Merge branch 'master' into for-next
[deliverable/linux.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ratelimit.h>
15 #include <linux/kallsyms.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/sysdev.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/init.h>
30 #include <linux/kmod.h>
31 #include <linux/poll.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34 #include <linux/smp.h>
35 #include <linux/fs.h>
36 #include <linux/mm.h>
37
38 #include <asm/processor.h>
39 #include <asm/hw_irq.h>
40 #include <asm/apic.h>
41 #include <asm/idle.h>
42 #include <asm/ipi.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 /* Handle unconfigured int18 (should never happen) */
49 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
50 {
51 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
52 smp_processor_id());
53 }
54
55 /* Call the installed machine check handler for this CPU setup. */
56 void (*machine_check_vector)(struct pt_regs *, long error_code) =
57 unexpected_machine_check;
58
59 int mce_disabled __read_mostly;
60
61 #ifdef CONFIG_X86_NEW_MCE
62
63 #define MISC_MCELOG_MINOR 227
64
65 #define SPINUNIT 100 /* 100ns */
66
67 atomic_t mce_entry;
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 /*
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
77 */
78 static int tolerant __read_mostly = 1;
79 static int banks __read_mostly;
80 static u64 *bank __read_mostly;
81 static int rip_msr __read_mostly;
82 static int mce_bootlog __read_mostly = -1;
83 static int monarch_timeout __read_mostly = -1;
84 static int mce_panic_timeout __read_mostly;
85 static int mce_dont_log_ce __read_mostly;
86 int mce_cmci_disabled __read_mostly;
87 int mce_ignore_ce __read_mostly;
88 int mce_ser __read_mostly;
89
90 /* User mode helper program triggered by machine check event */
91 static unsigned long mce_need_notify;
92 static char mce_helper[128];
93 static char *mce_helper_argv[2] = { mce_helper, NULL };
94
95 static unsigned long dont_init_banks;
96
97 static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
98 static DEFINE_PER_CPU(struct mce, mces_seen);
99 static int cpu_missing;
100
101
102 /* MCA banks polled by the period polling timer for corrected events */
103 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
104 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
105 };
106
107 static inline int skip_bank_init(int i)
108 {
109 return i < BITS_PER_LONG && test_bit(i, &dont_init_banks);
110 }
111
112 static DEFINE_PER_CPU(struct work_struct, mce_work);
113
114 /* Do initial initialization of a struct mce */
115 void mce_setup(struct mce *m)
116 {
117 memset(m, 0, sizeof(struct mce));
118 m->cpu = m->extcpu = smp_processor_id();
119 rdtscll(m->tsc);
120 /* We hope get_seconds stays lockless */
121 m->time = get_seconds();
122 m->cpuvendor = boot_cpu_data.x86_vendor;
123 m->cpuid = cpuid_eax(1);
124 #ifdef CONFIG_SMP
125 m->socketid = cpu_data(m->extcpu).phys_proc_id;
126 #endif
127 m->apicid = cpu_data(m->extcpu).initial_apicid;
128 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
129 }
130
131 DEFINE_PER_CPU(struct mce, injectm);
132 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
133
134 /*
135 * Lockless MCE logging infrastructure.
136 * This avoids deadlocks on printk locks without having to break locks. Also
137 * separate MCEs from kernel messages to avoid bogus bug reports.
138 */
139
140 static struct mce_log mcelog = {
141 .signature = MCE_LOG_SIGNATURE,
142 .len = MCE_LOG_LEN,
143 .recordlen = sizeof(struct mce),
144 };
145
146 void mce_log(struct mce *mce)
147 {
148 unsigned next, entry;
149
150 mce->finished = 0;
151 wmb();
152 for (;;) {
153 entry = rcu_dereference(mcelog.next);
154 for (;;) {
155 /*
156 * When the buffer fills up discard new entries.
