019786a6b0b2d595b9b7ee1281bbbdaebfde7816
[deliverable/linux.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/sysdev.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/edac_mce.h>
40 #include <linux/irq_work.h>
41
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50 #define rcu_dereference_check_mce(p) \
51 rcu_dereference_index_check((p), \
52 rcu_read_lock_sched_held() || \
53 lockdep_is_held(&mce_chrdev_read_mutex))
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57
58 int mce_disabled __read_mostly;
59
60 #define MISC_MCELOG_MINOR 227
61
62 #define SPINUNIT 100 /* 100ns */
63
64 atomic_t mce_entry;
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 /*
69 * Tolerant levels:
70 * 0: always panic on uncorrected errors, log corrected errors
71 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
72 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 * 3: never panic or SIGBUS, log all errors (for testing only)
74 */
75 static int tolerant __read_mostly = 1;
76 static int banks __read_mostly;
77 static int rip_msr __read_mostly;
78 static int mce_bootlog __read_mostly = -1;
79 static int monarch_timeout __read_mostly = -1;
80 static int mce_panic_timeout __read_mostly;
81 static int mce_dont_log_ce __read_mostly;
82 int mce_cmci_disabled __read_mostly;
83 int mce_ignore_ce __read_mostly;
84 int mce_ser __read_mostly;
85
86 struct mce_bank *mce_banks __read_mostly;
87
88 /* User mode helper program triggered by machine check event */
89 static unsigned long mce_need_notify;
90 static char mce_helper[128];
91 static char *mce_helper_argv[2] = { mce_helper, NULL };
92
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int cpu_missing;
97
98 /*
99 * CPU/chipset specific EDAC code can register a notifier call here to print
100 * MCE errors in a human-readable form.
101 */
102 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
103 EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
104
105 /* MCA banks polled by the period polling timer for corrected events */
106 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
107 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
108 };
109
110 static DEFINE_PER_CPU(struct work_struct, mce_work);
111
112 /* Do initial initialization of a struct mce */
113 void mce_setup(struct mce *m)
114 {
115 memset(m, 0, sizeof(struct mce));
116 m->cpu = m->extcpu = smp_processor_id();
117 rdtscll(m->tsc);
118 /* We hope get_seconds stays lockless */
119 m->time = get_seconds();
120 m->cpuvendor = boot_cpu_data.x86_vendor;
121 m->cpuid = cpuid_eax(1);
122 #ifdef CONFIG_SMP
123 m->socketid = cpu_data(m->extcpu).phys_proc_id;
124 #endif
125 m->apicid = cpu_data(m->extcpu).initial_apicid;
126 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127 }
128
129 DEFINE_PER_CPU(struct mce, injectm);
130 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
131
132 /*
133 * Lockless MCE logging infrastructure.
134 * This avoids deadlocks on printk locks without having to break locks. Also
135 * separate MCEs from kernel messages to avoid bogus bug reports.
136 */
137
138 static struct mce_log mcelog = {
139 .signature = MCE_LOG_SIGNATURE,
140 .len = MCE_LOG_LEN,
141 .recordlen = sizeof(struct mce),
142 };
143
144 void mce_log(struct mce *mce)
145 {
146 unsigned next, entry;
147 int ret = 0;
148
149 /* Emit the trace record: */
150 trace_mce_record(mce);
151
152 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
153 if (ret == NOTIFY_STOP)
154 return;
155
156 mce->finished = 0;
157 wmb();
158 for (;;) {
159 entry = rcu_dereference_check_mce(mcelog.next);
160 for (;;) {
161
162 /*
163 * When the buffer fills up discard new entries.
164 * Assume that the earlier errors are the more
165 * interesting ones:
166 */
167 if (entry >= MCE_LOG_LEN) {
168 set_bit(MCE_OVERFLOW,
169 (unsigned long *)&mcelog.flags);
170 return;
171 }
172 /* Old left over entry. Skip: */
173 if (mcelog.entry[entry].finished) {
174 entry++;
175 continue;
176 }
177 break;
178 }
179 smp_rmb();
180 next = entry + 1;
181 if (cmpxchg(&mcelog.next, entry, next) == entry)
182 break;
183 }
184 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
185 wmb();
186 mcelog.entry[entry].finished = 1;
187 wmb();
188
189 mce->finished = 1;
190 set_bit(0, &mce_need_notify);
191 }
192
193 static void print_mce(struct mce *m)
194 {
195 int ret = 0;
196
197 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
198 m->extcpu, m->mcgstatus, m->bank, m->status);
199
200 if (m->ip) {
201 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
202 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
203 m->cs, m->ip);
204
205 if (m->cs == __KERNEL_CS)
206 print_symbol("{%s}", m->ip);
207 pr_cont("\n");
208 }
209
210 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
211 if (m->addr)
212 pr_cont("ADDR %llx ", m->addr);
213 if (m->misc)
214 pr_cont("MISC %llx ", m->misc);
215
216 pr_cont("\n");
217 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
218 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
219
220 /*
221 * Print out human-readable details about the MCE error,
222 * (if the CPU has an implementation for that)
223 */
224 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
225 if (ret == NOTIFY_STOP)
226 return;
227
228 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
229 }
230
231 #define PANIC_TIMEOUT 5 /* 5 seconds */
232
233 static atomic_t mce_paniced;
234
235 static int fake_panic;
236 static atomic_t mce_fake_paniced;
237
238 /* Panic in progress. Enable interrupts and wait for final IPI */
239 static void wait_for_panic(void)
240 {
241 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
242
243 preempt_disable();
244 local_irq_enable();
245 while (timeout-- > 0)
246 udelay(1);
247 if (panic_timeout == 0)
248 panic_timeout = mce_panic_timeout;
249 panic("Panicing machine check CPU died");
250 }
251
252 static void mce_panic(char *msg, struct mce *final, char *exp)
253 {
254 int i, apei_err = 0;
255
256 if (!fake_panic) {
257 /*
258 * Make sure only one CPU runs in machine check panic
259 */
260 if (atomic_inc_return(&mce_paniced) > 1)
261 wait_for_panic();
262 barrier();
263
264 bust_spinlocks(1);
265 console_verbose();
266 } else {
267 /* Don't log too much for fake panic */
268 if (atomic_inc_return(&mce_fake_paniced) > 1)
269 return;
270 }
271 /* First print corrected ones that are still unlogged */
272 for (i = 0; i < MCE_LOG_LEN; i++) {
273 struct mce *m = &mcelog.entry[i];
274 if (!(m->status & MCI_STATUS_VAL))
275 continue;
276 if (!(m->status & MCI_STATUS_UC)) {
277 print_mce(m);
278 if (!apei_err)
279 apei_err = apei_write_mce(m);
280 }
281 }
282 /* Now print uncorrected but with the final one last */
283 for (i = 0; i < MCE_LOG_LEN; i++) {
284 struct mce *m = &mcelog.entry[i];
285 if (!(m->status & MCI_STATUS_VAL))
286 continue;
287 if (!(m->status & MCI_STATUS_UC))
288 continue;
289 if (!final || memcmp(m, final, sizeof(struct mce))) {
290 print_mce(m);
291 if (!apei_err)
292 apei_err = apei_write_mce(m);
293 }
294 }
295 if (final) {
296 print_mce(final);
297 if (!apei_err)
298 apei_err = apei_write_mce(final);
299 }
300 if (cpu_missing)
301 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
302 if (exp)
303 pr_emerg(HW_ERR "Machine check: %s\n", exp);
304 if (!fake_panic) {
305 if (panic_timeout == 0)
306 panic_timeout = mce_panic_timeout;
307 panic(msg);
308 } else
309 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
310 }
311
312 /* Support code for software error injection */
313
314 static int msr_to_offset(u32 msr)
315 {
316 unsigned bank = __this_cpu_read(injectm.bank);
317
318 if (msr == rip_msr)
319 return offsetof(struct mce, ip);
320 if (msr == MSR_IA32_MCx_STATUS(bank))
321 return offsetof(struct mce, status);
322 if (msr == MSR_IA32_MCx_ADDR(bank))
323 return offsetof(struct mce, addr);
324 if (msr == MSR_IA32_MCx_MISC(bank))
325 return offsetof(struct mce, misc);
326 if (msr == MSR_IA32_MCG_STATUS)
327 return offsetof(struct mce, mcgstatus);
328 return -1;
329 }
330
331 /* MSR access wrappers used for error injection */
332 static u64 mce_rdmsrl(u32 msr)
333 {
334 u64 v;
335
336 if (__this_cpu_read(injectm.finished)) {
337 int offset = msr_to_offset(msr);
338
339 if (offset < 0)
340 return 0;
341 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
342 }
343
344 if (rdmsrl_safe(msr, &v)) {
345 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
346 /*
347 * Return zero in case the access faulted. This should
348 * not happen normally but can happen if the CPU does
349 * something weird, or if the code is buggy.
