HWPOISON: Clean up memory_failure() vs. __memory_failure()
[deliverable/linux.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/sysdev.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40 #include <linux/export.h>
41
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50 #define rcu_dereference_check_mce(p) \
51 rcu_dereference_index_check((p), \
52 rcu_read_lock_sched_held() || \
53 lockdep_is_held(&mce_chrdev_read_mutex))
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57
58 int mce_disabled __read_mostly;
59
60 #define MISC_MCELOG_MINOR 227
61
62 #define SPINUNIT 100 /* 100ns */
63
64 atomic_t mce_entry;
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 /*
69 * Tolerant levels:
70 * 0: always panic on uncorrected errors, log corrected errors
71 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
72 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 * 3: never panic or SIGBUS, log all errors (for testing only)
74 */
75 static int tolerant __read_mostly = 1;
76 static int banks __read_mostly;
77 static int rip_msr __read_mostly;
78 static int mce_bootlog __read_mostly = -1;
79 static int monarch_timeout __read_mostly = -1;
80 static int mce_panic_timeout __read_mostly;
81 static int mce_dont_log_ce __read_mostly;
82 int mce_cmci_disabled __read_mostly;
83 int mce_ignore_ce __read_mostly;
84 int mce_ser __read_mostly;
85
86 struct mce_bank *mce_banks __read_mostly;
87
88 /* User mode helper program triggered by machine check event */
89 static unsigned long mce_need_notify;
90 static char mce_helper[128];
91 static char *mce_helper_argv[2] = { mce_helper, NULL };
92
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int cpu_missing;
97
98 /*
99 * CPU/chipset specific EDAC code can register a notifier call here to print
100 * MCE errors in a human-readable form.
101 */
102 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
103 EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
104
105 /* MCA banks polled by the period polling timer for corrected events */
106 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
107 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
108 };
109
110 static DEFINE_PER_CPU(struct work_struct, mce_work);
111
112 /* Do initial initialization of a struct mce */
113 void mce_setup(struct mce *m)
114 {
115 memset(m, 0, sizeof(struct mce));
116 m->cpu = m->extcpu = smp_processor_id();
117 rdtscll(m->tsc);
118 /* We hope get_seconds stays lockless */
119 m->time = get_seconds();
120 m->cpuvendor = boot_cpu_data.x86_vendor;
121 m->cpuid = cpuid_eax(1);
122 #ifdef CONFIG_SMP
123 m->socketid = cpu_data(m->extcpu).phys_proc_id;
124 #endif
125 m->apicid = cpu_data(m->extcpu).initial_apicid;
126 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127 }
128
129 DEFINE_PER_CPU(struct mce, injectm);
130 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
131
132 /*
133 * Lockless MCE logging infrastructure.
134 * This avoids deadlocks on printk locks without having to break locks. Also
135 * separate MCEs from kernel messages to avoid bogus bug reports.
136 */
137
138 static struct mce_log mcelog = {
139 .signature = MCE_LOG_SIGNATURE,
140 .len = MCE_LOG_LEN,
141 .recordlen = sizeof(struct mce),
142 };
143
144 void mce_log(struct mce *mce)
145 {
146 unsigned next, entry;
147 int ret = 0;
148
149 /* Emit the trace record: */
150 trace_mce_record(mce);
151
152 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
153 if (ret == NOTIFY_STOP)
154 return;
155
156 mce->finished = 0;
157 wmb();
158 for (;;) {
159 entry = rcu_dereference_check_mce(mcelog.next);
160 for (;;) {
161
162 /*
163 * When the buffer fills up discard new entries.
164 * Assume that the earlier errors are the more
165 * interesting ones:
166 */
167 if (entry >= MCE_LOG_LEN) {
168 set_bit(MCE_OVERFLOW,
169 (unsigned long *)&mcelog.flags);
170 return;
171 }
172 /* Old left over entry. Skip: */
173 if (mcelog.entry[entry].finished) {
174 entry++;
175 continue;
176 }
177 break;
178 }
179 smp_rmb();
180 next = entry + 1;
181 if (cmpxchg(&mcelog.next, entry, next) == entry)
182 break;
183 }
184 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
185 wmb();
186 mcelog.entry[entry].finished = 1;
187 wmb();
188
189 mce->finished = 1;
190 set_bit(0, &mce_need_notify);
191 }
192
193 static void print_mce(struct mce *m)
194 {
195 int ret = 0;
196
197 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
198 m->extcpu, m->mcgstatus, m->bank, m->status);
199
200 if (m->ip) {
201 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
202 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
203 m->cs, m->ip);
204
205 if (m->cs == __KERNEL_CS)
206 print_symbol("{%s}", m->ip);
207 pr_cont("\n");
208 }
209
210 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
211 if (m->addr)
212 pr_cont("ADDR %llx ", m->addr);
213 if (m->misc)
214 pr_cont("MISC %llx ", m->misc);
215
216 pr_cont("\n");
217 /*
218 * Note this output is parsed by external tools and old fields
219 * should not be changed.
220 */
221 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
222 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
223 cpu_data(m->extcpu).microcode);
224
225 /*
226 * Print out human-readable details about the MCE error,
227 * (if the CPU has an implementation for that)
228 */
229 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
230 if (ret == NOTIFY_STOP)
231 return;
232
233 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
234 }
235
236 #define PANIC_TIMEOUT 5 /* 5 seconds */
237
238 static atomic_t mce_paniced;
239
240 static int fake_panic;
241 static atomic_t mce_fake_paniced;
242
243 /* Panic in progress. Enable interrupts and wait for final IPI */
244 static void wait_for_panic(void)
245 {
246 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
247
248 preempt_disable();
249 local_irq_enable();
250 while (timeout-- > 0)
251 udelay(1);
252 if (panic_timeout == 0)
253 panic_timeout = mce_panic_timeout;
254 panic("Panicing machine check CPU died");
255 }
256
257 static void mce_panic(char *msg, struct mce *final, char *exp)
258 {
259 int i, apei_err = 0;
260
261 if (!fake_panic) {
262 /*
263 * Make sure only one CPU runs in machine check panic
264 */
265 if (atomic_inc_return(&mce_paniced) > 1)
266 wait_for_panic();
267 barrier();
268
269 bust_spinlocks(1);
270 console_verbose();
271 } else {
272 /* Don't log too much for fake panic */
273 if (atomic_inc_return(&mce_fake_paniced) > 1)
274 return;
275 }
276 /* First print corrected ones that are still unlogged */
277 for (i = 0; i < MCE_LOG_LEN; i++) {
278 struct mce *m = &mcelog.entry[i];
279 if (!(m->status & MCI_STATUS_VAL))
280 continue;
281 if (!(m->status & MCI_STATUS_UC)) {
282 print_mce(m);
283 if (!apei_err)
284 apei_err = apei_write_mce(m);
285 }
286 }
287 /* Now print uncorrected but with the final one last */
288 for (i = 0; i < MCE_LOG_LEN; i++) {
289 struct mce *m = &mcelog.entry[i];
290 if (!(m->status & MCI_STATUS_VAL))
291 continue;
292 if (!(m->status & MCI_STATUS_UC))
293 continue;
294 if (!final || memcmp(m, final, sizeof(struct mce))) {
295 print_mce(m);
296 if (!apei_err)
297 apei_err = apei_write_mce(m);
298 }
299 }
300 if (final) {
301 print_mce(final);
302 if (!apei_err)
303 apei_err = apei_write_mce(final);
304 }
305 if (cpu_missing)
306 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
307 if (exp)
308 pr_emerg(HW_ERR "Machine check: %s\n", exp);
309 if (!fake_panic) {
310 if (panic_timeout == 0)
311 panic_timeout = mce_panic_timeout;
312 panic(msg);
313 } else
314 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
315 }
316
317 /* Support code for software error injection */
318
319 static int msr_to_offset(u32 msr)
320 {
321 unsigned bank = __this_cpu_read(injectm.bank);
322
323 if (msr == rip_msr)
324 return offsetof(struct mce, ip);
325 if (msr == MSR_IA32_MCx_STATUS(bank))
326 return offsetof(struct mce, status);
327 if (msr == MSR_IA32_MCx_ADDR(bank))
328 return offsetof(struct mce, addr);
329 if (msr == MSR_IA32_MCx_MISC(bank))
330 return offsetof(struct mce, misc);
331 if (msr == MSR_IA32_MCG_STATUS)
332 return offsetof(struct mce, mcgstatus);
333 return -1;
334 }
335
336 /* MSR access wrappers used for error injection */
337 static u64 mce_rdmsrl(u32 msr)
338 {
339 u64 v;
340
341 if (__this_cpu_read(injectm.finished)) {
342 int offset = msr_to_offset(msr);
343
344 if (offset < 0)
345 return 0;
346 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
347 }
348
349 if (rdmsrl_safe(msr, &v)) {
350 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
351 /*
352 * Return zero in case the access faulted. This should
353 * not happen normally but can happen if the CPU does
354 * something weird, or if the code is buggy.