157 * Assume that the earlier errors are the more
158 * interesting ones:
159 */
160 if (entry >= MCE_LOG_LEN) {
161 set_bit(MCE_OVERFLOW,
162 (unsigned long *)&mcelog.flags);
163 return;
164 }
165 /* Old left over entry. Skip: */
166 if (mcelog.entry[entry].finished) {
167 entry++;
168 continue;
169 }
170 break;
171 }
172 smp_rmb();
173 next = entry + 1;
174 if (cmpxchg(&mcelog.next, entry, next) == entry)
175 break;
176 }
177 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
178 wmb();
179 mcelog.entry[entry].finished = 1;
180 wmb();
181
182 mce->finished = 1;
183 set_bit(0, &mce_need_notify);
184 }
185
186 static void print_mce(struct mce *m)
187 {
188 printk(KERN_EMERG
189 "CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
190 m->extcpu, m->mcgstatus, m->bank, m->status);
191 if (m->ip) {
192 printk(KERN_EMERG "RIP%s %02x:<%016Lx> ",
193 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
194 m->cs, m->ip);
195 if (m->cs == __KERNEL_CS)
196 print_symbol("{%s}", m->ip);
197 printk("\n");
198 }
199 printk(KERN_EMERG "TSC %llx ", m->tsc);
200 if (m->addr)
201 printk("ADDR %llx ", m->addr);
202 if (m->misc)
203 printk("MISC %llx ", m->misc);
204 printk("\n");
205 printk(KERN_EMERG "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
206 m->cpuvendor, m->cpuid, m->time, m->socketid,
207 m->apicid);
208 }
209
210 static void print_mce_head(void)
211 {
212 printk(KERN_EMERG "\n" KERN_EMERG "HARDWARE ERROR\n");
213 }
214
215 static void print_mce_tail(void)
216 {
217 printk(KERN_EMERG "This is not a software problem!\n"
218 KERN_EMERG "Run through mcelog --ascii to decode and contact your hardware vendor\n");
219 }
220
221 #define PANIC_TIMEOUT 5 /* 5 seconds */
222
223 static atomic_t mce_paniced;
224
225 /* Panic in progress. Enable interrupts and wait for final IPI */
226 static void wait_for_panic(void)
227 {
228 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
229 preempt_disable();
230 local_irq_enable();
231 while (timeout-- > 0)
232 udelay(1);
233 if (panic_timeout == 0)
234 panic_timeout = mce_panic_timeout;
235 panic("Panicing machine check CPU died");
236 }
237
238 static void mce_panic(char *msg, struct mce *final, char *exp)
239 {
240 int i;
241
242 /*
243 * Make sure only one CPU runs in machine check panic
244 */
245 if (atomic_add_return(1, &mce_paniced) > 1)
246 wait_for_panic();
247 barrier();
248
249 bust_spinlocks(1);
250 console_verbose();
251 print_mce_head();
252 /* First print corrected ones that are still unlogged */
253 for (i = 0; i < MCE_LOG_LEN; i++) {
254 struct mce *m = &mcelog.entry[i];
255 if (!(m->status & MCI_STATUS_VAL))
256 continue;
257 if (!(m->status & MCI_STATUS_UC))
258 print_mce(m);
259 }
260 /* Now print uncorrected but with the final one last */
261 for (i = 0; i < MCE_LOG_LEN; i++) {
262 struct mce *m = &mcelog.entry[i];
263 if (!(m->status & MCI_STATUS_VAL))
264 continue;
265 if (!(m->status & MCI_STATUS_UC))
266 continue;
267 if (!final || memcmp(m, final, sizeof(struct mce)))
268 print_mce(m);
269 }
270 if (final)
271 print_mce(final);
272 if (cpu_missing)
273 printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
274 print_mce_tail();
275 if (exp)
276 printk(KERN_EMERG "Machine check: %s\n", exp);
277 if (panic_timeout == 0)
278 panic_timeout = mce_panic_timeout;
279 panic(msg);
280 }
281
282 /* Support code for software error injection */
283
284 static int msr_to_offset(u32 msr)
285 {
286 unsigned bank = __get_cpu_var(injectm.bank);
287 if (msr == rip_msr)
288 return offsetof(struct mce, ip);
289 if (msr == MSR_IA32_MC0_STATUS + bank*4)
290 return offsetof(struct mce, status);
291 if (msr == MSR_IA32_MC0_ADDR + bank*4)
292 return offsetof(struct mce, addr);
293 if (msr == MSR_IA32_MC0_MISC + bank*4)
294 return offsetof(struct mce, misc);
295 if (msr == MSR_IA32_MCG_STATUS)
296 return offsetof(struct mce, mcgstatus);
297 return -1;
298 }
299
300 /* MSR access wrappers used for error injection */
301 static u64 mce_rdmsrl(u32 msr)
302 {
303 u64 v;
304 if (__get_cpu_var(injectm).finished) {
305 int offset = msr_to_offset(msr);
306 if (offset < 0)
307 return 0;
308 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
309 }
310 rdmsrl(msr, v);
311 return v;
312 }
313
314 static void mce_wrmsrl(u32 msr, u64 v)
315 {
316 if (__get_cpu_var(injectm).finished) {
317 int offset = msr_to_offset(msr);
318 if (offset >= 0)
319 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
320 return;
321 }
322 wrmsrl(msr, v);
323 }
324
325 /*
326 * Simple lockless ring to communicate PFNs from the exception handler with the
327 * process context work function. This is vastly simplified because there's
328 * only a single reader and a single writer.