350 */
351 v = 0;
352 }
353
354 return v;
355 }
356
357 static void mce_wrmsrl(u32 msr, u64 v)
358 {
359 if (__this_cpu_read(injectm.finished)) {
360 int offset = msr_to_offset(msr);
361
362 if (offset >= 0)
363 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
364 return;
365 }
366 wrmsrl(msr, v);
367 }
368
369 /*
370 * Collect all global (w.r.t. this processor) status about this machine
371 * check into our "mce" struct so that we can use it later to assess
372 * the severity of the problem as we read per-bank specific details.
373 */
374 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
375 {
376 mce_setup(m);
377
378 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
379 if (regs) {
380 /*
381 * Get the address of the instruction at the time of
382 * the machine check error.
383 */
384 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
385 m->ip = regs->ip;
386 m->cs = regs->cs;
387 }
388 /* Use accurate RIP reporting if available. */
389 if (rip_msr)
390 m->ip = mce_rdmsrl(rip_msr);
391 }
392 }
393
394 /*
395 * Simple lockless ring to communicate PFNs from the exception handler with the
396 * process context work function. This is vastly simplified because there's
397 * only a single reader and a single writer.
398 */
399 #define MCE_RING_SIZE 16 /* we use one entry less */
400
401 struct mce_ring {
402 unsigned short start;
403 unsigned short end;
404 unsigned long ring[MCE_RING_SIZE];
405 };
406 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
407
408 /* Runs with CPU affinity in workqueue */
409 static int mce_ring_empty(void)
410 {
411 struct mce_ring *r = &__get_cpu_var(mce_ring);
412
413 return r->start == r->end;
414 }
415
416 static int mce_ring_get(unsigned long *pfn)
417 {
418 struct mce_ring *r;
419 int ret = 0;
420
421 *pfn = 0;
422 get_cpu();
423 r = &__get_cpu_var(mce_ring);
424 if (r->start == r->end)
425 goto out;
426 *pfn = r->ring[r->start];
427 r->start = (r->start + 1) % MCE_RING_SIZE;
428 ret = 1;
429 out:
430 put_cpu();
431 return ret;
432 }
433
434 /* Always runs in MCE context with preempt off */
435 static int mce_ring_add(unsigned long pfn)
436 {
437 struct mce_ring *r = &__get_cpu_var(mce_ring);
438 unsigned next;
439
440 next = (r->end + 1) % MCE_RING_SIZE;
441 if (next == r->start)
442 return -1;
443 r->ring[r->end] = pfn;
444 wmb();
445 r->end = next;
446 return 0;
447 }
448
449 int mce_available(struct cpuinfo_x86 *c)
450 {
451 if (mce_disabled)
452 return 0;
453 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
454 }
455
456 static void mce_schedule_work(void)
457 {
458 if (!mce_ring_empty()) {
459 struct work_struct *work = &__get_cpu_var(mce_work);
460 if (!work_pending(work))
461 schedule_work(work);
462 }
463 }
464
465 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
466
467 static void mce_irq_work_cb(struct irq_work *entry)
468 {
469 mce_notify_irq();
470 mce_schedule_work();
471 }
472
473 static void mce_report_event(struct pt_regs *regs)
474 {
475 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
476 mce_notify_irq();
477 /*
478 * Triggering the work queue here is just an insurance
479 * policy in case the syscall exit notify handler
480 * doesn't run soon enough or ends up running on the
481 * wrong CPU (can happen when audit sleeps)
482 */
483 mce_schedule_work();
484 return;
485 }
486
487 irq_work_queue(&__get_cpu_var(mce_irq_work));
488 }
489
490 DEFINE_PER_CPU(unsigned, mce_poll_count);
491
492 /*
493 * Poll for corrected events or events that happened before reset.
494 * Those are just logged through /dev/mcelog.
495 *
496 * This is executed in standard interrupt context.
497 *
498 * Note: spec recommends to panic for fatal unsignalled
499 * errors here. However this would be quite problematic --
500 * we would need to reimplement the Monarch handling and
501 * it would mess up the exclusion between exception handler
502 * and poll hander -- * so we skip this for now.
503 * These cases should not happen anyways, or only when the CPU
504 * is already totally * confused. In this case it's likely it will
505 * not fully execute the machine check handler either.
506 */
507 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
508 {
509 struct mce m;
510 int i;
511
512 percpu_inc(mce_poll_count);
513
514 mce_gather_info(&m, NULL);
515
516 for (i = 0; i < banks; i++) {
517 if (!mce_banks[i].ctl || !test_bit(i, *b))
518 continue;
519
520 m.misc = 0;
521 m.addr = 0;
522 m.bank = i;
523 m.tsc = 0;
524
525 barrier();
526 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
527 if (!(m.status & MCI_STATUS_VAL))
528 continue;
529
530 /*
531 * Uncorrected or signalled events are handled by the exception
532 * handler when it is enabled, so don't process those here.
533 *
534 * TBD do the same check for MCI_STATUS_EN here?
535 */
536 if (!(flags & MCP_UC) &&
537 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
538 continue;
539
540 if (m.status & MCI_STATUS_MISCV)
541 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
542 if (m.status & MCI_STATUS_ADDRV)
543 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
544
545 if (!(flags & MCP_TIMESTAMP))
546 m.tsc = 0;
547 /*
548 * Don't get the IP here because it's unlikely to
549 * have anything to do with the actual error location.
550 */
551 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
552 mce_log(&m);
553
554 /*
555 * Clear state for this bank.
556 */
557 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
558 }
559
560 /*
561 * Don't clear MCG_STATUS here because it's only defined for
562 * exceptions.
563 */
564
565 sync_core();
566 }
567 EXPORT_SYMBOL_GPL(machine_check_poll);
568
569 /*
570 * Do a quick check if any of the events requires a panic.
571 * This decides if we keep the events around or clear them.
572 */
573 static int mce_no_way_out(struct mce *m, char **msg)
574 {
575 int i;
576
577 for (i = 0; i < banks; i++) {
578 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
579 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
580 return 1;
581 }
582 return 0;
583 }
584
585 /*
586 * Variable to establish order between CPUs while scanning.
587 * Each CPU spins initially until executing is equal its number.