355 */
356 v = 0;
357 }
358
359 return v;
360 }
361
362 static void mce_wrmsrl(u32 msr, u64 v)
363 {
364 if (__this_cpu_read(injectm.finished)) {
365 int offset = msr_to_offset(msr);
366
367 if (offset >= 0)
368 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
369 return;
370 }
371 wrmsrl(msr, v);
372 }
373
374 /*
375 * Collect all global (w.r.t. this processor) status about this machine
376 * check into our "mce" struct so that we can use it later to assess
377 * the severity of the problem as we read per-bank specific details.
378 */
379 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
380 {
381 mce_setup(m);
382
383 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
384 if (regs) {
385 /*
386 * Get the address of the instruction at the time of
387 * the machine check error.
388 */
389 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
390 m->ip = regs->ip;
391 m->cs = regs->cs;
392 }
393 /* Use accurate RIP reporting if available. */
394 if (rip_msr)
395 m->ip = mce_rdmsrl(rip_msr);
396 }
397 }
398
399 /*
400 * Simple lockless ring to communicate PFNs from the exception handler with the
401 * process context work function. This is vastly simplified because there's
402 * only a single reader and a single writer.
403 */
404 #define MCE_RING_SIZE 16 /* we use one entry less */
405
406 struct mce_ring {
407 unsigned short start;
408 unsigned short end;
409 unsigned long ring[MCE_RING_SIZE];
410 };
411 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
412
413 /* Runs with CPU affinity in workqueue */
414 static int mce_ring_empty(void)
415 {
416 struct mce_ring *r = &__get_cpu_var(mce_ring);
417
418 return r->start == r->end;
419 }
420
421 static int mce_ring_get(unsigned long *pfn)
422 {
423 struct mce_ring *r;
424 int ret = 0;
425
426 *pfn = 0;
427 get_cpu();
428 r = &__get_cpu_var(mce_ring);
429 if (r->start == r->end)
430 goto out;
431 *pfn = r->ring[r->start];
432 r->start = (r->start + 1) % MCE_RING_SIZE;
433 ret = 1;
434 out:
435 put_cpu();
436 return ret;
437 }
438
439 /* Always runs in MCE context with preempt off */
440 static int mce_ring_add(unsigned long pfn)
441 {
442 struct mce_ring *r = &__get_cpu_var(mce_ring);
443 unsigned next;
444
445 next = (r->end + 1) % MCE_RING_SIZE;
446 if (next == r->start)
447 return -1;
448 r->ring[r->end] = pfn;
449 wmb();
450 r->end = next;
451 return 0;
452 }
453
454 int mce_available(struct cpuinfo_x86 *c)
455 {
456 if (mce_disabled)
457 return 0;
458 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
459 }
460
461 static void mce_schedule_work(void)
462 {
463 if (!mce_ring_empty()) {
464 struct work_struct *work = &__get_cpu_var(mce_work);
465 if (!work_pending(work))
466 schedule_work(work);
467 }
468 }
469
470 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
471
472 static void mce_irq_work_cb(struct irq_work *entry)
473 {
474 mce_notify_irq();
475 mce_schedule_work();
476 }
477
478 static void mce_report_event(struct pt_regs *regs)
479 {
480 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
481 mce_notify_irq();
482 /*
483 * Triggering the work queue here is just an insurance
484 * policy in case the syscall exit notify handler
485 * doesn't run soon enough or ends up running on the
486 * wrong CPU (can happen when audit sleeps)
487 */
488 mce_schedule_work();
489 return;
490 }
491
492 irq_work_queue(&__get_cpu_var(mce_irq_work));
493 }
494
495 DEFINE_PER_CPU(unsigned, mce_poll_count);
496
497 /*
498 * Poll for corrected events or events that happened before reset.
499 * Those are just logged through /dev/mcelog.
500 *
501 * This is executed in standard interrupt context.
502 *
503 * Note: spec recommends to panic for fatal unsignalled
504 * errors here. However this would be quite problematic --
505 * we would need to reimplement the Monarch handling and
506 * it would mess up the exclusion between exception handler
507 * and poll hander -- * so we skip this for now.
508 * These cases should not happen anyways, or only when the CPU
509 * is already totally * confused. In this case it's likely it will
510 * not fully execute the machine check handler either.
511 */
512 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
513 {
514 struct mce m;
515 int i;
516
517 percpu_inc(mce_poll_count);
518
519 mce_gather_info(&m, NULL);
520
521 for (i = 0; i < banks; i++) {
522 if (!mce_banks[i].ctl || !test_bit(i, *b))
523 continue;
524
525 m.misc = 0;
526 m.addr = 0;
527 m.bank = i;
528 m.tsc = 0;
529
530 barrier();
531 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
532 if (!(m.status & MCI_STATUS_VAL))
533 continue;
534
535 /*
536 * Uncorrected or signalled events are handled by the exception
537 * handler when it is enabled, so don't process those here.
538 *
539 * TBD do the same check for MCI_STATUS_EN here?
540 */
541 if (!(flags & MCP_UC) &&
542 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
543 continue;
544
545 if (m.status & MCI_STATUS_MISCV)
546 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
547 if (m.status & MCI_STATUS_ADDRV)
548 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
549
550 if (!(flags & MCP_TIMESTAMP))
551 m.tsc = 0;
552 /*
553 * Don't get the IP here because it's unlikely to
554 * have anything to do with the actual error location.
555 */
556 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
557 mce_log(&m);
558
559 /*
560 * Clear state for this bank.
561 */
562 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
563 }
564
565 /*
566 * Don't clear MCG_STATUS here because it's only defined for
567 * exceptions.
568 */
569
570 sync_core();
571 }
572 EXPORT_SYMBOL_GPL(machine_check_poll);
573
574 /*
575 * Do a quick check if any of the events requires a panic.
576 * This decides if we keep the events around or clear them.
577 */
578 static int mce_no_way_out(struct mce *m, char **msg)
579 {
580 int i;
581
582 for (i = 0; i < banks; i++) {
583 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
584 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
585 return 1;
586 }
587 return 0;
588 }
589
590 /*
591 * Variable to establish order between CPUs while scanning.
592 * Each CPU spins initially until executing is equal its number.
593 */
594 static atomic_t mce_executing;
595
596 /*
597 * Defines order of CPUs on entry. First CPU becomes Monarch.