329 */
330 #define MCE_RING_SIZE 16 /* we use one entry less */
331
332 struct mce_ring {
333 unsigned short start;
334 unsigned short end;
335 unsigned long ring[MCE_RING_SIZE];
336 };
337 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
338
339 /* Runs with CPU affinity in workqueue */
340 static int mce_ring_empty(void)
341 {
342 struct mce_ring *r = &__get_cpu_var(mce_ring);
343
344 return r->start == r->end;
345 }
346
347 static int mce_ring_get(unsigned long *pfn)
348 {
349 struct mce_ring *r;
350 int ret = 0;
351
352 *pfn = 0;
353 get_cpu();
354 r = &__get_cpu_var(mce_ring);
355 if (r->start == r->end)
356 goto out;
357 *pfn = r->ring[r->start];
358 r->start = (r->start + 1) % MCE_RING_SIZE;
359 ret = 1;
360 out:
361 put_cpu();
362 return ret;
363 }
364
365 /* Always runs in MCE context with preempt off */
366 static int mce_ring_add(unsigned long pfn)
367 {
368 struct mce_ring *r = &__get_cpu_var(mce_ring);
369 unsigned next;
370
371 next = (r->end + 1) % MCE_RING_SIZE;
372 if (next == r->start)
373 return -1;
374 r->ring[r->end] = pfn;
375 wmb();
376 r->end = next;
377 return 0;
378 }
379
380 int mce_available(struct cpuinfo_x86 *c)
381 {
382 if (mce_disabled)
383 return 0;
384 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
385 }
386
387 static void mce_schedule_work(void)
388 {
389 if (!mce_ring_empty()) {
390 struct work_struct *work = &__get_cpu_var(mce_work);
391 if (!work_pending(work))
392 schedule_work(work);
393 }
394 }
395
396 /*
397 * Get the address of the instruction at the time of the machine check
398 * error.
399 */
400 static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
401 {
402
403 if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
404 m->ip = regs->ip;
405 m->cs = regs->cs;
406 } else {
407 m->ip = 0;
408 m->cs = 0;
409 }
410 if (rip_msr)
411 m->ip = mce_rdmsrl(rip_msr);
412 }
413
414 #ifdef CONFIG_X86_LOCAL_APIC
415 /*
416 * Called after interrupts have been reenabled again
417 * when a MCE happened during an interrupts off region
418 * in the kernel.
419 */
420 asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
421 {
422 ack_APIC_irq();
423 exit_idle();
424 irq_enter();
425 mce_notify_irq();
426 mce_schedule_work();
427 irq_exit();
428 }
429 #endif
430
431 static void mce_report_event(struct pt_regs *regs)
432 {
433 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
434 mce_notify_irq();
435 /*
436 * Triggering the work queue here is just an insurance
437 * policy in case the syscall exit notify handler
438 * doesn't run soon enough or ends up running on the
439 * wrong CPU (can happen when audit sleeps)
440 */
441 mce_schedule_work();
442 return;
443 }
444
445 #ifdef CONFIG_X86_LOCAL_APIC
446 /*
447 * Without APIC do not notify. The event will be picked
448 * up eventually.
449 */
450 if (!cpu_has_apic)
451 return;
452
453 /*
454 * When interrupts are disabled we cannot use
455 * kernel services safely. Trigger an self interrupt
456 * through the APIC to instead do the notification
457 * after interrupts are reenabled again.
458 */
459 apic->send_IPI_self(MCE_SELF_VECTOR);
460
461 /*
462 * Wait for idle afterwards again so that we don't leave the
463 * APIC in a non idle state because the normal APIC writes
464 * cannot exclude us.
465 */
466 apic_wait_icr_idle();
467 #endif
468 }
469
470 DEFINE_PER_CPU(unsigned, mce_poll_count);
471
472 /*
473 * Poll for corrected events or events that happened before reset.
474 * Those are just logged through /dev/mcelog.