588 */
589 static atomic_t mce_executing;
590
591 /*
592 * Defines order of CPUs on entry. First CPU becomes Monarch.
593 */
594 static atomic_t mce_callin;
595
596 /*
597 * Check if a timeout waiting for other CPUs happened.
598 */
599 static int mce_timed_out(u64 *t)
600 {
601 /*
602 * The others already did panic for some reason.
603 * Bail out like in a timeout.
604 * rmb() to tell the compiler that system_state
605 * might have been modified by someone else.
606 */
607 rmb();
608 if (atomic_read(&mce_paniced))
609 wait_for_panic();
610 if (!monarch_timeout)
611 goto out;
612 if ((s64)*t < SPINUNIT) {
613 /* CHECKME: Make panic default for 1 too? */
614 if (tolerant < 1)
615 mce_panic("Timeout synchronizing machine check over CPUs",
616 NULL, NULL);
617 cpu_missing = 1;
618 return 1;
619 }
620 *t -= SPINUNIT;
621 out:
622 touch_nmi_watchdog();
623 return 0;
624 }
625
626 /*
627 * The Monarch's reign. The Monarch is the CPU who entered
628 * the machine check handler first. It waits for the others to
629 * raise the exception too and then grades them. When any
630 * error is fatal panic. Only then let the others continue.
631 *
632 * The other CPUs entering the MCE handler will be controlled by the
633 * Monarch. They are called Subjects.
634 *
635 * This way we prevent any potential data corruption in a unrecoverable case
636 * and also makes sure always all CPU's errors are examined.
637 *
638 * Also this detects the case of a machine check event coming from outer
639 * space (not detected by any CPUs) In this case some external agent wants
640 * us to shut down, so panic too.
641 *
642 * The other CPUs might still decide to panic if the handler happens
643 * in a unrecoverable place, but in this case the system is in a semi-stable
644 * state and won't corrupt anything by itself. It's ok to let the others
645 * continue for a bit first.
646 *
647 * All the spin loops have timeouts; when a timeout happens a CPU
648 * typically elects itself to be Monarch.
649 */
650 static void mce_reign(void)
651 {
652 int cpu;
653 struct mce *m = NULL;
654 int global_worst = 0;
655 char *msg = NULL;
656 char *nmsg = NULL;
657
658 /*
659 * This CPU is the Monarch and the other CPUs have run
660 * through their handlers.
661 * Grade the severity of the errors of all the CPUs.
662 */
663 for_each_possible_cpu(cpu) {
664 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
665 &nmsg);
666 if (severity > global_worst) {
667 msg = nmsg;
668 global_worst = severity;
669 m = &per_cpu(mces_seen, cpu);
670 }
671 }
672
673 /*
674 * Cannot recover? Panic here then.
675 * This dumps all the mces in the log buffer and stops the
676 * other CPUs.
677 */
678 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
679 mce_panic("Fatal Machine check", m, msg);
680
681 /*
682 * For UC somewhere we let the CPU who detects it handle it.
683 * Also must let continue the others, otherwise the handling
684 * CPU could deadlock on a lock.
685 */
686
687 /*
688 * No machine check event found. Must be some external
689 * source or one CPU is hung. Panic.
690 */
691 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
692 mce_panic("Machine check from unknown source", NULL, NULL);
693
694 /*
695 * Now clear all the mces_seen so that they don't reappear on
696 * the next mce.
697 */
698 for_each_possible_cpu(cpu)
699 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
700 }
701
702 static atomic_t global_nwo;
703
704 /*
705 * Start of Monarch synchronization. This waits until all CPUs have
706 * entered the exception handler and then determines if any of them
707 * saw a fatal event that requires panic. Then it executes them
708 * in the entry order.
709 * TBD double check parallel CPU hotunplug
710 */
711 static int mce_start(int *no_way_out)
712 {
713 int order;
714 int cpus = num_online_cpus();
715 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
716
717 if (!timeout)
718 return -1;
719
720 atomic_add(*no_way_out, &global_nwo);
721 /*
722 * global_nwo should be updated before mce_callin
723 */
724 smp_wmb();
725 order = atomic_inc_return(&mce_callin);
726
727 /*
728 * Wait for everyone.
729 */
730 while (atomic_read(&mce_callin) != cpus) {
731 if (mce_timed_out(&timeout)) {
732 atomic_set(&global_nwo, 0);
733 return -1;
734 }
735 ndelay(SPINUNIT);
736 }
737
738 /*
739 * mce_callin should be read before global_nwo
740 */
741 smp_rmb();
742
743 if (order == 1) {
744 /*
745 * Monarch: Starts executing now, the others wait.
746 */
747 atomic_set(&mce_executing, 1);
748 } else {
749 /*
750 * Subject: Now start the scanning loop one by one in
751 * the original callin order.
752 * This way when there are any shared banks it will be
753 * only seen by one CPU before cleared, avoiding duplicates.
754 */
755 while (atomic_read(&mce_executing) < order) {
756 if (mce_timed_out(&timeout)) {
757 atomic_set(&global_nwo, 0);
758 return -1;
759 }
760 ndelay(SPINUNIT);
761 }
762 }
763
764 /*
765 * Cache the global no_way_out state.
766 */
767 *no_way_out = atomic_read(&global_nwo);
768
769 return order;
770 }
771
772 /*
773 * Synchronize between CPUs after main scanning loop.
774 * This invokes the bulk of the Monarch processing.
775 */
776 static int mce_end(int order)
777 {
778 int ret = -1;
779 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
780
781 if (!timeout)
782 goto reset;
783 if (order < 0)
784 goto reset;
785
786 /*
787 * Allow others to run.
788 */
789 atomic_inc(&mce_executing);
790
791 if (order == 1) {
792 /* CHECKME: Can this race with a parallel hotplug? */
793 int cpus = num_online_cpus();
794
795 /*
796 * Monarch: Wait for everyone to go through their scanning
797 * loops.
798 */
799 while (atomic_read(&mce_executing) <= cpus) {
800 if (mce_timed_out(&timeout))
801 goto reset;
802 ndelay(SPINUNIT);
803 }
804
805 mce_reign();
806 barrier();
807 ret = 0;
808 } else {
809 /*
810 * Subject: Wait for Monarch to finish.
811 */
812 while (atomic_read(&mce_executing) != 0) {
813 if (mce_timed_out(&timeout))
814 goto reset;
815 ndelay(SPINUNIT);
816 }
817
818 /*
819 * Don't reset anything. That's done by the Monarch.
820 */
821 return 0;
822 }
823
824 /*
825 * Reset all global state.
826 */
827 reset:
828 atomic_set(&global_nwo, 0);
829 atomic_set(&mce_callin, 0);
830 barrier();
831
832 /*
833 * Let others run again.
834 */
835 atomic_set(&mce_executing, 0);
836 return ret;
837 }
838
839 /*
840 * Check if the address reported by the CPU is in a format we can parse.
841 * It would be possible to add code for most other cases, but all would
842 * be somewhat complicated (e.g. segment offset would require an instruction
843 * parser). So only support physical addresses up to page granuality for now.
844 */
845 static int mce_usable_address(struct mce *m)
846 {
847 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
848 return 0;
849 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
850 return 0;
851 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
852 return 0;
853 return 1;
854 }
855
856 static void mce_clear_state(unsigned long *toclear)
857 {
858 int i;
859
860 for (i = 0; i < banks; i++) {
861 if (test_bit(i, toclear))
862 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
863 }
864 }
865
866 /*
867 * The actual machine check handler. This only handles real
868 * exceptions when something got corrupted coming in through int 18.
