MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / arch / x86 / kernel / cpu / intel.c
1 #include <linux/kernel.h>
2
3 #include <linux/string.h>
4 #include <linux/bitops.h>
5 #include <linux/smp.h>
6 #include <linux/sched.h>
7 #include <linux/thread_info.h>
8 #include <linux/module.h>
9 #include <linux/uaccess.h>
10
11 #include <asm/processor.h>
12 #include <asm/pgtable.h>
13 #include <asm/msr.h>
14 #include <asm/bugs.h>
15 #include <asm/cpu.h>
16
17 #ifdef CONFIG_X86_64
18 #include <linux/topology.h>
19 #endif
20
21 #include "cpu.h"
22
23 #ifdef CONFIG_X86_LOCAL_APIC
24 #include <asm/mpspec.h>
25 #include <asm/apic.h>
26 #endif
27
28 static void early_init_intel(struct cpuinfo_x86 *c)
29 {
30 u64 misc_enable;
31
32 /* Unmask CPUID levels if masked: */
33 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
34 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
35 MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
36 c->cpuid_level = cpuid_eax(0);
37 get_cpu_cap(c);
38 }
39 }
40
41 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
42 (c->x86 == 0x6 && c->x86_model >= 0x0e))
43 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
44
45 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
46 unsigned lower_word;
47
48 wrmsr(MSR_IA32_UCODE_REV, 0, 0);
49 /* Required by the SDM */
50 sync_core();
51 rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
52 }
53
54 /*
55 * Atom erratum AAE44/AAF40/AAG38/AAH41:
56 *
57 * A race condition between speculative fetches and invalidating
58 * a large page. This is worked around in microcode, but we
59 * need the microcode to have already been loaded... so if it is
60 * not, recommend a BIOS update and disable large pages.
61 */
62 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
63 c->microcode < 0x20e) {
64 printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
65 clear_cpu_cap(c, X86_FEATURE_PSE);
66 }
67
68 #ifdef CONFIG_X86_64
69 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
70 #else
71 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
72 if (c->x86 == 15 && c->x86_cache_alignment == 64)
73 c->x86_cache_alignment = 128;
74 #endif
75
76 /* CPUID workaround for 0F33/0F34 CPU */
77 if (c->x86 == 0xF && c->x86_model == 0x3
78 && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
79 c->x86_phys_bits = 36;
80
81 /*
82 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
83 * with P/T states and does not stop in deep C-states.
84 *
85 * It is also reliable across cores and sockets. (but not across
86 * cabinets - we turn it off in that case explicitly.)
87 */
88 if (c->x86_power & (1 << 8)) {
89 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
90 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
91 if (!check_tsc_unstable())
92 set_sched_clock_stable();
93 }
94
95 /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
96 if (c->x86 == 6) {
97 switch (c->x86_model) {
98 case 0x27: /* Penwell */
99 case 0x35: /* Cloverview */
100 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
101 break;
102 default:
103 break;
104 }
105 }
106
107 /*
108 * There is a known erratum on Pentium III and Core Solo
109 * and Core Duo CPUs.
110 * " Page with PAT set to WC while associated MTRR is UC
111 * may consolidate to UC "
112 * Because of this erratum, it is better to stick with
113 * setting WC in MTRR rather than using PAT on these CPUs.
114 *
115 * Enable PAT WC only on P4, Core 2 or later CPUs.
116 */
117 if (c->x86 == 6 && c->x86_model < 15)
118 clear_cpu_cap(c, X86_FEATURE_PAT);
119
120 #ifdef CONFIG_KMEMCHECK
121 /*
122 * P4s have a "fast strings" feature which causes single-
123 * stepping REP instructions to only generate a #DB on
124 * cache-line boundaries.
125 *
126 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
127 * (model 2) with the same problem.
128 */
129 if (c->x86 == 15)
130 if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
131 MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
132 pr_info("kmemcheck: Disabling fast string operations\n");
133 #endif
134
135 /*
136 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
137 * clear the fast string and enhanced fast string CPU capabilities.