475 *
476 * This is executed in standard interrupt context.
477 *
478 * Note: spec recommends to panic for fatal unsignalled
479 * errors here. However this would be quite problematic --
480 * we would need to reimplement the Monarch handling and
481 * it would mess up the exclusion between exception handler
482 * and poll hander -- * so we skip this for now.
483 * These cases should not happen anyways, or only when the CPU
484 * is already totally * confused. In this case it's likely it will
485 * not fully execute the machine check handler either.
486 */
487 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
488 {
489 struct mce m;
490 int i;
491
492 __get_cpu_var(mce_poll_count)++;
493
494 mce_setup(&m);
495
496 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
497 for (i = 0; i < banks; i++) {
498 if (!bank[i] || !test_bit(i, *b))
499 continue;
500
501 m.misc = 0;
502 m.addr = 0;
503 m.bank = i;
504 m.tsc = 0;
505
506 barrier();
507 m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
508 if (!(m.status & MCI_STATUS_VAL))
509 continue;
510
511 /*
512 * Uncorrected or signalled events are handled by the exception
513 * handler when it is enabled, so don't process those here.
514 *
515 * TBD do the same check for MCI_STATUS_EN here?
516 */
517 if (!(flags & MCP_UC) &&
518 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
519 continue;
520
521 if (m.status & MCI_STATUS_MISCV)
522 m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
523 if (m.status & MCI_STATUS_ADDRV)
524 m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
525
526 if (!(flags & MCP_TIMESTAMP))
527 m.tsc = 0;
528 /*
529 * Don't get the IP here because it's unlikely to
530 * have anything to do with the actual error location.
531 */
532 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
533 mce_log(&m);
534 add_taint(TAINT_MACHINE_CHECK);
535 }
536
537 /*
538 * Clear state for this bank.
539 */
540 mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
541 }
542
543 /*
544 * Don't clear MCG_STATUS here because it's only defined for
545 * exceptions.
546 */
547
548 sync_core();
549 }
550 EXPORT_SYMBOL_GPL(machine_check_poll);
551
552 /*
553 * Do a quick check if any of the events requires a panic.
554 * This decides if we keep the events around or clear them.
555 */
556 static int mce_no_way_out(struct mce *m, char **msg)
557 {
558 int i;
559
560 for (i = 0; i < banks; i++) {
561 m->status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
562 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
563 return 1;
564 }
565 return 0;
566 }
567
568 /*
569 * Variable to establish order between CPUs while scanning.
570 * Each CPU spins initially until executing is equal its number.
571 */
572 static atomic_t mce_executing;
573
574 /*
575 * Defines order of CPUs on entry. First CPU becomes Monarch.
576 */
577 static atomic_t mce_callin;
578
579 /*
580 * Check if a timeout waiting for other CPUs happened.
581 */
582 static int mce_timed_out(u64 *t)
583 {
584 /*
585 * The others already did panic for some reason.
586 * Bail out like in a timeout.
587 * rmb() to tell the compiler that system_state
588 * might have been modified by someone else.
589 */
590 rmb();
591 if (atomic_read(&mce_paniced))
592 wait_for_panic();
593 if (!monarch_timeout)
594 goto out;
595 if ((s64)*t < SPINUNIT) {
596 /* CHECKME: Make panic default for 1 too? */
597 if (tolerant < 1)
598 mce_panic("Timeout synchronizing machine check over CPUs",
599 NULL, NULL);
600 cpu_missing = 1;
601 return 1;
602 }
603 *t -= SPINUNIT;
604 out:
605 touch_nmi_watchdog();
606 return 0;
607 }
608
609 /*
610 * The Monarch's reign. The Monarch is the CPU who entered
611 * the machine check handler first. It waits for the others to
612 * raise the exception too and then grades them. When any
613 * error is fatal panic. Only then let the others continue.
614 *
615 * The other CPUs entering the MCE handler will be controlled by the
616 * Monarch. They are called Subjects.
617 *
618 * This way we prevent any potential data corruption in a unrecoverable case
619 * and also makes sure always all CPU's errors are examined.
620 *
621 * Also this detects the case of an machine check event coming from outer
622 * space (not detected by any CPUs) In this case some external agent wants
623 * us to shut down, so panic too.
624 *
625 * The other CPUs might still decide to panic if the handler happens
626 * in a unrecoverable place, but in this case the system is in a semi-stable
627 * state and won't corrupt anything by itself. It's ok to let the others
628 * continue for a bit first.