598 */
599 static atomic_t mce_callin;
600
601 /*
602 * Check if a timeout waiting for other CPUs happened.
603 */
604 static int mce_timed_out(u64 *t)
605 {
606 /*
607 * The others already did panic for some reason.
608 * Bail out like in a timeout.
609 * rmb() to tell the compiler that system_state
610 * might have been modified by someone else.
611 */
612 rmb();
613 if (atomic_read(&mce_paniced))
614 wait_for_panic();
615 if (!monarch_timeout)
616 goto out;
617 if ((s64)*t < SPINUNIT) {
618 /* CHECKME: Make panic default for 1 too? */
619 if (tolerant < 1)
620 mce_panic("Timeout synchronizing machine check over CPUs",
621 NULL, NULL);
622 cpu_missing = 1;
623 return 1;
624 }
625 *t -= SPINUNIT;
626 out:
627 touch_nmi_watchdog();
628 return 0;
629 }
630
631 /*
632 * The Monarch's reign. The Monarch is the CPU who entered
633 * the machine check handler first. It waits for the others to
634 * raise the exception too and then grades them. When any
635 * error is fatal panic. Only then let the others continue.
636 *
637 * The other CPUs entering the MCE handler will be controlled by the
638 * Monarch. They are called Subjects.
639 *
640 * This way we prevent any potential data corruption in a unrecoverable case
641 * and also makes sure always all CPU's errors are examined.
642 *
643 * Also this detects the case of a machine check event coming from outer
644 * space (not detected by any CPUs) In this case some external agent wants
645 * us to shut down, so panic too.
646 *
647 * The other CPUs might still decide to panic if the handler happens
648 * in a unrecoverable place, but in this case the system is in a semi-stable
649 * state and won't corrupt anything by itself. It's ok to let the others
650 * continue for a bit first.
651 *
652 * All the spin loops have timeouts; when a timeout happens a CPU
653 * typically elects itself to be Monarch.
654 */
655 static void mce_reign(void)
656 {
657 int cpu;
658 struct mce *m = NULL;
659 int global_worst = 0;
660 char *msg = NULL;
661 char *nmsg = NULL;
662
663 /*
664 * This CPU is the Monarch and the other CPUs have run
665 * through their handlers.
666 * Grade the severity of the errors of all the CPUs.
667 */
668 for_each_possible_cpu(cpu) {
669 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
670 &nmsg);
671 if (severity > global_worst) {
672 msg = nmsg;
673 global_worst = severity;
674 m = &per_cpu(mces_seen, cpu);
675 }
676 }
677
678 /*
679 * Cannot recover? Panic here then.
680 * This dumps all the mces in the log buffer and stops the
681 * other CPUs.
682 */
683 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
684 mce_panic("Fatal Machine check", m, msg);
685
686 /*
687 * For UC somewhere we let the CPU who detects it handle it.
688 * Also must let continue the others, otherwise the handling
689 * CPU could deadlock on a lock.
690 */
691
692 /*
693 * No machine check event found. Must be some external
694 * source or one CPU is hung. Panic.
695 */
696 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
697 mce_panic("Machine check from unknown source", NULL, NULL);
698
699 /*
700 * Now clear all the mces_seen so that they don't reappear on
701 * the next mce.
702 */
703 for_each_possible_cpu(cpu)
704 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
705 }
706
707 static atomic_t global_nwo;
708
709 /*
710 * Start of Monarch synchronization. This waits until all CPUs have
711 * entered the exception handler and then determines if any of them
712 * saw a fatal event that requires panic. Then it executes them
713 * in the entry order.
714 * TBD double check parallel CPU hotunplug
715 */
716 static int mce_start(int *no_way_out)
717 {
718 int order;
719 int cpus = num_online_cpus();
720 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
721
722 if (!timeout)
723 return -1;
724
725 atomic_add(*no_way_out, &global_nwo);
726 /*
727 * global_nwo should be updated before mce_callin
728 */
729 smp_wmb();
730 order = atomic_inc_return(&mce_callin);
731
732 /*
733 * Wait for everyone.
734 */
735 while (atomic_read(&mce_callin) != cpus) {
736 if (mce_timed_out(&timeout)) {
737 atomic_set(&global_nwo, 0);
738 return -1;
739 }
740 ndelay(SPINUNIT);
741 }
742
743 /*
744 * mce_callin should be read before global_nwo
745 */
746 smp_rmb();
747
748 if (order == 1) {
749 /*
750 * Monarch: Starts executing now, the others wait.
751 */
752 atomic_set(&mce_executing, 1);
753 } else {
754 /*
755 * Subject: Now start the scanning loop one by one in
756 * the original callin order.
757 * This way when there are any shared banks it will be
758 * only seen by one CPU before cleared, avoiding duplicates.
759 */
760 while (atomic_read(&mce_executing) < order) {
761 if (mce_timed_out(&timeout)) {
762 atomic_set(&global_nwo, 0);
763 return -1;
764 }
765 ndelay(SPINUNIT);
766 }
767 }
768
769 /*
770 * Cache the global no_way_out state.
771 */
772 *no_way_out = atomic_read(&global_nwo);
773
774 return order;
775 }
776
777 /*
778 * Synchronize between CPUs after main scanning loop.
779 * This invokes the bulk of the Monarch processing.
780 */
781 static int mce_end(int order)
782 {
783 int ret = -1;
784 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
785
786 if (!timeout)
787 goto reset;
788 if (order < 0)
789 goto reset;
790
791 /*
792 * Allow others to run.
793 */
794 atomic_inc(&mce_executing);
795
796 if (order == 1) {
797 /* CHECKME: Can this race with a parallel hotplug? */
798 int cpus = num_online_cpus();
799
800 /*
801 * Monarch: Wait for everyone to go through their scanning
802 * loops.
803 */
804 while (atomic_read(&mce_executing) <= cpus) {
805 if (mce_timed_out(&timeout))
806 goto reset;
807 ndelay(SPINUNIT);
808 }
809
810 mce_reign();
811 barrier();
812 ret = 0;
813 } else {
814 /*
815 * Subject: Wait for Monarch to finish.
816 */
817 while (atomic_read(&mce_executing) != 0) {
818 if (mce_timed_out(&timeout))
819 goto reset;
820 ndelay(SPINUNIT);
821 }
822
823 /*
824 * Don't reset anything. That's done by the Monarch.
825 */
826 return 0;
827 }
828
829 /*
830 * Reset all global state.
831 */
832 reset:
833 atomic_set(&global_nwo, 0);
834 atomic_set(&mce_callin, 0);
835 barrier();
836
837 /*
838 * Let others run again.
839 */
840 atomic_set(&mce_executing, 0);
841 return ret;
842 }
843
844 /*
845 * Check if the address reported by the CPU is in a format we can parse.
846 * It would be possible to add code for most other cases, but all would
847 * be somewhat complicated (e.g. segment offset would require an instruction
848 * parser). So only support physical addresses up to page granuality for now.
849 */
850 static int mce_usable_address(struct mce *m)
851 {
852 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
853 return 0;
854 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
855 return 0;
856 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
857 return 0;
858 return 1;
859 }
860
861 static void mce_clear_state(unsigned long *toclear)
862 {
863 int i;
864
865 for (i = 0; i < banks; i++) {
866 if (test_bit(i, toclear))
867 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
868 }
869 }
870
871 /*
872 * The actual machine check handler. This only handles real
873 * exceptions when something got corrupted coming in through int 18.
874 *
875 * This is executed in NMI context not subject to normal locking rules. This
876 * implies that most kernel services cannot be safely used. Don't even
877 * think about putting a printk in there!