138 */
139 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
140 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
141 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
142 printk(KERN_INFO "Disabled fast string operations\n");
143 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
144 setup_clear_cpu_cap(X86_FEATURE_ERMS);
145 }
146 }
147
148 /*
149 * Intel Quark Core DevMan_001.pdf section 6.4.11
150 * "The operating system also is required to invalidate (i.e., flush)
151 * the TLB when any changes are made to any of the page table entries.
152 * The operating system must reload CR3 to cause the TLB to be flushed"
153 *
154 * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
155 * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
156 * to be modified
157 */
158 if (c->x86 == 5 && c->x86_model == 9) {
159 pr_info("Disabling PGE capability bit\n");
160 setup_clear_cpu_cap(X86_FEATURE_PGE);
161 }
162 }
163
164 #ifdef CONFIG_X86_32
165 /*
166 * Early probe support logic for ppro memory erratum #50
167 *
168 * This is called before we do cpu ident work
169 */
170
171 int ppro_with_ram_bug(void)
172 {
173 /* Uses data from early_cpu_detect now */
174 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
175 boot_cpu_data.x86 == 6 &&
176 boot_cpu_data.x86_model == 1 &&
177 boot_cpu_data.x86_mask < 8) {
178 printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
179 return 1;
180 }
181 return 0;
182 }
183
184 static void intel_smp_check(struct cpuinfo_x86 *c)
185 {
186 /* calling is from identify_secondary_cpu() ? */
187 if (!c->cpu_index)
188 return;
189
190 /*
191 * Mask B, Pentium, but not Pentium MMX
192 */
193 if (c->x86 == 5 &&
194 c->x86_mask >= 1 && c->x86_mask <= 4 &&
195 c->x86_model <= 3) {
196 /*
197 * Remember we have B step Pentia with bugs
198 */
199 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
200 "with B stepping processors.\n");
201 }
202 }
203
204 static int forcepae;
205 static int __init forcepae_setup(char *__unused)
206 {
207 forcepae = 1;
208 return 1;
209 }
210 __setup("forcepae", forcepae_setup);
211
212 static void intel_workarounds(struct cpuinfo_x86 *c)
213 {
214 #ifdef CONFIG_X86_F00F_BUG
215 /*
216 * All models of Pentium and Pentium with MMX technology CPUs
217 * have the F0 0F bug, which lets nonprivileged users lock up the
218 * system. Announce that the fault handler will be checking for it.
219 * The Quark is also family 5, but does not have the same bug.
220 */
221 clear_cpu_bug(c, X86_BUG_F00F);
222 if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
223 static int f00f_workaround_enabled;
224
225 set_cpu_bug(c, X86_BUG_F00F);
226 if (!f00f_workaround_enabled) {
227 printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
228 f00f_workaround_enabled = 1;
229 }
230 }
231 #endif
232
233 /*
234 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
235 * model 3 mask 3
236 */
237 if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
238 clear_cpu_cap(c, X86_FEATURE_SEP);
239
240 /*
241 * PAE CPUID issue: many Pentium M report no PAE but may have a
242 * functionally usable PAE implementation.
243 * Forcefully enable PAE if kernel parameter "forcepae" is present.
244 */
245 if (forcepae) {
246 printk(KERN_WARNING "PAE forced!\n");
247 set_cpu_cap(c, X86_FEATURE_PAE);
248 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
249 }
250
251 /*
252 * P4 Xeon errata 037 workaround.
253 * Hardware prefetcher may cause stale data to be loaded into the cache.
254 */
255 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
256 if (msr_set_bit(MSR_IA32_MISC_ENABLE,
257 MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
258 > 0) {
259 pr_info("CPU: C0 stepping P4 Xeon detected.\n");
260 pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
261 }
262 }
263
264 /*
265 * See if we have a good local APIC by checking for buggy Pentia,
266 * i.e. all B steppings and the C2 stepping of P54C when using their
267 * integrated APIC (see 11AP erratum in "Pentium Processor
268 * Specification Update").