629 *
630 * All the spin loops have timeouts; when a timeout happens a CPU
631 * typically elects itself to be Monarch.
632 */
633 static void mce_reign(void)
634 {
635 int cpu;
636 struct mce *m = NULL;
637 int global_worst = 0;
638 char *msg = NULL;
639 char *nmsg = NULL;
640
641 /*
642 * This CPU is the Monarch and the other CPUs have run
643 * through their handlers.
644 * Grade the severity of the errors of all the CPUs.
645 */
646 for_each_possible_cpu(cpu) {
647 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
648 &nmsg);
649 if (severity > global_worst) {
650 msg = nmsg;
651 global_worst = severity;
652 m = &per_cpu(mces_seen, cpu);
653 }
654 }
655
656 /*
657 * Cannot recover? Panic here then.
658 * This dumps all the mces in the log buffer and stops the
659 * other CPUs.
660 */
661 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
662 mce_panic("Fatal Machine check", m, msg);
663
664 /*
665 * For UC somewhere we let the CPU who detects it handle it.
666 * Also must let continue the others, otherwise the handling
667 * CPU could deadlock on a lock.
668 */
669
670 /*
671 * No machine check event found. Must be some external
672 * source or one CPU is hung. Panic.
673 */
674 if (!m && tolerant < 3)
675 mce_panic("Machine check from unknown source", NULL, NULL);
676
677 /*
678 * Now clear all the mces_seen so that they don't reappear on
679 * the next mce.
680 */
681 for_each_possible_cpu(cpu)
682 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
683 }
684
685 static atomic_t global_nwo;
686
687 /*
688 * Start of Monarch synchronization. This waits until all CPUs have
689 * entered the exception handler and then determines if any of them
690 * saw a fatal event that requires panic. Then it executes them
691 * in the entry order.
692 * TBD double check parallel CPU hotunplug
693 */
694 static int mce_start(int *no_way_out)
695 {
696 int order;
697 int cpus = num_online_cpus();
698 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
699
700 if (!timeout)
701 return -1;
702
703 atomic_add(*no_way_out, &global_nwo);
704 /*
705 * global_nwo should be updated before mce_callin
706 */
707 smp_wmb();
708 order = atomic_add_return(1, &mce_callin);
709
710 /*
711 * Wait for everyone.
712 */
713 while (atomic_read(&mce_callin) != cpus) {
714 if (mce_timed_out(&timeout)) {
715 atomic_set(&global_nwo, 0);
716 return -1;
717 }
718 ndelay(SPINUNIT);
719 }
720
721 /*
722 * mce_callin should be read before global_nwo
723 */
724 smp_rmb();
725
726 if (order == 1) {
727 /*
728 * Monarch: Starts executing now, the others wait.
729 */
730 atomic_set(&mce_executing, 1);
731 } else {
732 /*
733 * Subject: Now start the scanning loop one by one in
734 * the original callin order.
735 * This way when there are any shared banks it will be
736 * only seen by one CPU before cleared, avoiding duplicates.
737 */
738 while (atomic_read(&mce_executing) < order) {
739 if (mce_timed_out(&timeout)) {
740 atomic_set(&global_nwo, 0);
741 return -1;
742 }
743 ndelay(SPINUNIT);
744 }
745 }
746
747 /*
748 * Cache the global no_way_out state.
749 */
750 *no_way_out = atomic_read(&global_nwo);
751
752 return order;
753 }
754
755 /*
756 * Synchronize between CPUs after main scanning loop.
757 * This invokes the bulk of the Monarch processing.
758 */
759 static int mce_end(int order)
760 {
761 int ret = -1;
762 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
763
764 if (!timeout)
765 goto reset;
766 if (order < 0)
767 goto reset;
768
769 /*
770 * Allow others to run.
771 */
772 atomic_inc(&mce_executing);
773
774 if (order == 1) {
775 /* CHECKME: Can this race with a parallel hotplug? */
776 int cpus = num_online_cpus();
777
778 /*
779 * Monarch: Wait for everyone to go through their scanning
780 * loops.
781 */
782 while (atomic_read(&mce_executing) <= cpus) {
783 if (mce_timed_out(&timeout))
784 goto reset;
785 ndelay(SPINUNIT);
786 }
787
788 mce_reign();
789 barrier();
790 ret = 0;
791 } else {
792 /*
793 * Subject: Wait for Monarch to finish.