869 *
870 * This is executed in NMI context not subject to normal locking rules. This
871 * implies that most kernel services cannot be safely used. Don't even
872 * think about putting a printk in there!
873 *
874 * On Intel systems this is entered on all CPUs in parallel through
875 * MCE broadcast. However some CPUs might be broken beyond repair,
876 * so be always careful when synchronizing with others.
877 */
878 void do_machine_check(struct pt_regs *regs, long error_code)
879 {
880 struct mce m, *final;
881 int i;
882 int worst = 0;
883 int severity;
884 /*
885 * Establish sequential order between the CPUs entering the machine
886 * check handler.
887 */
888 int order;
889 /*
890 * If no_way_out gets set, there is no safe way to recover from this
891 * MCE. If tolerant is cranked up, we'll try anyway.
892 */
893 int no_way_out = 0;
894 /*
895 * If kill_it gets set, there might be a way to recover from this
896 * error.
897 */
898 int kill_it = 0;
899 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
900 char *msg = "Unknown";
901
902 atomic_inc(&mce_entry);
903
904 percpu_inc(mce_exception_count);
905
906 if (notify_die(DIE_NMI, "machine check", regs, error_code,
907 18, SIGKILL) == NOTIFY_STOP)
908 goto out;
909 if (!banks)
910 goto out;
911
912 mce_gather_info(&m, regs);
913
914 final = &__get_cpu_var(mces_seen);
915 *final = m;
916
917 no_way_out = mce_no_way_out(&m, &msg);
918
919 barrier();
920
921 /*
922 * When no restart IP must always kill or panic.
923 */
924 if (!(m.mcgstatus & MCG_STATUS_RIPV))
925 kill_it = 1;
926
927 /*
928 * Go through all the banks in exclusion of the other CPUs.
929 * This way we don't report duplicated events on shared banks
930 * because the first one to see it will clear it.
931 */
932 order = mce_start(&no_way_out);
933 for (i = 0; i < banks; i++) {
934 __clear_bit(i, toclear);
935 if (!mce_banks[i].ctl)
936 continue;
937
938 m.misc = 0;
939 m.addr = 0;
940 m.bank = i;
941
942 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
943 if ((m.status & MCI_STATUS_VAL) == 0)
944 continue;
945
946 /*
947 * Non uncorrected or non signaled errors are handled by
948 * machine_check_poll. Leave them alone, unless this panics.
949 */
950 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
951 !no_way_out)
952 continue;
953
954 /*
955 * Set taint even when machine check was not enabled.
956 */
957 add_taint(TAINT_MACHINE_CHECK);
958
959 severity = mce_severity(&m, tolerant, NULL);
960
961 /*
962 * When machine check was for corrected handler don't touch,
963 * unless we're panicing.
964 */
965 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
966 continue;
967 __set_bit(i, toclear);
968 if (severity == MCE_NO_SEVERITY) {
969 /*
970 * Machine check event was not enabled. Clear, but
971 * ignore.
972 */
973 continue;
974 }
975
976 /*
977 * Kill on action required.
978 */
979 if (severity == MCE_AR_SEVERITY)
980 kill_it = 1;
981
982 if (m.status & MCI_STATUS_MISCV)
983 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
984 if (m.status & MCI_STATUS_ADDRV)
985 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
986
987 /*
988 * Action optional error. Queue address for later processing.
989 * When the ring overflows we just ignore the AO error.
990 * RED-PEN add some logging mechanism when
991 * usable_address or mce_add_ring fails.
992 * RED-PEN don't ignore overflow for tolerant == 0
993 */
994 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
995 mce_ring_add(m.addr >> PAGE_SHIFT);
996
997 mce_log(&m);
998
999 if (severity > worst) {
1000 *final = m;
1001 worst = severity;
1002 }
1003 }
1004
1005 if (!no_way_out)
1006 mce_clear_state(toclear);
1007
1008 /*
1009 * Do most of the synchronization with other CPUs.
1010 * When there's any problem use only local no_way_out state.
1011 */
1012 if (mce_end(order) < 0)
1013 no_way_out = worst >= MCE_PANIC_SEVERITY;
1014
1015 /*
1016 * If we have decided that we just CAN'T continue, and the user
1017 * has not set tolerant to an insane level, give up and die.
1018 *
1019 * This is mainly used in the case when the system doesn't
1020 * support MCE broadcasting or it has been disabled.
1021 */
1022 if (no_way_out && tolerant < 3)
1023 mce_panic("Fatal machine check on current CPU", final, msg);
1024
1025 /*
1026 * If the error seems to be unrecoverable, something should be
1027 * done. Try to kill as little as possible. If we can kill just
1028 * one task, do that. If the user has set the tolerance very
1029 * high, don't try to do anything at all.
1030 */
1031
1032 if (kill_it && tolerant < 3)
1033 force_sig(SIGBUS, current);
1034
1035 /* notify userspace ASAP */
1036 set_thread_flag(TIF_MCE_NOTIFY);
1037
1038 if (worst > 0)
1039 mce_report_event(regs);
1040 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1041 out:
1042 atomic_dec(&mce_entry);
1043 sync_core();
1044 }
1045 EXPORT_SYMBOL_GPL(do_machine_check);
1046
1047 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1048 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1049 {
1050 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1051 }
1052
1053 /*
1054 * Called after mce notification in process context. This code
1055 * is allowed to sleep. Call the high level VM handler to process
1056 * any corrupted pages.
1057 * Assume that the work queue code only calls this one at a time
1058 * per CPU.
1059 * Note we don't disable preemption, so this code might run on the wrong
1060 * CPU. In this case the event is picked up by the scheduled work queue.
1061 * This is merely a fast path to expedite processing in some common
1062 * cases.
1063 */
1064 void mce_notify_process(void)
1065 {
1066 unsigned long pfn;
1067 mce_notify_irq();
1068 while (mce_ring_get(&pfn))
1069 memory_failure(pfn, MCE_VECTOR);
1070 }
1071
1072 static void mce_process_work(struct work_struct *dummy)
1073 {
1074 mce_notify_process();
1075 }
1076
1077 #ifdef CONFIG_X86_MCE_INTEL
1078 /***
1079 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1080 * @cpu: The CPU on which the event occurred.
1081 * @status: Event status information
1082 *
1083 * This function should be called by the thermal interrupt after the
1084 * event has been processed and the decision was made to log the event
1085 * further.
1086 *
1087 * The status parameter will be saved to the 'status' field of 'struct mce'
1088 * and historically has been the register value of the
1089 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1090 */
1091 void mce_log_therm_throt_event(__u64 status)
1092 {
1093 struct mce m;
1094
1095 mce_setup(&m);
1096 m.bank = MCE_THERMAL_BANK;
1097 m.status = status;
1098 mce_log(&m);
1099 }
1100 #endif /* CONFIG_X86_MCE_INTEL */
1101
1102 /*
1103 * Periodic polling timer for "silent" machine check errors. If the
1104 * poller finds an MCE, poll 2x faster. When the poller finds no more
1105 * errors, poll 2x slower (up to check_interval seconds).
1106 */
1107 static int check_interval = 5 * 60; /* 5 minutes */
1108
1109 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1110 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1111
1112 static void mce_start_timer(unsigned long data)
1113 {
1114 struct timer_list *t = &per_cpu(mce_timer, data);
1115 int *n;
1116
1117 WARN_ON(smp_processor_id() != data);
1118
1119 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1120 machine_check_poll(MCP_TIMESTAMP,
1121 &__get_cpu_var(mce_poll_banks));
1122 }
1123
1124 /*
1125 * Alert userspace if needed. If we logged an MCE, reduce the
1126 * polling interval, otherwise increase the polling interval.