269 */
270 if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
271 (c->x86_mask < 0x6 || c->x86_mask == 0xb))
272 set_cpu_bug(c, X86_BUG_11AP);
273
274
275 #ifdef CONFIG_X86_INTEL_USERCOPY
276 /*
277 * Set up the preferred alignment for movsl bulk memory moves
278 */
279 switch (c->x86) {
280 case 4: /* 486: untested */
281 break;
282 case 5: /* Old Pentia: untested */
283 break;
284 case 6: /* PII/PIII only like movsl with 8-byte alignment */
285 movsl_mask.mask = 7;
286 break;
287 case 15: /* P4 is OK down to 8-byte alignment */
288 movsl_mask.mask = 7;
289 break;
290 }
291 #endif
292
293 intel_smp_check(c);
294 }
295 #else
296 static void intel_workarounds(struct cpuinfo_x86 *c)
297 {
298 }
299 #endif
300
301 static void srat_detect_node(struct cpuinfo_x86 *c)
302 {
303 #ifdef CONFIG_NUMA
304 unsigned node;
305 int cpu = smp_processor_id();
306
307 /* Don't do the funky fallback heuristics the AMD version employs
308 for now. */
309 node = numa_cpu_node(cpu);
310 if (node == NUMA_NO_NODE || !node_online(node)) {
311 /* reuse the value from init_cpu_to_node() */
312 node = cpu_to_node(cpu);
313 }
314 numa_set_node(cpu, node);
315 #endif
316 }
317
318 /*
319 * find out the number of processor cores on the die
320 */
321 static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
322 {
323 unsigned int eax, ebx, ecx, edx;
324
325 if (c->cpuid_level < 4)
326 return 1;
327
328 /* Intel has a non-standard dependency on %ecx for this CPUID level. */
329 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
330 if (eax & 0x1f)
331 return (eax >> 26) + 1;
332 else
333 return 1;
334 }
335
336 static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
337 {
338 /* Intel VMX MSR indicated features */
339 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
340 #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
341 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
342 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
343 #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
344 #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
345
346 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
347
348 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
349 clear_cpu_cap(c, X86_FEATURE_VNMI);
350 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
351 clear_cpu_cap(c, X86_FEATURE_EPT);
352 clear_cpu_cap(c, X86_FEATURE_VPID);
353
354 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
355 msr_ctl = vmx_msr_high | vmx_msr_low;
356 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
357 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
358 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
359 set_cpu_cap(c, X86_FEATURE_VNMI);
360 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
361 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
362 vmx_msr_low, vmx_msr_high);
363 msr_ctl2 = vmx_msr_high | vmx_msr_low;
364 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
365 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
366 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
367 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
368 set_cpu_cap(c, X86_FEATURE_EPT);
369 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
370 set_cpu_cap(c, X86_FEATURE_VPID);
371 }
372 }
373
374 static void init_intel(struct cpuinfo_x86 *c)
375 {
376 unsigned int l2 = 0;
377
378 early_init_intel(c);
379
380 intel_workarounds(c);
381
382 /*
383 * Detect the extended topology information if available. This
384 * will reinitialise the initial_apicid which will be used
385 * in init_intel_cacheinfo()
386 */
387 detect_extended_topology(c);
388
389 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
390 /*
391 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
392 * detection.
393 */
394 c->x86_max_cores = intel_num_cpu_cores(c);
395 #ifdef CONFIG_X86_32
396 detect_ht(c);
397 #endif
398 }
399
400 l2 = init_intel_cacheinfo(c);
401
402 /* Detect legacy cache sizes if init_intel_cacheinfo did not */
403 if (l2 == 0) {
404 cpu_detect_cache_sizes(c);
405 l2 = c->x86_cache_size;
406 }
407
408 if (c->cpuid_level > 9) {
409 unsigned eax = cpuid_eax(10);
410 /* Check for version and the number of counters */
411 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
412 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
413 }
414
415 if (cpu_has_xmm2)
416 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
417 if (cpu_has_ds) {
418 unsigned int l1;
419 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
420 if (!(l1 & (1<<11)))
421 set_cpu_cap(c, X86_FEATURE_BTS);
422 if (!(l1 & (1<<12)))
423 set_cpu_cap(c, X86_FEATURE_PEBS);
424 }
425
426 if (c->x86 == 6 && cpu_has_clflush &&
427 (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
428 set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
429
430 #ifdef CONFIG_X86_64
431 if (c->x86 == 15)
432 c->x86_cache_alignment = c->x86_clflush_size * 2;
433 if (c->x86 == 6)
434 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
435 #else
436 /*
437 * Names for the Pentium II/Celeron processors
438 * detectable only by also checking the cache size.