878 *
879 * On Intel systems this is entered on all CPUs in parallel through
880 * MCE broadcast. However some CPUs might be broken beyond repair,
881 * so be always careful when synchronizing with others.
882 */
883 void do_machine_check(struct pt_regs *regs, long error_code)
884 {
885 struct mce m, *final;
886 int i;
887 int worst = 0;
888 int severity;
889 /*
890 * Establish sequential order between the CPUs entering the machine
891 * check handler.
892 */
893 int order;
894 /*
895 * If no_way_out gets set, there is no safe way to recover from this
896 * MCE. If tolerant is cranked up, we'll try anyway.
897 */
898 int no_way_out = 0;
899 /*
900 * If kill_it gets set, there might be a way to recover from this
901 * error.
902 */
903 int kill_it = 0;
904 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
905 char *msg = "Unknown";
906
907 atomic_inc(&mce_entry);
908
909 percpu_inc(mce_exception_count);
910
911 if (!banks)
912 goto out;
913
914 mce_gather_info(&m, regs);
915
916 final = &__get_cpu_var(mces_seen);
917 *final = m;
918
919 no_way_out = mce_no_way_out(&m, &msg);
920
921 barrier();
922
923 /*
924 * When no restart IP must always kill or panic.
925 */
926 if (!(m.mcgstatus & MCG_STATUS_RIPV))
927 kill_it = 1;
928
929 /*
930 * Go through all the banks in exclusion of the other CPUs.
931 * This way we don't report duplicated events on shared banks
932 * because the first one to see it will clear it.
933 */
934 order = mce_start(&no_way_out);
935 for (i = 0; i < banks; i++) {
936 __clear_bit(i, toclear);
937 if (!mce_banks[i].ctl)
938 continue;
939
940 m.misc = 0;
941 m.addr = 0;
942 m.bank = i;
943
944 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
945 if ((m.status & MCI_STATUS_VAL) == 0)
946 continue;
947
948 /*
949 * Non uncorrected or non signaled errors are handled by
950 * machine_check_poll. Leave them alone, unless this panics.
951 */
952 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
953 !no_way_out)
954 continue;
955
956 /*
957 * Set taint even when machine check was not enabled.
958 */
959 add_taint(TAINT_MACHINE_CHECK);
960
961 severity = mce_severity(&m, tolerant, NULL);
962
963 /*
964 * When machine check was for corrected handler don't touch,
965 * unless we're panicing.
966 */
967 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
968 continue;
969 __set_bit(i, toclear);
970 if (severity == MCE_NO_SEVERITY) {
971 /*
972 * Machine check event was not enabled. Clear, but
973 * ignore.
974 */
975 continue;
976 }
977
978 /*
979 * Kill on action required.
980 */
981 if (severity == MCE_AR_SEVERITY)
982 kill_it = 1;
983
984 if (m.status & MCI_STATUS_MISCV)
985 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
986 if (m.status & MCI_STATUS_ADDRV)
987 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
988
989 /*
990 * Action optional error. Queue address for later processing.
991 * When the ring overflows we just ignore the AO error.
992 * RED-PEN add some logging mechanism when
993 * usable_address or mce_add_ring fails.
994 * RED-PEN don't ignore overflow for tolerant == 0
995 */
996 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
997 mce_ring_add(m.addr >> PAGE_SHIFT);
998
999 mce_log(&m);
1000
1001 if (severity > worst) {
1002 *final = m;
1003 worst = severity;
1004 }
1005 }
1006
1007 if (!no_way_out)
1008 mce_clear_state(toclear);
1009
1010 /*
1011 * Do most of the synchronization with other CPUs.
1012 * When there's any problem use only local no_way_out state.
1013 */
1014 if (mce_end(order) < 0)
1015 no_way_out = worst >= MCE_PANIC_SEVERITY;
1016
1017 /*
1018 * If we have decided that we just CAN'T continue, and the user
1019 * has not set tolerant to an insane level, give up and die.
1020 *
1021 * This is mainly used in the case when the system doesn't
1022 * support MCE broadcasting or it has been disabled.
1023 */
1024 if (no_way_out && tolerant < 3)
1025 mce_panic("Fatal machine check on current CPU", final, msg);
1026
1027 /*
1028 * If the error seems to be unrecoverable, something should be
1029 * done. Try to kill as little as possible. If we can kill just
1030 * one task, do that. If the user has set the tolerance very
1031 * high, don't try to do anything at all.
1032 */
1033
1034 if (kill_it && tolerant < 3)
1035 force_sig(SIGBUS, current);
1036
1037 /* notify userspace ASAP */
1038 set_thread_flag(TIF_MCE_NOTIFY);
1039
1040 if (worst > 0)
1041 mce_report_event(regs);
1042 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1043 out:
1044 atomic_dec(&mce_entry);
1045 sync_core();
1046 }
1047 EXPORT_SYMBOL_GPL(do_machine_check);
1048
1049 #ifndef CONFIG_MEMORY_FAILURE
1050 int memory_failure(unsigned long pfn, int vector, int flags)
1051 {
1052 printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1053 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1054
1055 return 0;
1056 }
1057 #endif
1058
1059 /*
1060 * Called after mce notification in process context. This code
1061 * is allowed to sleep. Call the high level VM handler to process
1062 * any corrupted pages.
1063 * Assume that the work queue code only calls this one at a time
1064 * per CPU.
1065 * Note we don't disable preemption, so this code might run on the wrong
1066 * CPU. In this case the event is picked up by the scheduled work queue.
1067 * This is merely a fast path to expedite processing in some common
1068 * cases.
1069 */
1070 void mce_notify_process(void)
1071 {
1072 unsigned long pfn;
1073 mce_notify_irq();
1074 while (mce_ring_get(&pfn))
1075 memory_failure(pfn, MCE_VECTOR, 0);
1076 }
1077
1078 static void mce_process_work(struct work_struct *dummy)
1079 {
1080 mce_notify_process();
1081 }
1082
1083 #ifdef CONFIG_X86_MCE_INTEL
1084 /***
1085 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1086 * @cpu: The CPU on which the event occurred.
1087 * @status: Event status information
1088 *
1089 * This function should be called by the thermal interrupt after the
1090 * event has been processed and the decision was made to log the event
1091 * further.
1092 *
1093 * The status parameter will be saved to the 'status' field of 'struct mce'
1094 * and historically has been the register value of the
1095 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1096 */
1097 void mce_log_therm_throt_event(__u64 status)
1098 {
1099 struct mce m;
1100
1101 mce_setup(&m);
1102 m.bank = MCE_THERMAL_BANK;
1103 m.status = status;
1104 mce_log(&m);
1105 }
1106 #endif /* CONFIG_X86_MCE_INTEL */
1107
1108 /*
1109 * Periodic polling timer for "silent" machine check errors. If the
1110 * poller finds an MCE, poll 2x faster. When the poller finds no more
1111 * errors, poll 2x slower (up to check_interval seconds).
1112 */
1113 static int check_interval = 5 * 60; /* 5 minutes */
1114
1115 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1116 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1117
1118 static void mce_start_timer(unsigned long data)
1119 {
1120 struct timer_list *t = &per_cpu(mce_timer, data);
1121 int *n;
1122
1123 WARN_ON(smp_processor_id() != data);
1124
1125 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1126 machine_check_poll(MCP_TIMESTAMP,
1127 &__get_cpu_var(mce_poll_banks));
1128 }
1129
1130 /*
1131 * Alert userspace if needed. If we logged an MCE, reduce the
1132 * polling interval, otherwise increase the polling interval.
