu);
758 err_free:
759 kfree(data);
760 per_cpu(drv_data, cpu) = NULL;
761
762 return result;
763 }
764
765 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
766 {
767 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
768
769 dprintk("acpi_cpufreq_cpu_exit\n");
770
771 if (data) {
772 cpufreq_frequency_table_put_attr(policy->cpu);
773 per_cpu(drv_data, policy->cpu) = NULL;
774 acpi_processor_unregister_performance(data->acpi_data,
775 policy->cpu);
776 kfree(data);
777 }
778
779 return 0;
780 }
781
782 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
783 {
784 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
785
786 dprintk("acpi_cpufreq_resume\n");
787
788 data->resume = 1;
789
790 return 0;
791 }
792
793 static struct freq_attr *acpi_cpufreq_attr[] = {
794 &cpufreq_freq_attr_scaling_available_freqs,
795 NULL,
796 };
797
798 static struct cpufreq_driver acpi_cpufreq_driver = {
799 .verify = acpi_cpufreq_verify,
800 .target = acpi_cpufreq_target,
801 .init = acpi_cpufreq_cpu_init,
802 .exit = acpi_cpufreq_cpu_exit,
803 .resume = acpi_cpufreq_resume,
804 .name = "acpi-cpufreq",
805 .owner = THIS_MODULE,
806 .attr = acpi_cpufreq_attr,
807 };
808
809 static int __init acpi_cpufreq_init(void)
810 {
811 int ret;
812
813 if (acpi_disabled)
814 return 0;
815
816 dprintk("acpi_cpufreq_init\n");
817
818 ret = acpi_cpufreq_early_init();
819 if (ret)
820 return ret;
821
822 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
823 if (ret)
824 free_acpi_perf_data();
825
826 return ret;
827 }
828
829 static void __exit acpi_cpufreq_exit(void)
830 {
831 dprintk("acpi_cpufreq_exit\n");
832
833 cpufreq_unregister_driver(&acpi_cpufreq_driver);
834
835 free_percpu(acpi_perf_data);
836 }
837
838 module_param(acpi_pstate_strict, uint, 0644);
839 MODULE_PARM_DESC(acpi_pstate_strict,
840 "value 0 or non-zero. non-zero -> strict ACPI checks are "
841 "performed during frequency changes.");
842
843 late_initcall(acpi_cpufreq_init);
844 module_exit(acpi_cpufreq_exit);
845
846 MODULE_ALIAS("acpi");
This page took 0.046141 seconds and 4 git commands to generate.