1127 */
1128 n = &__get_cpu_var(mce_next_interval);
1129 if (mce_notify_irq())
1130 *n = max(*n/2, HZ/100);
1131 else
1132 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1133
1134 t->expires = jiffies + *n;
1135 add_timer_on(t, smp_processor_id());
1136 }
1137
1138 static void mce_do_trigger(struct work_struct *work)
1139 {
1140 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1141 }
1142
1143 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1144
1145 /*
1146 * Notify the user(s) about new machine check events.
1147 * Can be called from interrupt context, but not from machine check/NMI
1148 * context.
1149 */
1150 int mce_notify_irq(void)
1151 {
1152 /* Not more than two messages every minute */
1153 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1154
1155 clear_thread_flag(TIF_MCE_NOTIFY);
1156
1157 if (test_and_clear_bit(0, &mce_need_notify)) {
1158 /* wake processes polling /dev/mcelog */
1159 wake_up_interruptible(&mce_chrdev_wait);
1160
1161 /*
1162 * There is no risk of missing notifications because
1163 * work_pending is always cleared before the function is
1164 * executed.
1165 */
1166 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1167 schedule_work(&mce_trigger_work);
1168
1169 if (__ratelimit(&ratelimit))
1170 pr_info(HW_ERR "Machine check events logged\n");
1171
1172 return 1;
1173 }
1174 return 0;
1175 }
1176 EXPORT_SYMBOL_GPL(mce_notify_irq);
1177
1178 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1179 {
1180 int i;
1181
1182 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1183 if (!mce_banks)
1184 return -ENOMEM;
1185 for (i = 0; i < banks; i++) {
1186 struct mce_bank *b = &mce_banks[i];
1187
1188 b->ctl = -1ULL;
1189 b->init = 1;
1190 }
1191 return 0;
1192 }
1193
1194 /*
1195 * Initialize Machine Checks for a CPU.
1196 */
1197 static int __cpuinit __mcheck_cpu_cap_init(void)
1198 {
1199 unsigned b;
1200 u64 cap;
1201
1202 rdmsrl(MSR_IA32_MCG_CAP, cap);
1203
1204 b = cap & MCG_BANKCNT_MASK;
1205 if (!banks)
1206 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1207
1208 if (b > MAX_NR_BANKS) {
1209 printk(KERN_WARNING
1210 "MCE: Using only %u machine check banks out of %u\n",
1211 MAX_NR_BANKS, b);
1212 b = MAX_NR_BANKS;
1213 }
1214
1215 /* Don't support asymmetric configurations today */
1216 WARN_ON(banks != 0 && b != banks);
1217 banks = b;
1218 if (!mce_banks) {
1219 int err = __mcheck_cpu_mce_banks_init();
1220
1221 if (err)
1222 return err;
1223 }
1224
1225 /* Use accurate RIP reporting if available. */
1226 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1227 rip_msr = MSR_IA32_MCG_EIP;
1228
1229 if (cap & MCG_SER_P)
1230 mce_ser = 1;
1231
1232 return 0;
1233 }
1234
1235 static void __mcheck_cpu_init_generic(void)
1236 {
1237 mce_banks_t all_banks;
1238 u64 cap;
1239 int i;
1240
1241 /*
1242 * Log the machine checks left over from the previous reset.
1243 */
1244 bitmap_fill(all_banks, MAX_NR_BANKS);
1245 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1246
1247 set_in_cr4(X86_CR4_MCE);
1248
1249 rdmsrl(MSR_IA32_MCG_CAP, cap);
1250 if (cap & MCG_CTL_P)
1251 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1252
1253 for (i = 0; i < banks; i++) {
1254 struct mce_bank *b = &mce_banks[i];
1255
1256 if (!b->init)
1257 continue;
1258 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1259 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1260 }
1261 }
1262
1263 /* Add per CPU specific workarounds here */
1264 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1265 {
1266 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1267 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1268 return -EOPNOTSUPP;
1269 }
1270
1271 /* This should be disabled by the BIOS, but isn't always */
1272 if (c->x86_vendor == X86_VENDOR_AMD) {
1273 if (c->x86 == 15 && banks > 4) {
1274 /*
1275 * disable GART TBL walk error reporting, which
1276 * trips off incorrectly with the IOMMU & 3ware
1277 * & Cerberus:
1278 */
1279 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1280 }
1281 if (c->x86 <= 17 && mce_bootlog < 0) {
1282 /*
1283 * Lots of broken BIOS around that don't clear them
1284 * by default and leave crap in there. Don't log:
1285 */
1286 mce_bootlog = 0;
1287 }
1288 /*
1289 * Various K7s with broken bank 0 around. Always disable
1290 * by default.
1291 */
1292 if (c->x86 == 6 && banks > 0)
1293 mce_banks[0].ctl = 0;
1294 }
1295
1296 if (c->x86_vendor == X86_VENDOR_INTEL) {
1297 /*
1298 * SDM documents that on family 6 bank 0 should not be written
1299 * because it aliases to another special BIOS controlled
1300 * register.
1301 * But it's not aliased anymore on model 0x1a+
1302 * Don't ignore bank 0 completely because there could be a
1303 * valid event later, merely don't write CTL0.
1304 */
1305
1306 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1307 mce_banks[0].init = 0;
1308
1309 /*
1310 * All newer Intel systems support MCE broadcasting. Enable
1311 * synchronization with a one second timeout.
1312 */
1313 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1314 monarch_timeout < 0)
1315 monarch_timeout = USEC_PER_SEC;
1316
1317 /*
1318 * There are also broken BIOSes on some Pentium M and
1319 * earlier systems:
1320 */
1321 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1322 mce_bootlog = 0;
1323 }
1324 if (monarch_timeout < 0)
1325 monarch_timeout = 0;
1326 if (mce_bootlog != 0)
1327 mce_panic_timeout = 30;
1328
1329 return 0;
1330 }
1331
1332 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1333 {
1334 if (c->x86 != 5)
1335 return 0;
1336
1337 switch (c->x86_vendor) {
1338 case X86_VENDOR_INTEL:
1339 intel_p5_mcheck_init(c);
1340 return 1;
1341 break;
1342 case X86_VENDOR_CENTAUR:
1343 winchip_mcheck_init(c);
1344 return 1;
1345 break;
1346 }
1347
1348 return 0;
1349 }
1350
1351 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1352 {
1353 switch (c->x86_vendor) {
1354 case X86_VENDOR_INTEL:
1355 mce_intel_feature_init(c);
1356 break;
1357 case X86_VENDOR_AMD:
1358 mce_amd_feature_init(c);
1359 break;
1360 default:
1361 break;
1362 }
1363 }
1364
1365 static void __mcheck_cpu_init_timer(void)
1366 {
1367 struct timer_list *t = &__get_cpu_var(mce_timer);
1368 int *n = &__get_cpu_var(mce_next_interval);
1369
1370 setup_timer(t, mce_start_timer, smp_processor_id());
1371
1372 if (mce_ignore_ce)
1373 return;
1374
1375 *n = check_interval * HZ;
1376 if (!*n)
1377 return;
1378 t->expires = round_jiffies(jiffies + *n);
1379 add_timer_on(t, smp_processor_id());
1380 }
1381
1382 /* Handle unconfigured int18 (should never happen) */
1383 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1384 {
1385 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1386 smp_processor_id());
1387 }
1388
1389 /* Call the installed machine check handler for this CPU setup. */
1390 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1391 unexpected_machine_check;
1392
1393 /*
1394 * Called for each booted CPU to set up machine checks.