1133 */
1134 n = &__get_cpu_var(mce_next_interval);
1135 if (mce_notify_irq())
1136 *n = max(*n/2, HZ/100);
1137 else
1138 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1139
1140 t->expires = jiffies + *n;
1141 add_timer_on(t, smp_processor_id());
1142 }
1143
1144 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1145 static void mce_timer_delete_all(void)
1146 {
1147 int cpu;
1148
1149 for_each_online_cpu(cpu)
1150 del_timer_sync(&per_cpu(mce_timer, cpu));
1151 }
1152
1153 static void mce_do_trigger(struct work_struct *work)
1154 {
1155 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1156 }
1157
1158 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1159
1160 /*
1161 * Notify the user(s) about new machine check events.
1162 * Can be called from interrupt context, but not from machine check/NMI
1163 * context.
1164 */
1165 int mce_notify_irq(void)
1166 {
1167 /* Not more than two messages every minute */
1168 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1169
1170 clear_thread_flag(TIF_MCE_NOTIFY);
1171
1172 if (test_and_clear_bit(0, &mce_need_notify)) {
1173 /* wake processes polling /dev/mcelog */
1174 wake_up_interruptible(&mce_chrdev_wait);
1175
1176 /*
1177 * There is no risk of missing notifications because
1178 * work_pending is always cleared before the function is
1179 * executed.
1180 */
1181 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1182 schedule_work(&mce_trigger_work);
1183
1184 if (__ratelimit(&ratelimit))
1185 pr_info(HW_ERR "Machine check events logged\n");
1186
1187 return 1;
1188 }
1189 return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(mce_notify_irq);
1192
1193 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1194 {
1195 int i;
1196
1197 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1198 if (!mce_banks)
1199 return -ENOMEM;
1200 for (i = 0; i < banks; i++) {
1201 struct mce_bank *b = &mce_banks[i];
1202
1203 b->ctl = -1ULL;
1204 b->init = 1;
1205 }
1206 return 0;
1207 }
1208
1209 /*
1210 * Initialize Machine Checks for a CPU.
1211 */
1212 static int __cpuinit __mcheck_cpu_cap_init(void)
1213 {
1214 unsigned b;
1215 u64 cap;
1216
1217 rdmsrl(MSR_IA32_MCG_CAP, cap);
1218
1219 b = cap & MCG_BANKCNT_MASK;
1220 if (!banks)
1221 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1222
1223 if (b > MAX_NR_BANKS) {
1224 printk(KERN_WARNING
1225 "MCE: Using only %u machine check banks out of %u\n",
1226 MAX_NR_BANKS, b);
1227 b = MAX_NR_BANKS;
1228 }
1229
1230 /* Don't support asymmetric configurations today */
1231 WARN_ON(banks != 0 && b != banks);
1232 banks = b;
1233 if (!mce_banks) {
1234 int err = __mcheck_cpu_mce_banks_init();
1235
1236 if (err)
1237 return err;
1238 }
1239
1240 /* Use accurate RIP reporting if available. */
1241 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1242 rip_msr = MSR_IA32_MCG_EIP;
1243
1244 if (cap & MCG_SER_P)
1245 mce_ser = 1;
1246
1247 return 0;
1248 }
1249
1250 static void __mcheck_cpu_init_generic(void)
1251 {
1252 mce_banks_t all_banks;
1253 u64 cap;
1254 int i;
1255
1256 /*
1257 * Log the machine checks left over from the previous reset.
1258 */
1259 bitmap_fill(all_banks, MAX_NR_BANKS);
1260 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1261
1262 set_in_cr4(X86_CR4_MCE);
1263
1264 rdmsrl(MSR_IA32_MCG_CAP, cap);
1265 if (cap & MCG_CTL_P)
1266 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1267
1268 for (i = 0; i < banks; i++) {
1269 struct mce_bank *b = &mce_banks[i];
1270
1271 if (!b->init)
1272 continue;
1273 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1274 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1275 }
1276 }
1277
1278 /* Add per CPU specific workarounds here */
1279 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1280 {
1281 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1282 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1283 return -EOPNOTSUPP;
1284 }
1285
1286 /* This should be disabled by the BIOS, but isn't always */
1287 if (c->x86_vendor == X86_VENDOR_AMD) {
1288 if (c->x86 == 15 && banks > 4) {
1289 /*
1290 * disable GART TBL walk error reporting, which
1291 * trips off incorrectly with the IOMMU & 3ware
1292 * & Cerberus:
1293 */
1294 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1295 }
1296 if (c->x86 <= 17 && mce_bootlog < 0) {
1297 /*
1298 * Lots of broken BIOS around that don't clear them
1299 * by default and leave crap in there. Don't log:
1300 */
1301 mce_bootlog = 0;
1302 }
1303 /*
1304 * Various K7s with broken bank 0 around. Always disable
1305 * by default.
1306 */
1307 if (c->x86 == 6 && banks > 0)
1308 mce_banks[0].ctl = 0;
1309 }
1310
1311 if (c->x86_vendor == X86_VENDOR_INTEL) {
1312 /*
1313 * SDM documents that on family 6 bank 0 should not be written
1314 * because it aliases to another special BIOS controlled
1315 * register.
1316 * But it's not aliased anymore on model 0x1a+
1317 * Don't ignore bank 0 completely because there could be a
1318 * valid event later, merely don't write CTL0.
1319 */
1320
1321 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1322 mce_banks[0].init = 0;
1323
1324 /*
1325 * All newer Intel systems support MCE broadcasting. Enable
1326 * synchronization with a one second timeout.
1327 */
1328 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1329 monarch_timeout < 0)
1330 monarch_timeout = USEC_PER_SEC;
1331
1332 /*
1333 * There are also broken BIOSes on some Pentium M and
1334 * earlier systems:
1335 */
1336 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1337 mce_bootlog = 0;
1338 }
1339 if (monarch_timeout < 0)
1340 monarch_timeout = 0;
1341 if (mce_bootlog != 0)
1342 mce_panic_timeout = 30;
1343
1344 return 0;
1345 }
1346
1347 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1348 {
1349 if (c->x86 != 5)
1350 return 0;
1351
1352 switch (c->x86_vendor) {
1353 case X86_VENDOR_INTEL:
1354 intel_p5_mcheck_init(c);
1355 return 1;
1356 break;
1357 case X86_VENDOR_CENTAUR:
1358 winchip_mcheck_init(c);
1359 return 1;
1360 break;
1361 }
1362
1363 return 0;
1364 }
1365
1366 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1367 {
1368 switch (c->x86_vendor) {
1369 case X86_VENDOR_INTEL:
1370 mce_intel_feature_init(c);
1371 break;
1372 case X86_VENDOR_AMD:
1373 mce_amd_feature_init(c);
1374 break;
1375 default:
1376 break;
1377 }
1378 }
1379
1380 static void __mcheck_cpu_init_timer(void)
1381 {
1382 struct timer_list *t = &__get_cpu_var(mce_timer);
1383 int *n = &__get_cpu_var(mce_next_interval);
1384
1385 setup_timer(t, mce_start_timer, smp_processor_id());
1386
1387 if (mce_ignore_ce)
1388 return;
1389
1390 *n = check_interval * HZ;
1391 if (!*n)
1392 return;
1393 t->expires = round_jiffies(jiffies + *n);
1394 add_timer_on(t, smp_processor_id());
1395 }
1396
1397 /* Handle unconfigured int18 (should never happen) */
1398 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1399 {
1400 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1401 smp_processor_id());
1402 }
1403
1404 /* Call the installed machine check handler for this CPU setup. */
1405 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1406 unexpected_machine_check;
1407
1408 /*
1409 * Called for each booted CPU to set up machine checks.