794 */
795 while (atomic_read(&mce_executing) != 0) {
796 if (mce_timed_out(&timeout))
797 goto reset;
798 ndelay(SPINUNIT);
799 }
800
801 /*
802 * Don't reset anything. That's done by the Monarch.
803 */
804 return 0;
805 }
806
807 /*
808 * Reset all global state.
809 */
810 reset:
811 atomic_set(&global_nwo, 0);
812 atomic_set(&mce_callin, 0);
813 barrier();
814
815 /*
816 * Let others run again.
817 */
818 atomic_set(&mce_executing, 0);
819 return ret;
820 }
821
822 /*
823 * Check if the address reported by the CPU is in a format we can parse.
824 * It would be possible to add code for most other cases, but all would
825 * be somewhat complicated (e.g. segment offset would require an instruction
826 * parser). So only support physical addresses upto page granuality for now.
827 */
828 static int mce_usable_address(struct mce *m)
829 {
830 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
831 return 0;
832 if ((m->misc & 0x3f) > PAGE_SHIFT)
833 return 0;
834 if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
835 return 0;
836 return 1;
837 }
838
839 static void mce_clear_state(unsigned long *toclear)
840 {
841 int i;
842
843 for (i = 0; i < banks; i++) {
844 if (test_bit(i, toclear))
845 mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
846 }
847 }
848
849 /*
850 * The actual machine check handler. This only handles real
851 * exceptions when something got corrupted coming in through int 18.
852 *
853 * This is executed in NMI context not subject to normal locking rules. This
854 * implies that most kernel services cannot be safely used. Don't even
855 * think about putting a printk in there!
856 *
857 * On Intel systems this is entered on all CPUs in parallel through
858 * MCE broadcast. However some CPUs might be broken beyond repair,
859 * so be always careful when synchronizing with others.
860 */
861 void do_machine_check(struct pt_regs *regs, long error_code)
862 {
863 struct mce m, *final;
864 int i;
865 int worst = 0;
866 int severity;
867 /*
868 * Establish sequential order between the CPUs entering the machine
869 * check handler.
870 */
871 int order;
872 /*
873 * If no_way_out gets set, there is no safe way to recover from this
874 * MCE. If tolerant is cranked up, we'll try anyway.
875 */
876 int no_way_out = 0;
877 /*
878 * If kill_it gets set, there might be a way to recover from this
879 * error.
880 */
881 int kill_it = 0;
882 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
883 char *msg = "Unknown";
884
885 atomic_inc(&mce_entry);
886
887 __get_cpu_var(mce_exception_count)++;
888
889 if (notify_die(DIE_NMI, "machine check", regs, error_code,
890 18, SIGKILL) == NOTIFY_STOP)
891 goto out;
892 if (!banks)
893 goto out;
894
895 mce_setup(&m);
896
897 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
898 no_way_out = mce_no_way_out(&m, &msg);
899
900 final = &__get_cpu_var(mces_seen);
901 *final = m;
902
903 barrier();
904
905 /*
906 * When no restart IP must always kill or panic.
907 */
908 if (!(m.mcgstatus & MCG_STATUS_RIPV))
909 kill_it = 1;
910
911 /*
912 * Go through all the banks in exclusion of the other CPUs.
913 * This way we don't report duplicated events on shared banks
914 * because the first one to see it will clear it.
915 */
916 order = mce_start(&no_way_out);
917 for (i = 0; i < banks; i++) {
918 __clear_bit(i, toclear);
919 if (!bank[i])
920 continue;
921
922 m.misc = 0;
923 m.addr = 0;
924 m.bank = i;
925
926 m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
927 if ((m.status & MCI_STATUS_VAL) == 0)
928 continue;
929
930 /*
931 * Non uncorrected or non signaled errors are handled by
932 * machine_check_poll. Leave them alone, unless this panics.
933 */
934 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
935 !no_way_out)
936 continue;
937
938 /*
939 * Set taint even when machine check was not enabled.
940 */
941 add_taint(TAINT_MACHINE_CHECK);
942
943 severity = mce_severity(&m, tolerant, NULL);
944
945 /*
946 * When machine check was for corrected handler don't touch,
947 * unless we're panicing.
948 */
949 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
950 continue;
951 __set_bit(i, toclear);
952 if (severity == MCE_NO_SEVERITY) {
953 /*
954 * Machine check event was not enabled. Clear, but
955 * ignore.
956 */
957 continue;
958 }
959
960 /*
961 * Kill on action required.