1395 * Must be called with preempt off:
1396 */
1397 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1398 {
1399 if (mce_disabled)
1400 return;
1401
1402 if (__mcheck_cpu_ancient_init(c))
1403 return;
1404
1405 if (!mce_available(c))
1406 return;
1407
1408 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1409 mce_disabled = 1;
1410 return;
1411 }
1412
1413 machine_check_vector = do_machine_check;
1414
1415 __mcheck_cpu_init_generic();
1416 __mcheck_cpu_init_vendor(c);
1417 __mcheck_cpu_init_timer();
1418 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1419 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1420 }
1421
1422 /*
1423 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1424 */
1425
1426 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1427 static int mce_chrdev_open_count; /* #times opened */
1428 static int mce_chrdev_open_exclu; /* already open exclusive? */
1429
1430 static int mce_chrdev_open(struct inode *inode, struct file *file)
1431 {
1432 spin_lock(&mce_chrdev_state_lock);
1433
1434 if (mce_chrdev_open_exclu ||
1435 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1436 spin_unlock(&mce_chrdev_state_lock);
1437
1438 return -EBUSY;
1439 }
1440
1441 if (file->f_flags & O_EXCL)
1442 mce_chrdev_open_exclu = 1;
1443 mce_chrdev_open_count++;
1444
1445 spin_unlock(&mce_chrdev_state_lock);
1446
1447 return nonseekable_open(inode, file);
1448 }
1449
1450 static int mce_chrdev_release(struct inode *inode, struct file *file)
1451 {
1452 spin_lock(&mce_chrdev_state_lock);
1453
1454 mce_chrdev_open_count--;
1455 mce_chrdev_open_exclu = 0;
1456
1457 spin_unlock(&mce_chrdev_state_lock);
1458
1459 return 0;
1460 }
1461
1462 static void collect_tscs(void *data)
1463 {
1464 unsigned long *cpu_tsc = (unsigned long *)data;
1465
1466 rdtscll(cpu_tsc[smp_processor_id()]);
1467 }
1468
1469 static int mce_apei_read_done;
1470
1471 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1472 static int __mce_read_apei(char __user **ubuf, size_t usize)
1473 {
1474 int rc;
1475 u64 record_id;
1476 struct mce m;
1477
1478 if (usize < sizeof(struct mce))
1479 return -EINVAL;
1480
1481 rc = apei_read_mce(&m, &record_id);
1482 /* Error or no more MCE record */
1483 if (rc <= 0) {
1484 mce_apei_read_done = 1;
1485 return rc;
1486 }
1487 rc = -EFAULT;
1488 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1489 return rc;
1490 /*
1491 * In fact, we should have cleared the record after that has
1492 * been flushed to the disk or sent to network in
1493 * /sbin/mcelog, but we have no interface to support that now,
1494 * so just clear it to avoid duplication.
1495 */
1496 rc = apei_clear_mce(record_id);
1497 if (rc) {
1498 mce_apei_read_done = 1;
1499 return rc;
1500 }
1501 *ubuf += sizeof(struct mce);
1502
1503 return 0;
1504 }
1505
1506 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1507 size_t usize, loff_t *off)
1508 {
1509 char __user *buf = ubuf;
1510 unsigned long *cpu_tsc;
1511 unsigned prev, next;
1512 int i, err;
1513
1514 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1515 if (!cpu_tsc)
1516 return -ENOMEM;
1517
1518 mutex_lock(&mce_chrdev_read_mutex);
1519
1520 if (!mce_apei_read_done) {
1521 err = __mce_read_apei(&buf, usize);
1522 if (err || buf != ubuf)
1523 goto out;
1524 }
1525
1526 next = rcu_dereference_check_mce(mcelog.next);
1527
1528 /* Only supports full reads right now */
1529 err = -EINVAL;
1530 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1531 goto out;
1532
1533 err = 0;
1534 prev = 0;
1535 do {
1536 for (i = prev; i < next; i++) {
1537 unsigned long start = jiffies;
1538 struct mce *m = &mcelog.entry[i];
1539
1540 while (!m->finished) {
1541 if (time_after_eq(jiffies, start + 2)) {
1542 memset(m, 0, sizeof(*m));
1543 goto timeout;
1544 }
1545 cpu_relax();
1546 }
1547 smp_rmb();
1548 err |= copy_to_user(buf, m, sizeof(*m));
1549 buf += sizeof(*m);
1550 timeout:
1551 ;
1552 }
1553
1554 memset(mcelog.entry + prev, 0,
1555 (next - prev) * sizeof(struct mce));
1556 prev = next;
1557 next = cmpxchg(&mcelog.next, prev, 0);
1558 } while (next != prev);
1559
1560 synchronize_sched();
1561
1562 /*
1563 * Collect entries that were still getting written before the
1564 * synchronize.
1565 */
1566 on_each_cpu(collect_tscs, cpu_tsc, 1);
1567
1568 for (i = next; i < MCE_LOG_LEN; i++) {
1569 struct mce *m = &mcelog.entry[i];
1570
1571 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1572 err |= copy_to_user(buf, m, sizeof(*m));
1573 smp_rmb();
1574 buf += sizeof(*m);
1575 memset(m, 0, sizeof(*m));
1576 }
1577 }
1578
1579 if (err)
1580 err = -EFAULT;
1581
1582 out:
1583 mutex_unlock(&mce_chrdev_read_mutex);
1584 kfree(cpu_tsc);
1585
1586 return err ? err : buf - ubuf;
1587 }
1588
1589 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1590 {
1591 poll_wait(file, &mce_chrdev_wait, wait);
1592 if (rcu_access_index(mcelog.next))
1593 return POLLIN | POLLRDNORM;
1594 if (!mce_apei_read_done && apei_check_mce())
1595 return POLLIN | POLLRDNORM;
1596 return 0;
1597 }
1598
1599 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1600 unsigned long arg)
1601 {
1602 int __user *p = (int __user *)arg;
1603
1604 if (!capable(CAP_SYS_ADMIN))
1605 return -EPERM;
1606
1607 switch (cmd) {
1608 case MCE_GET_RECORD_LEN:
1609 return put_user(sizeof(struct mce), p);
1610 case MCE_GET_LOG_LEN:
1611 return put_user(MCE_LOG_LEN, p);
1612 case MCE_GETCLEAR_FLAGS: {
1613 unsigned flags;
1614
1615 do {
1616 flags = mcelog.flags;
1617 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1618
1619 return put_user(flags, p);
1620 }
1621 default:
1622 return -ENOTTY;
1623 }
1624 }
1625
1626 /* Modified in mce-inject.c, so not static or const */
1627 struct file_operations mce_chrdev_ops = {
1628 .open = mce_chrdev_open,
1629 .release = mce_chrdev_release,
1630 .read = mce_chrdev_read,
1631 .poll = mce_chrdev_poll,
1632 .unlocked_ioctl = mce_chrdev_ioctl,
1633 .llseek = no_llseek,
1634 };
1635 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1636
1637 static struct miscdevice mce_chrdev_device = {
1638 MISC_MCELOG_MINOR,
1639 "mcelog",
1640 &mce_chrdev_ops,
1641 };
1642
1643 /*
1644 * mce=off Disables machine check
1645 * mce=no_cmci Disables CMCI
1646 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1647 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1648 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1649 * monarchtimeout is how long to wait for other CPUs on machine
1650 * check, or 0 to not wait
1651 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1652 * mce=nobootlog Don't log MCEs from before booting.