439 * Dixon is NOT a Celeron.
440 */
441 if (c->x86 == 6) {
442 char *p = NULL;
443
444 switch (c->x86_model) {
445 case 5:
446 if (l2 == 0)
447 p = "Celeron (Covington)";
448 else if (l2 == 256)
449 p = "Mobile Pentium II (Dixon)";
450 break;
451
452 case 6:
453 if (l2 == 128)
454 p = "Celeron (Mendocino)";
455 else if (c->x86_mask == 0 || c->x86_mask == 5)
456 p = "Celeron-A";
457 break;
458
459 case 8:
460 if (l2 == 128)
461 p = "Celeron (Coppermine)";
462 break;
463 }
464
465 if (p)
466 strcpy(c->x86_model_id, p);
467 }
468
469 if (c->x86 == 15)
470 set_cpu_cap(c, X86_FEATURE_P4);
471 if (c->x86 == 6)
472 set_cpu_cap(c, X86_FEATURE_P3);
473 #endif
474
475 /* Work around errata */
476 srat_detect_node(c);
477
478 if (cpu_has(c, X86_FEATURE_VMX))
479 detect_vmx_virtcap(c);
480
481 /*
482 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
483 * x86_energy_perf_policy(8) is available to change it at run-time
484 */
485 if (cpu_has(c, X86_FEATURE_EPB)) {
486 u64 epb;
487
488 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
489 if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
490 pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
491 pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
492 epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
493 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
494 }
495 }
496 }
497
498 #ifdef CONFIG_X86_32
499 static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
500 {
501 /*
502 * Intel PIII Tualatin. This comes in two flavours.
503 * One has 256kb of cache, the other 512. We have no way
504 * to determine which, so we use a boottime override
505 * for the 512kb model, and assume 256 otherwise.
506 */
507 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
508 size = 256;
509
510 /*
511 * Intel Quark SoC X1000 contains a 4-way set associative
512 * 16K cache with a 16 byte cache line and 256 lines per tag
513 */
514 if ((c->x86 == 5) && (c->x86_model == 9))
515 size = 16;
516 return size;
517 }
518 #endif
519
520 #define TLB_INST_4K 0x01
521 #define TLB_INST_4M 0x02
522 #define TLB_INST_2M_4M 0x03
523
524 #define TLB_INST_ALL 0x05
525 #define TLB_INST_1G 0x06
526
527 #define TLB_DATA_4K 0x11
528 #define TLB_DATA_4M 0x12
529 #define TLB_DATA_2M_4M 0x13
530 #define TLB_DATA_4K_4M 0x14
531
532 #define TLB_DATA_1G 0x16
533
534 #define TLB_DATA0_4K 0x21
535 #define TLB_DATA0_4M 0x22
536 #define TLB_DATA0_2M_4M 0x23
537
538 #define STLB_4K 0x41
539 #define STLB_4K_2M 0x42
540
541 static const struct _tlb_table intel_tlb_table[] = {
542 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
543 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
544 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
545 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
546 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
547 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
548 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
549 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
550 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
551 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
552 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
553 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
554 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
555 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
556 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
557 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
558 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
559 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
560 { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
561 { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
562 { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
563 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
564 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
565 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
566 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
567 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
568 { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set ssociative" },
569 { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set ssociative" },
570 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
571 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
572 { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
573 { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
574 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
575 { 0x00, 0, 0 }
576 };
577
578 static void intel_tlb_lookup(const unsigned char desc)
579 {
580 unsigned char k;
581 if (desc == 0)
582 return;
583
584 /* look up this descriptor in the table */
585 for (k = 0; intel_tlb_table[k].descriptor != desc && \
586 intel_tlb_table[k].descriptor != 0; k++)
587 ;
588
589 if (intel_tlb_table[k].tlb_type == 0)
590 return;
591
592 switch (intel_tlb_table[k].tlb_type) {
593 case STLB_4K:
594 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
595 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
596 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