962 */
963 if (severity == MCE_AR_SEVERITY)
964 kill_it = 1;
965
966 if (m.status & MCI_STATUS_MISCV)
967 m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
968 if (m.status & MCI_STATUS_ADDRV)
969 m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
970
971 /*
972 * Action optional error. Queue address for later processing.
973 * When the ring overflows we just ignore the AO error.
974 * RED-PEN add some logging mechanism when
975 * usable_address or mce_add_ring fails.
976 * RED-PEN don't ignore overflow for tolerant == 0
977 */
978 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
979 mce_ring_add(m.addr >> PAGE_SHIFT);
980
981 mce_get_rip(&m, regs);
982 mce_log(&m);
983
984 if (severity > worst) {
985 *final = m;
986 worst = severity;
987 }
988 }
989
990 if (!no_way_out)
991 mce_clear_state(toclear);
992
993 /*
994 * Do most of the synchronization with other CPUs.
995 * When there's any problem use only local no_way_out state.
996 */
997 if (mce_end(order) < 0)
998 no_way_out = worst >= MCE_PANIC_SEVERITY;
999
1000 /*
1001 * If we have decided that we just CAN'T continue, and the user
1002 * has not set tolerant to an insane level, give up and die.
1003 *
1004 * This is mainly used in the case when the system doesn't
1005 * support MCE broadcasting or it has been disabled.
1006 */
1007 if (no_way_out && tolerant < 3)
1008 mce_panic("Fatal machine check on current CPU", final, msg);
1009
1010 /*
1011 * If the error seems to be unrecoverable, something should be
1012 * done. Try to kill as little as possible. If we can kill just
1013 * one task, do that. If the user has set the tolerance very
1014 * high, don't try to do anything at all.
1015 */
1016
1017 if (kill_it && tolerant < 3)
1018 force_sig(SIGBUS, current);
1019
1020 /* notify userspace ASAP */
1021 set_thread_flag(TIF_MCE_NOTIFY);
1022
1023 if (worst > 0)
1024 mce_report_event(regs);
1025 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1026 out:
1027 atomic_dec(&mce_entry);
1028 sync_core();
1029 }
1030 EXPORT_SYMBOL_GPL(do_machine_check);
1031
1032 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1033 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1034 {
1035 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1036 }
1037
1038 /*
1039 * Called after mce notification in process context. This code
1040 * is allowed to sleep. Call the high level VM handler to process
1041 * any corrupted pages.
1042 * Assume that the work queue code only calls this one at a time
1043 * per CPU.
1044 * Note we don't disable preemption, so this code might run on the wrong
1045 * CPU. In this case the event is picked up by the scheduled work queue.
1046 * This is merely a fast path to expedite processing in some common
1047 * cases.
1048 */
1049 void mce_notify_process(void)
1050 {
1051 unsigned long pfn;
1052 mce_notify_irq();
1053 while (mce_ring_get(&pfn))
1054 memory_failure(pfn, MCE_VECTOR);
1055 }
1056
1057 static void mce_process_work(struct work_struct *dummy)
1058 {
1059 mce_notify_process();
1060 }
1061
1062 #ifdef CONFIG_X86_MCE_INTEL
1063 /***
1064 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1065 * @cpu: The CPU on which the event occurred.
1066 * @status: Event status information
1067 *
1068 * This function should be called by the thermal interrupt after the
1069 * event has been processed and the decision was made to log the event
1070 * further.
1071 *
1072 * The status parameter will be saved to the 'status' field of 'struct mce'
1073 * and historically has been the register value of the
1074 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1075 */
1076 void mce_log_therm_throt_event(__u64 status)
1077 {
1078 struct mce m;
1079
1080 mce_setup(&m);
1081 m.bank = MCE_THERMAL_BANK;
1082 m.status = status;
1083 mce_log(&m);
1084 }
1085 #endif /* CONFIG_X86_MCE_INTEL */
1086
1087 /*
1088 * Periodic polling timer for "silent" machine check errors. If the
1089 * poller finds an MCE, poll 2x faster. When the poller finds no more
1090 * errors, poll 2x slower (up to check_interval seconds).