1653 */
1654 static int __init mcheck_enable(char *str)
1655 {
1656 if (*str == 0) {
1657 enable_p5_mce();
1658 return 1;
1659 }
1660 if (*str == '=')
1661 str++;
1662 if (!strcmp(str, "off"))
1663 mce_disabled = 1;
1664 else if (!strcmp(str, "no_cmci"))
1665 mce_cmci_disabled = 1;
1666 else if (!strcmp(str, "dont_log_ce"))
1667 mce_dont_log_ce = 1;
1668 else if (!strcmp(str, "ignore_ce"))
1669 mce_ignore_ce = 1;
1670 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1671 mce_bootlog = (str[0] == 'b');
1672 else if (isdigit(str[0])) {
1673 get_option(&str, &tolerant);
1674 if (*str == ',') {
1675 ++str;
1676 get_option(&str, &monarch_timeout);
1677 }
1678 } else {
1679 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1680 str);
1681 return 0;
1682 }
1683 return 1;
1684 }
1685 __setup("mce", mcheck_enable);
1686
1687 int __init mcheck_init(void)
1688 {
1689 mcheck_intel_therm_init();
1690
1691 return 0;
1692 }
1693
1694 /*
1695 * mce_syscore: PM support
1696 */
1697
1698 /*
1699 * Disable machine checks on suspend and shutdown. We can't really handle
1700 * them later.
1701 */
1702 static int mce_disable_error_reporting(void)
1703 {
1704 int i;
1705
1706 for (i = 0; i < banks; i++) {
1707 struct mce_bank *b = &mce_banks[i];
1708
1709 if (b->init)
1710 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1711 }
1712 return 0;
1713 }
1714
1715 static int mce_syscore_suspend(void)
1716 {
1717 return mce_disable_error_reporting();
1718 }
1719
1720 static void mce_syscore_shutdown(void)
1721 {
1722 mce_disable_error_reporting();
1723 }
1724
1725 /*
1726 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1727 * Only one CPU is active at this time, the others get re-added later using
1728 * CPU hotplug:
1729 */
1730 static void mce_syscore_resume(void)
1731 {
1732 __mcheck_cpu_init_generic();
1733 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1734 }
1735
1736 static struct syscore_ops mce_syscore_ops = {
1737 .suspend = mce_syscore_suspend,
1738 .shutdown = mce_syscore_shutdown,
1739 .resume = mce_syscore_resume,
1740 };
1741
1742 /*
1743 * mce_sysdev: Sysfs support
1744 */
1745
1746 static void mce_cpu_restart(void *data)
1747 {
1748 del_timer_sync(&__get_cpu_var(mce_timer));
1749 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1750 return;
1751 __mcheck_cpu_init_generic();
1752 __mcheck_cpu_init_timer();
1753 }
1754
1755 /* Reinit MCEs after user configuration changes */
1756 static void mce_restart(void)
1757 {
1758 on_each_cpu(mce_cpu_restart, NULL, 1);
1759 }
1760
1761 /* Toggle features for corrected errors */
1762 static void mce_disable_ce(void *all)
1763 {
1764 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1765 return;
1766 if (all)
1767 del_timer_sync(&__get_cpu_var(mce_timer));
1768 cmci_clear();
1769 }
1770
1771 static void mce_enable_ce(void *all)
1772 {
1773 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1774 return;
1775 cmci_reenable();
1776 cmci_recheck();
1777 if (all)
1778 __mcheck_cpu_init_timer();
1779 }
1780
1781 static struct sysdev_class mce_sysdev_class = {
1782 .name = "machinecheck",
1783 };
1784
1785 DEFINE_PER_CPU(struct sys_device, mce_sysdev);
1786
1787 __cpuinitdata
1788 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1789
1790 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1791 {
1792 return container_of(attr, struct mce_bank, attr);
1793 }
1794
1795 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1796 char *buf)
1797 {
1798 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1799 }
1800
1801 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1802 const char *buf, size_t size)
1803 {
1804 u64 new;
1805
1806 if (strict_strtoull(buf, 0, &new) < 0)
1807 return -EINVAL;
1808
1809 attr_to_bank(attr)->ctl = new;
1810 mce_restart();
1811
1812 return size;
1813 }
1814
1815 static ssize_t
1816 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1817 {
1818 strcpy(buf, mce_helper);
1819 strcat(buf, "\n");
1820 return strlen(mce_helper) + 1;
1821 }
1822
1823 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1824 const char *buf, size_t siz)
1825 {
1826 char *p;
1827
1828 strncpy(mce_helper, buf, sizeof(mce_helper));
1829 mce_helper[sizeof(mce_helper)-1] = 0;
1830 p = strchr(mce_helper, '\n');
1831
1832 if (p)
1833 *p = 0;
1834
1835 return strlen(mce_helper) + !!p;
1836 }
1837
1838 static ssize_t set_ignore_ce(struct sys_device *s,
1839 struct sysdev_attribute *attr,
1840 const char *buf, size_t size)
1841 {
1842 u64 new;
1843
1844 if (strict_strtoull(buf, 0, &new) < 0)
1845 return -EINVAL;
1846
1847 if (mce_ignore_ce ^ !!new) {
1848 if (new) {
1849 /* disable ce features */
1850 on_each_cpu(mce_disable_ce, (void *)1, 1);
1851 mce_ignore_ce = 1;
1852 } else {
1853 /* enable ce features */
1854 mce_ignore_ce = 0;
1855 on_each_cpu(mce_enable_ce, (void *)1, 1);
1856 }
1857 }
1858 return size;
1859 }
1860
1861 static ssize_t set_cmci_disabled(struct sys_device *s,
1862 struct sysdev_attribute *attr,
1863 const char *buf, size_t size)
1864 {
1865 u64 new;
1866
1867 if (strict_strtoull(buf, 0, &new) < 0)
1868 return -EINVAL;
1869
1870 if (mce_cmci_disabled ^ !!new) {
1871 if (new) {
1872 /* disable cmci */
1873 on_each_cpu(mce_disable_ce, NULL, 1);
1874 mce_cmci_disabled = 1;
1875 } else {
1876 /* enable cmci */
1877 mce_cmci_disabled = 0;
1878 on_each_cpu(mce_enable_ce, NULL, 1);
1879 }
1880 }
1881 return size;
1882 }
1883
1884 static ssize_t store_int_with_restart(struct sys_device *s,
1885 struct sysdev_attribute *attr,
1886 const char *buf, size_t size)
1887 {
1888 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1889 mce_restart();
1890 return ret;
1891 }
1892
1893 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1894 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1895 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1896 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1897
1898 static struct sysdev_ext_attribute attr_check_interval = {
1899 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1900 store_int_with_restart),
1901 &check_interval
1902 };
1903
1904 static struct sysdev_ext_attribute attr_ignore_ce = {
1905 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1906 &mce_ignore_ce
1907 };
1908
1909 static struct sysdev_ext_attribute attr_cmci_disabled = {
1910 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1911 &mce_cmci_disabled
1912 };
1913
1914 static struct sysdev_attribute *mce_sysdev_attrs[] = {
1915 &attr_tolerant.attr,
1916 &attr_check_interval.attr,
1917 &attr_trigger,
1918 &attr_monarch_timeout.attr,
1919 &attr_dont_log_ce.attr,