1410 * Must be called with preempt off:
1411 */
1412 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1413 {
1414 if (mce_disabled)
1415 return;
1416
1417 if (__mcheck_cpu_ancient_init(c))
1418 return;
1419
1420 if (!mce_available(c))
1421 return;
1422
1423 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1424 mce_disabled = 1;
1425 return;
1426 }
1427
1428 machine_check_vector = do_machine_check;
1429
1430 __mcheck_cpu_init_generic();
1431 __mcheck_cpu_init_vendor(c);
1432 __mcheck_cpu_init_timer();
1433 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1434 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1435 }
1436
1437 /*
1438 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1439 */
1440
1441 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1442 static int mce_chrdev_open_count; /* #times opened */
1443 static int mce_chrdev_open_exclu; /* already open exclusive? */
1444
1445 static int mce_chrdev_open(struct inode *inode, struct file *file)
1446 {
1447 spin_lock(&mce_chrdev_state_lock);
1448
1449 if (mce_chrdev_open_exclu ||
1450 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1451 spin_unlock(&mce_chrdev_state_lock);
1452
1453 return -EBUSY;
1454 }
1455
1456 if (file->f_flags & O_EXCL)
1457 mce_chrdev_open_exclu = 1;
1458 mce_chrdev_open_count++;
1459
1460 spin_unlock(&mce_chrdev_state_lock);
1461
1462 return nonseekable_open(inode, file);
1463 }
1464
1465 static int mce_chrdev_release(struct inode *inode, struct file *file)
1466 {
1467 spin_lock(&mce_chrdev_state_lock);
1468
1469 mce_chrdev_open_count--;
1470 mce_chrdev_open_exclu = 0;
1471
1472 spin_unlock(&mce_chrdev_state_lock);
1473
1474 return 0;
1475 }
1476
1477 static void collect_tscs(void *data)
1478 {
1479 unsigned long *cpu_tsc = (unsigned long *)data;
1480
1481 rdtscll(cpu_tsc[smp_processor_id()]);
1482 }
1483
1484 static int mce_apei_read_done;
1485
1486 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1487 static int __mce_read_apei(char __user **ubuf, size_t usize)
1488 {
1489 int rc;
1490 u64 record_id;
1491 struct mce m;
1492
1493 if (usize < sizeof(struct mce))
1494 return -EINVAL;
1495
1496 rc = apei_read_mce(&m, &record_id);
1497 /* Error or no more MCE record */
1498 if (rc <= 0) {
1499 mce_apei_read_done = 1;
1500 return rc;
1501 }
1502 rc = -EFAULT;
1503 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1504 return rc;
1505 /*
1506 * In fact, we should have cleared the record after that has
1507 * been flushed to the disk or sent to network in
1508 * /sbin/mcelog, but we have no interface to support that now,
1509 * so just clear it to avoid duplication.
1510 */
1511 rc = apei_clear_mce(record_id);
1512 if (rc) {
1513 mce_apei_read_done = 1;
1514 return rc;
1515 }
1516 *ubuf += sizeof(struct mce);
1517
1518 return 0;
1519 }
1520
1521 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1522 size_t usize, loff_t *off)
1523 {
1524 char __user *buf = ubuf;
1525 unsigned long *cpu_tsc;
1526 unsigned prev, next;
1527 int i, err;
1528
1529 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1530 if (!cpu_tsc)
1531 return -ENOMEM;
1532
1533 mutex_lock(&mce_chrdev_read_mutex);
1534
1535 if (!mce_apei_read_done) {
1536 err = __mce_read_apei(&buf, usize);
1537 if (err || buf != ubuf)
1538 goto out;
1539 }
1540
1541 next = rcu_dereference_check_mce(mcelog.next);
1542
1543 /* Only supports full reads right now */
1544 err = -EINVAL;
1545 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1546 goto out;
1547
1548 err = 0;
1549 prev = 0;
1550 do {
1551 for (i = prev; i < next; i++) {
1552 unsigned long start = jiffies;
1553 struct mce *m = &mcelog.entry[i];
1554
1555 while (!m->finished) {
1556 if (time_after_eq(jiffies, start + 2)) {
1557 memset(m, 0, sizeof(*m));
1558 goto timeout;
1559 }
1560 cpu_relax();
1561 }
1562 smp_rmb();
1563 err |= copy_to_user(buf, m, sizeof(*m));
1564 buf += sizeof(*m);
1565 timeout:
1566 ;
1567 }
1568
1569 memset(mcelog.entry + prev, 0,
1570 (next - prev) * sizeof(struct mce));
1571 prev = next;
1572 next = cmpxchg(&mcelog.next, prev, 0);
1573 } while (next != prev);
1574
1575 synchronize_sched();
1576
1577 /*
1578 * Collect entries that were still getting written before the
1579 * synchronize.
1580 */
1581 on_each_cpu(collect_tscs, cpu_tsc, 1);
1582
1583 for (i = next; i < MCE_LOG_LEN; i++) {
1584 struct mce *m = &mcelog.entry[i];
1585
1586 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1587 err |= copy_to_user(buf, m, sizeof(*m));
1588 smp_rmb();
1589 buf += sizeof(*m);
1590 memset(m, 0, sizeof(*m));
1591 }
1592 }
1593
1594 if (err)
1595 err = -EFAULT;
1596
1597 out:
1598 mutex_unlock(&mce_chrdev_read_mutex);
1599 kfree(cpu_tsc);
1600
1601 return err ? err : buf - ubuf;
1602 }
1603
1604 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1605 {
1606 poll_wait(file, &mce_chrdev_wait, wait);
1607 if (rcu_access_index(mcelog.next))
1608 return POLLIN | POLLRDNORM;
1609 if (!mce_apei_read_done && apei_check_mce())
1610 return POLLIN | POLLRDNORM;
1611 return 0;
1612 }
1613
1614 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1615 unsigned long arg)
1616 {
1617 int __user *p = (int __user *)arg;
1618
1619 if (!capable(CAP_SYS_ADMIN))
1620 return -EPERM;
1621
1622 switch (cmd) {
1623 case MCE_GET_RECORD_LEN:
1624 return put_user(sizeof(struct mce), p);
1625 case MCE_GET_LOG_LEN:
1626 return put_user(MCE_LOG_LEN, p);
1627 case MCE_GETCLEAR_FLAGS: {
1628 unsigned flags;
1629
1630 do {
1631 flags = mcelog.flags;
1632 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1633
1634 return put_user(flags, p);
1635 }
1636 default:
1637 return -ENOTTY;
1638 }
1639 }
1640
1641 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1642 size_t usize, loff_t *off);
1643
1644 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1645 const char __user *ubuf,
1646 size_t usize, loff_t *off))
1647 {
1648 mce_write = fn;
1649 }
1650 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1651
1652 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1653 size_t usize, loff_t *off)
1654 {
1655 if (mce_write)
1656 return mce_write(filp, ubuf, usize, off);
1657 else
1658 return -EINVAL;
1659 }
1660
1661 static const struct file_operations mce_chrdev_ops = {
1662 .open = mce_chrdev_open,
1663 .release = mce_chrdev_release,
1664 .read = mce_chrdev_read,
1665 .write = mce_chrdev_write,
1666 .poll = mce_chrdev_poll,
1667 .unlocked_ioctl = mce_chrdev_ioctl,
1668 .llseek = no_llseek,
1669 };
1670
1671 static struct miscdevice mce_chrdev_device = {
1672 MISC_MCELOG_MINOR,
1673 "mcelog",
1674 &mce_chrdev_ops,
1675 };
1676
1677 /*
1678 * mce=off Disables machine check
1679 * mce=no_cmci Disables CMCI
1680 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1681 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1682 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1683 * monarchtimeout is how long to wait for other CPUs on machine
1684 * check, or 0 to not wait
1685 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1686 * mce=nobootlog Don't log MCEs from before booting.