597 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
598 break;
599 case STLB_4K_2M:
600 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
601 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
602 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
603 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
604 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
605 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
606 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
607 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
608 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
609 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
610 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
611 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
612 break;
613 case TLB_INST_ALL:
614 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
615 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
616 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
617 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
618 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
619 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
620 break;
621 case TLB_INST_4K:
622 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
623 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
624 break;
625 case TLB_INST_4M:
626 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
627 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
628 break;
629 case TLB_INST_2M_4M:
630 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
631 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
632 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
633 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
634 break;
635 case TLB_DATA_4K:
636 case TLB_DATA0_4K:
637 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
638 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
639 break;
640 case TLB_DATA_4M:
641 case TLB_DATA0_4M:
642 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
643 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
644 break;
645 case TLB_DATA_2M_4M:
646 case TLB_DATA0_2M_4M:
647 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
648 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
649 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
650 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
651 break;
652 case TLB_DATA_4K_4M:
653 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
654 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
655 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
656 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
657 break;
658 case TLB_DATA_1G:
659 if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
660 tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
661 break;
662 }
663 }
664
665 static void intel_detect_tlb(struct cpuinfo_x86 *c)
666 {
667 int i, j, n;
668 unsigned int regs[4];
669 unsigned char *desc = (unsigned char *)regs;
670
671 if (c->cpuid_level < 2)
672 return;
673
674 /* Number of times to iterate */
675 n = cpuid_eax(2) & 0xFF;
676
677 for (i = 0 ; i < n ; i++) {
678 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
679
680 /* If bit 31 is set, this is an unknown format */
681 for (j = 0 ; j < 3 ; j++)
682 if (regs[j] & (1 << 31))
683 regs[j] = 0;
684
685 /* Byte 0 is level count, not a descriptor */
686 for (j = 1 ; j < 16 ; j++)
687 intel_tlb_lookup(desc[j]);
688 }
689 }
690
691 static const struct cpu_dev intel_cpu_dev = {
692 .c_vendor = "Intel",
693 .c_ident = { "GenuineIntel" },
694 #ifdef CONFIG_X86_32
695 .legacy_models = {
696 { .family = 4, .model_names =
697 {
698 [0] = "486 DX-25/33",
699 [1] = "486 DX-50",
700 [2] = "486 SX",
701 [3] = "486 DX/2",
702 [4] = "486 SL",
703 [5] = "486 SX/2",
704 [7] = "486 DX/2-WB",
705 [8] = "486 DX/4",
706 [9] = "486 DX/4-WB"
707 }
708 },
709 { .family = 5, .model_names =
710 {
711 [0] = "Pentium 60/66 A-step",
712 [1] = "Pentium 60/66",
713 [2] = "Pentium 75 - 200",
714 [3] = "OverDrive PODP5V83",
715 [4] = "Pentium MMX",
716 [7] = "Mobile Pentium 75 - 200",
717 [8] = "Mobile Pentium MMX",
718 [9] = "Quark SoC X1000",
719 }
720 },
721 { .family = 6, .model_names =
722 {
723 [0] = "Pentium Pro A-step",
724 [1] = "Pentium Pro",
725 [3] = "Pentium II (Klamath)",
726 [4] = "Pentium II (Deschutes)",
727 [5] = "Pentium II (Deschutes)",
728 [6] = "Mobile Pentium II",
729 [7] = "Pentium III (Katmai)",
730 [8] = "Pentium III (Coppermine)",
731 [10] = "Pentium III (Cascades)",
732 [11] = "Pentium III (Tualatin)",
733 }
734 },
735 { .family = 15, .model_names =
736 {
737 [0] = "Pentium 4 (Unknown)",
738 [1] = "Pentium 4 (Willamette)",
739 [2] = "Pentium 4 (Northwood)",
740 [4] = "Pentium 4 (Foster)",
741 [5] = "Pentium 4 (Foster)",
742 }
743 },
744 },
745 .legacy_cache_size = intel_size_cache,
746 #endif
747 .c_detect_tlb = intel_detect_tlb,
748 .c_early_init = early_init_intel,
749 .c_init = init_intel,
750 .c_x86_vendor = X86_VENDOR_INTEL,
751 };
752
753 cpu_dev_register(intel_cpu_dev);
754
This page took 0.053587 seconds and 5 git commands to generate.