1920 &attr_ignore_ce.attr,
1921 &attr_cmci_disabled.attr,
1922 NULL
1923 };
1924
1925 static cpumask_var_t mce_sysdev_initialized;
1926
1927 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1928 static __cpuinit int mce_sysdev_create(unsigned int cpu)
1929 {
1930 struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1931 int err;
1932 int i, j;
1933
1934 if (!mce_available(&boot_cpu_data))
1935 return -EIO;
1936
1937 memset(&sysdev->kobj, 0, sizeof(struct kobject));
1938 sysdev->id = cpu;
1939 sysdev->cls = &mce_sysdev_class;
1940
1941 err = sysdev_register(sysdev);
1942 if (err)
1943 return err;
1944
1945 for (i = 0; mce_sysdev_attrs[i]; i++) {
1946 err = sysdev_create_file(sysdev, mce_sysdev_attrs[i]);
1947 if (err)
1948 goto error;
1949 }
1950 for (j = 0; j < banks; j++) {
1951 err = sysdev_create_file(sysdev, &mce_banks[j].attr);
1952 if (err)
1953 goto error2;
1954 }
1955 cpumask_set_cpu(cpu, mce_sysdev_initialized);
1956
1957 return 0;
1958 error2:
1959 while (--j >= 0)
1960 sysdev_remove_file(sysdev, &mce_banks[j].attr);
1961 error:
1962 while (--i >= 0)
1963 sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1964
1965 sysdev_unregister(sysdev);
1966
1967 return err;
1968 }
1969
1970 static __cpuinit void mce_sysdev_remove(unsigned int cpu)
1971 {
1972 struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1973 int i;
1974
1975 if (!cpumask_test_cpu(cpu, mce_sysdev_initialized))
1976 return;
1977
1978 for (i = 0; mce_sysdev_attrs[i]; i++)
1979 sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1980
1981 for (i = 0; i < banks; i++)
1982 sysdev_remove_file(sysdev, &mce_banks[i].attr);
1983
1984 sysdev_unregister(sysdev);
1985 cpumask_clear_cpu(cpu, mce_sysdev_initialized);
1986 }
1987
1988 /* Make sure there are no machine checks on offlined CPUs. */
1989 static void __cpuinit mce_disable_cpu(void *h)
1990 {
1991 unsigned long action = *(unsigned long *)h;
1992 int i;
1993
1994 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1995 return;
1996
1997 if (!(action & CPU_TASKS_FROZEN))
1998 cmci_clear();
1999 for (i = 0; i < banks; i++) {
2000 struct mce_bank *b = &mce_banks[i];
2001
2002 if (b->init)
2003 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2004 }
2005 }
2006
2007 static void __cpuinit mce_reenable_cpu(void *h)
2008 {
2009 unsigned long action = *(unsigned long *)h;
2010 int i;
2011
2012 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2013 return;
2014
2015 if (!(action & CPU_TASKS_FROZEN))
2016 cmci_reenable();
2017 for (i = 0; i < banks; i++) {
2018 struct mce_bank *b = &mce_banks[i];
2019
2020 if (b->init)
2021 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2022 }
2023 }
2024
2025 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2026 static int __cpuinit
2027 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2028 {
2029 unsigned int cpu = (unsigned long)hcpu;
2030 struct timer_list *t = &per_cpu(mce_timer, cpu);
2031
2032 switch (action) {
2033 case CPU_ONLINE:
2034 case CPU_ONLINE_FROZEN:
2035 mce_sysdev_create(cpu);
2036 if (threshold_cpu_callback)
2037 threshold_cpu_callback(action, cpu);
2038 break;
2039 case CPU_DEAD:
2040 case CPU_DEAD_FROZEN:
2041 if (threshold_cpu_callback)
2042 threshold_cpu_callback(action, cpu);
2043 mce_sysdev_remove(cpu);
2044 break;
2045 case CPU_DOWN_PREPARE:
2046 case CPU_DOWN_PREPARE_FROZEN:
2047 del_timer_sync(t);
2048 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2049 break;
2050 case CPU_DOWN_FAILED:
2051 case CPU_DOWN_FAILED_FROZEN:
2052 if (!mce_ignore_ce && check_interval) {
2053 t->expires = round_jiffies(jiffies +
2054 __get_cpu_var(mce_next_interval));
2055 add_timer_on(t, cpu);
2056 }
2057 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2058 break;
2059 case CPU_POST_DEAD:
2060 /* intentionally ignoring frozen here */
2061 cmci_rediscover(cpu);
2062 break;
2063 }
2064 return NOTIFY_OK;
2065 }
2066
2067 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2068 .notifier_call = mce_cpu_callback,
2069 };
2070
2071 static __init void mce_init_banks(void)
2072 {
2073 int i;
2074
2075 for (i = 0; i < banks; i++) {
2076 struct mce_bank *b = &mce_banks[i];
2077 struct sysdev_attribute *a = &b->attr;
2078
2079 sysfs_attr_init(&a->attr);
2080 a->attr.name = b->attrname;
2081 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2082
2083 a->attr.mode = 0644;
2084 a->show = show_bank;
2085 a->store = set_bank;
2086 }
2087 }
2088
2089 static __init int mcheck_init_device(void)
2090 {
2091 int err;
2092 int i = 0;
2093
2094 if (!mce_available(&boot_cpu_data))
2095 return -EIO;
2096
2097 zalloc_cpumask_var(&mce_sysdev_initialized, GFP_KERNEL);
2098
2099 mce_init_banks();
2100
2101 err = sysdev_class_register(&mce_sysdev_class);
2102 if (err)
2103 return err;
2104
2105 for_each_online_cpu(i) {
2106 err = mce_sysdev_create(i);
2107 if (err)
2108 return err;
2109 }
2110
2111 register_syscore_ops(&mce_syscore_ops);
2112 register_hotcpu_notifier(&mce_cpu_notifier);
2113
2114 /* register character device /dev/mcelog */
2115 misc_register(&mce_chrdev_device);
2116
2117 return err;
2118 }
2119 device_initcall(mcheck_init_device);
2120
2121 /*
2122 * Old style boot options parsing. Only for compatibility.
2123 */
2124 static int __init mcheck_disable(char *str)
2125 {
2126 mce_disabled = 1;
2127 return 1;
2128 }
2129 __setup("nomce", mcheck_disable);
2130
2131 #ifdef CONFIG_DEBUG_FS
2132 struct dentry *mce_get_debugfs_dir(void)
2133 {
2134 static struct dentry *dmce;
2135
2136 if (!dmce)
2137 dmce = debugfs_create_dir("mce", NULL);
2138
2139 return dmce;
2140 }
2141
2142 static void mce_reset(void)
2143 {
2144 cpu_missing = 0;
2145 atomic_set(&mce_fake_paniced, 0);
2146 atomic_set(&mce_executing, 0);
2147 atomic_set(&mce_callin, 0);
2148 atomic_set(&global_nwo, 0);
2149 }
2150
2151 static int fake_panic_get(void *data, u64 *val)
2152 {
2153 *val = fake_panic;
2154 return 0;
2155 }
2156
2157 static int fake_panic_set(void *data, u64 val)
2158 {
2159 mce_reset();
2160 fake_panic = val;
2161 return 0;
2162 }
2163
2164 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2165 fake_panic_set, "%llu\n");
2166
2167 static int __init mcheck_debugfs_init(void)
2168 {
2169 struct dentry *dmce, *ffake_panic;
2170
2171 dmce = mce_get_debugfs_dir();
2172 if (!dmce)
2173 return -ENOMEM;
2174 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2175 &fake_panic_fops);
2176 if (!ffake_panic)
2177 return -ENOMEM;
2178
2179 return 0;
2180 }
2181 late_initcall(mcheck_debugfs_init);
2182 #endif
This page took 0.095965 seconds and 4 git commands to generate.