1687 */
1688 static int __init mcheck_enable(char *str)
1689 {
1690 if (*str == 0) {
1691 enable_p5_mce();
1692 return 1;
1693 }
1694 if (*str == '=')
1695 str++;
1696 if (!strcmp(str, "off"))
1697 mce_disabled = 1;
1698 else if (!strcmp(str, "no_cmci"))
1699 mce_cmci_disabled = 1;
1700 else if (!strcmp(str, "dont_log_ce"))
1701 mce_dont_log_ce = 1;
1702 else if (!strcmp(str, "ignore_ce"))
1703 mce_ignore_ce = 1;
1704 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1705 mce_bootlog = (str[0] == 'b');
1706 else if (isdigit(str[0])) {
1707 get_option(&str, &tolerant);
1708 if (*str == ',') {
1709 ++str;
1710 get_option(&str, &monarch_timeout);
1711 }
1712 } else {
1713 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1714 str);
1715 return 0;
1716 }
1717 return 1;
1718 }
1719 __setup("mce", mcheck_enable);
1720
1721 int __init mcheck_init(void)
1722 {
1723 mcheck_intel_therm_init();
1724
1725 return 0;
1726 }
1727
1728 /*
1729 * mce_syscore: PM support
1730 */
1731
1732 /*
1733 * Disable machine checks on suspend and shutdown. We can't really handle
1734 * them later.
1735 */
1736 static int mce_disable_error_reporting(void)
1737 {
1738 int i;
1739
1740 for (i = 0; i < banks; i++) {
1741 struct mce_bank *b = &mce_banks[i];
1742
1743 if (b->init)
1744 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1745 }
1746 return 0;
1747 }
1748
1749 static int mce_syscore_suspend(void)
1750 {
1751 return mce_disable_error_reporting();
1752 }
1753
1754 static void mce_syscore_shutdown(void)
1755 {
1756 mce_disable_error_reporting();
1757 }
1758
1759 /*
1760 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1761 * Only one CPU is active at this time, the others get re-added later using
1762 * CPU hotplug:
1763 */
1764 static void mce_syscore_resume(void)
1765 {
1766 __mcheck_cpu_init_generic();
1767 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1768 }
1769
1770 static struct syscore_ops mce_syscore_ops = {
1771 .suspend = mce_syscore_suspend,
1772 .shutdown = mce_syscore_shutdown,
1773 .resume = mce_syscore_resume,
1774 };
1775
1776 /*
1777 * mce_sysdev: Sysfs support
1778 */
1779
1780 static void mce_cpu_restart(void *data)
1781 {
1782 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1783 return;
1784 __mcheck_cpu_init_generic();
1785 __mcheck_cpu_init_timer();
1786 }
1787
1788 /* Reinit MCEs after user configuration changes */
1789 static void mce_restart(void)
1790 {
1791 mce_timer_delete_all();
1792 on_each_cpu(mce_cpu_restart, NULL, 1);
1793 }
1794
1795 /* Toggle features for corrected errors */
1796 static void mce_disable_cmci(void *data)
1797 {
1798 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1799 return;
1800 cmci_clear();
1801 }
1802
1803 static void mce_enable_ce(void *all)
1804 {
1805 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1806 return;
1807 cmci_reenable();
1808 cmci_recheck();
1809 if (all)
1810 __mcheck_cpu_init_timer();
1811 }
1812
1813 static struct sysdev_class mce_sysdev_class = {
1814 .name = "machinecheck",
1815 };
1816
1817 DEFINE_PER_CPU(struct sys_device, mce_sysdev);
1818
1819 __cpuinitdata
1820 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1821
1822 static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1823 {
1824 return container_of(attr, struct mce_bank, attr);
1825 }
1826
1827 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1828 char *buf)
1829 {
1830 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1831 }
1832
1833 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1834 const char *buf, size_t size)
1835 {
1836 u64 new;
1837
1838 if (strict_strtoull(buf, 0, &new) < 0)
1839 return -EINVAL;
1840
1841 attr_to_bank(attr)->ctl = new;
1842 mce_restart();
1843
1844 return size;
1845 }
1846
1847 static ssize_t
1848 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1849 {
1850 strcpy(buf, mce_helper);
1851 strcat(buf, "\n");
1852 return strlen(mce_helper) + 1;
1853 }
1854
1855 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1856 const char *buf, size_t siz)
1857 {
1858 char *p;
1859
1860 strncpy(mce_helper, buf, sizeof(mce_helper));
1861 mce_helper[sizeof(mce_helper)-1] = 0;
1862 p = strchr(mce_helper, '\n');
1863
1864 if (p)
1865 *p = 0;
1866
1867 return strlen(mce_helper) + !!p;
1868 }
1869
1870 static ssize_t set_ignore_ce(struct sys_device *s,
1871 struct sysdev_attribute *attr,
1872 const char *buf, size_t size)
1873 {
1874 u64 new;
1875
1876 if (strict_strtoull(buf, 0, &new) < 0)
1877 return -EINVAL;
1878
1879 if (mce_ignore_ce ^ !!new) {
1880 if (new) {
1881 /* disable ce features */
1882 mce_timer_delete_all();
1883 on_each_cpu(mce_disable_cmci, NULL, 1);
1884 mce_ignore_ce = 1;
1885 } else {
1886 /* enable ce features */
1887 mce_ignore_ce = 0;
1888 on_each_cpu(mce_enable_ce, (void *)1, 1);
1889 }
1890 }
1891 return size;
1892 }
1893
1894 static ssize_t set_cmci_disabled(struct sys_device *s,
1895 struct sysdev_attribute *attr,
1896 const char *buf, size_t size)
1897 {
1898 u64 new;
1899
1900 if (strict_strtoull(buf, 0, &new) < 0)
1901 return -EINVAL;
1902
1903 if (mce_cmci_disabled ^ !!new) {
1904 if (new) {
1905 /* disable cmci */
1906 on_each_cpu(mce_disable_cmci, NULL, 1);
1907 mce_cmci_disabled = 1;
1908 } else {
1909 /* enable cmci */
1910 mce_cmci_disabled = 0;
1911 on_each_cpu(mce_enable_ce, NULL, 1);
1912 }
1913 }
1914 return size;
1915 }
1916
1917 static ssize_t store_int_with_restart(struct sys_device *s,
1918 struct sysdev_attribute *attr,
1919 const char *buf, size_t size)
1920 {
1921 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1922 mce_restart();
1923 return ret;
1924 }
1925
1926 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1927 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1928 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1929 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1930
1931 static struct sysdev_ext_attribute attr_check_interval = {
1932 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1933 store_int_with_restart),
1934 &check_interval
1935 };
1936
1937 static struct sysdev_ext_attribute attr_ignore_ce = {
1938 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1939 &mce_ignore_ce
1940 };
1941
1942 static struct sysdev_ext_attribute attr_cmci_disabled = {
1943 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1944 &mce_cmci_disabled
1945 };
1946
1947 static struct sysdev_attribute *mce_sysdev_attrs[] = {
1948 &attr_tolerant.attr,
1949 &attr_check_interval.attr,
1950 &attr_trigger,
1951 &attr_monarch_timeout.attr,
1952 &attr_dont_log_ce.attr,
1953 &attr_ignore_ce.attr,
1954 &attr_cmci_disabled.attr,
1955 NULL
1956 };
1957
1958 static cpumask_var_t mce_sysdev_initialized;
1959
1960 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1961 static __cpuinit int mce_sysdev_create(unsigned int cpu)
1962 {
1963 struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
1964 int err;
1965 int i, j;
1966
1967 if (!mce_available(&boot_cpu_data))
1968 return -EIO;
1969
1970 memset(&sysdev->kobj, 0, sizeof(struct kobject));
1971 sysdev->id = cpu;
1972 sysdev->cls = &mce_sysdev_class;
1973
1974 err = sysdev_register(sysdev);
1975 if (err)
1976 return err;
1977
1978 for (i = 0; mce_sysdev_attrs[i]; i++) {
1979 err = sysdev_create_file(sysdev, mce_sysdev_attrs[i]);
1980 if (err)
1981 goto error;
1982 }
1983 for (j = 0; j < banks; j++) {
1984 err = sysdev_create_file(sysdev, &mce_banks[j].attr);
1985 if (err)
1986 goto error2;
1987 }
1988 cpumask_set_cpu(cpu, mce_sysdev_initialized);
1989
1990 return 0;
1991 error2:
1992 while (--j >= 0)
1993 sysdev_remove_file(sysdev, &mce_banks[j].attr);
1994 error:
1995 while (--i >= 0)
1996 sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
1997
1998 sysdev_unregister(sysdev);
1999
2000 return err;
2001 }
2002
2003 static __cpuinit void mce_sysdev_remove(unsigned int cpu)
2004 {
2005 struct sys_device *sysdev = &per_cpu(mce_sysdev, cpu);
2006 int i;
2007
2008 if (!cpumask_test_cpu(cpu, mce_sysdev_initialized))
2009 return;
2010
2011 for (i = 0; mce_sysdev_attrs[i]; i++)
2012 sysdev_remove_file(sysdev, mce_sysdev_attrs[i]);
2013
2014 for (i = 0; i < banks; i++)
2015 sysdev_remove_file(sysdev, &mce_banks[i].attr);
2016
2017 sysdev_unregister(sysdev);
2018 cpumask_clear_cpu(cpu, mce_sysdev_initialized);
2019 }
2020
2021 /* Make sure there are no machine checks on offlined CPUs. */
2022 static void __cpuinit mce_disable_cpu(void *h)
2023 {
2024 unsigned long action = *(unsigned long *)h;
2025 int i;
2026
2027 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2028 return;
2029
2030 if (!(action & CPU_TASKS_FROZEN))
2031 cmci_clear();
2032 for (i = 0; i < banks; i++) {
2033 struct mce_bank *b = &mce_banks[i];
2034
2035 if (b->init)
2036 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2037 }
2038 }
2039
2040 static void __cpuinit mce_reenable_cpu(void *h)
2041 {
2042 unsigned long action = *(unsigned long *)h;
2043 int i;
2044
2045 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2046 return;
2047
2048 if (!(action & CPU_TASKS_FROZEN))
2049 cmci_reenable();
2050 for (i = 0; i < banks; i++) {
2051 struct mce_bank *b = &mce_banks[i];
2052
2053 if (b->init)
2054 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2055 }
2056 }
2057
2058 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2059 static int __cpuinit
2060 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2061 {
2062 unsigned int cpu = (unsigned long)hcpu;
2063 struct timer_list *t = &per_cpu(mce_timer, cpu);
2064
2065 switch (action) {
2066 case CPU_ONLINE:
2067 case CPU_ONLINE_FROZEN:
2068 mce_sysdev_create(cpu);
2069 if (threshold_cpu_callback)
2070 threshold_cpu_callback(action, cpu);
2071 break;
2072 case CPU_DEAD:
2073 case CPU_DEAD_FROZEN:
2074 if (threshold_cpu_callback)
2075 threshold_cpu_callback(action, cpu);
2076 mce_sysdev_remove(cpu);
2077 break;
2078 case CPU_DOWN_PREPARE:
2079 case CPU_DOWN_PREPARE_FROZEN:
2080 del_timer_sync(t);
2081 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2082 break;
2083 case CPU_DOWN_FAILED:
2084 case CPU_DOWN_FAILED_FROZEN:
2085 if (!mce_ignore_ce && check_interval) {
2086 t->expires = round_jiffies(jiffies +
2087 __get_cpu_var(mce_next_interval));
2088 add_timer_on(t, cpu);
2089 }
2090 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2091 break;
2092 case CPU_POST_DEAD:
2093 /* intentionally ignoring frozen here */
2094 cmci_rediscover(cpu);
2095 break;
2096 }
2097 return NOTIFY_OK;
2098 }
2099
2100 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2101 .notifier_call = mce_cpu_callback,
2102 };
2103
2104 static __init void mce_init_banks(void)
2105 {
2106 int i;
2107
2108 for (i = 0; i < banks; i++) {
2109 struct mce_bank *b = &mce_banks[i];
2110 struct sysdev_attribute *a = &b->attr;
2111
2112 sysfs_attr_init(&a->attr);
2113 a->attr.name = b->attrname;
2114 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2115
2116 a->attr.mode = 0644;
2117 a->show = show_bank;
2118 a->store = set_bank;
2119 }
2120 }
2121
2122 static __init int mcheck_init_device(void)
2123 {
2124 int err;
2125 int i = 0;
2126
2127 if (!mce_available(&boot_cpu_data))
2128 return -EIO;
2129
2130 zalloc_cpumask_var(&mce_sysdev_initialized, GFP_KERNEL);
2131
2132 mce_init_banks();
2133
2134 err = sysdev_class_register(&mce_sysdev_class);
2135 if (err)
2136 return err;
2137
2138 for_each_online_cpu(i) {
2139 err = mce_sysdev_create(i);
2140 if (err)
2141 return err;
2142 }
2143
2144 register_syscore_ops(&mce_syscore_ops);
2145 register_hotcpu_notifier(&mce_cpu_notifier);
2146
2147 /* register character device /dev/mcelog */
2148 misc_register(&mce_chrdev_device);
2149
2150 return err;
2151 }
2152 device_initcall(mcheck_init_device);
2153
2154 /*
2155 * Old style boot options parsing. Only for compatibility.
2156 */
2157 static int __init mcheck_disable(char *str)
2158 {
2159 mce_disabled = 1;
2160 return 1;
2161 }
2162 __setup("nomce", mcheck_disable);
2163
2164 #ifdef CONFIG_DEBUG_FS
2165 struct dentry *mce_get_debugfs_dir(void)
2166 {
2167 static struct dentry *dmce;
2168
2169 if (!dmce)
2170 dmce = debugfs_create_dir("mce", NULL);
2171
2172 return dmce;
2173 }
2174
2175 static void mce_reset(void)
2176 {
2177 cpu_missing = 0;
2178 atomic_set(&mce_fake_paniced, 0);
2179 atomic_set(&mce_executing, 0);
2180 atomic_set(&mce_callin, 0);
2181 atomic_set(&global_nwo, 0);
2182 }
2183
2184 static int fake_panic_get(void *data, u64 *val)
2185 {
2186 *val = fake_panic;
2187 return 0;
2188 }
2189
2190 static int fake_panic_set(void *data, u64 val)
2191 {
2192 mce_reset();
2193 fake_panic = val;
2194 return 0;
2195 }
2196
2197 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2198 fake_panic_set, "%llu\n");
2199
2200 static int __init mcheck_debugfs_init(void)
2201 {
2202 struct dentry *dmce, *ffake_panic;
2203
2204 dmce = mce_get_debugfs_dir();
2205 if (!dmce)
2206 return -ENOMEM;
2207 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2208 &fake_panic_fops);
2209 if (!ffake_panic)
2210 return -ENOMEM;
2211
2212 return 0;
2213 }
2214 late_initcall(mcheck_debugfs_init);
2215 #endif
This page took 0.088851 seconds and 5 git commands to generate.