1091 */
1092 static int check_interval = 5 * 60; /* 5 minutes */
1093
1094 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1095 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1096
1097 static void mcheck_timer(unsigned long data)
1098 {
1099 struct timer_list *t = &per_cpu(mce_timer, data);
1100 int *n;
1101
1102 WARN_ON(smp_processor_id() != data);
1103
1104 if (mce_available(&current_cpu_data)) {
1105 machine_check_poll(MCP_TIMESTAMP,
1106 &__get_cpu_var(mce_poll_banks));
1107 }
1108
1109 /*
1110 * Alert userspace if needed. If we logged an MCE, reduce the
1111 * polling interval, otherwise increase the polling interval.
1112 */
1113 n = &__get_cpu_var(mce_next_interval);
1114 if (mce_notify_irq())
1115 *n = max(*n/2, HZ/100);
1116 else
1117 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1118
1119 t->expires = jiffies + *n;
1120 add_timer_on(t, smp_processor_id());
1121 }
1122
1123 static void mce_do_trigger(struct work_struct *work)
1124 {
1125 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1126 }
1127
1128 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1129
1130 /*
1131 * Notify the user(s) about new machine check events.
1132 * Can be called from interrupt context, but not from machine check/NMI
1133 * context.
1134 */
1135 int mce_notify_irq(void)
1136 {
1137 /* Not more than two messages every minute */
1138 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1139
1140 clear_thread_flag(TIF_MCE_NOTIFY);
1141
1142 if (test_and_clear_bit(0, &mce_need_notify)) {
1143 wake_up_interruptible(&mce_wait);
1144
1145 /*
1146 * There is no risk of missing notifications because
1147 * work_pending is always cleared before the function is
1148 * executed.
1149 */
1150 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1151 schedule_work(&mce_trigger_work);
1152
1153 if (__ratelimit(&ratelimit))
1154 printk(KERN_INFO "Machine check events logged\n");
1155
1156 return 1;
1157 }
1158 return 0;
1159 }
1160 EXPORT_SYMBOL_GPL(mce_notify_irq);
1161
1162 /*
1163 * Initialize Machine Checks for a CPU.
1164 */
1165 static int mce_cap_init(void)
1166 {
1167 unsigned b;
1168 u64 cap;
1169
1170 rdmsrl(MSR_IA32_MCG_CAP, cap);
1171
1172 b = cap & MCG_BANKCNT_MASK;
1173 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1174
1175 if (b > MAX_NR_BANKS) {
1176 printk(KERN_WARNING
1177 "MCE: Using only %u machine check banks out of %u\n",
1178 MAX_NR_BANKS, b);
1179 b = MAX_NR_BANKS;
1180 }
1181
1182 /* Don't support asymmetric configurations today */
1183 WARN_ON(banks != 0 && b != banks);
1184 banks = b;
1185 if (!bank) {
1186 bank = kmalloc(banks * sizeof(u64), GFP_KERNEL);
1187 if (!bank)
1188 return -ENOMEM;
1189 memset(bank, 0xff, banks * sizeof(u64));
1190 }
1191
1192 /* Use accurate RIP reporting if available. */
1193 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1194 rip_msr = MSR_IA32_MCG_EIP;
1195
1196 if (cap & MCG_SER_P)
1197 mce_ser = 1;
1198
1199 return 0;
1200 }
1201
1202 static void mce_init(void)
1203 {
1204 mce_banks_t all_banks;
1205 u64 cap;
1206 int i;
1207
1208 /*
1209 * Log the machine checks left over from the previous reset.
1210 */
1211 bitmap_fill(all_banks, MAX_NR_BANKS);
1212 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1213
1214 set_in_cr4(X86_CR4_MCE);
1215
1216 rdmsrl(MSR_IA32_MCG_CAP, cap);
1217 if (cap & MCG_CTL_P)
1218 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1219
1220 for (i = 0; i < banks; i++) {
1221 if (skip_bank_init(i))
1222 continue;
1223 wrmsrl(MSR_IA32_MC0_CTL+4*i, bank[i]);
1224 wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
1225 }
1226 }
1227
1228 /* Add per CPU specific workarounds here */
1229 static void mce_cpu_quirks(struct cpuinfo_x86 *c)
1230 {
1231 /* This should be disabled by the BIOS, but isn't always */
1232 if (c->x86_vendor == X86_VENDOR_AMD) {
1233 if (c->x86 == 15 && banks > 4) {
1234 /*
1235 * disable GART TBL walk error reporting, which
1236 * trips off incorrectly with the IOMMU & 3ware
1237 * & Cerberus:
1238 */
1239 clear_bit(10, (unsigned long *)&bank[4]);
1240 }
1241 if (c->x86 <= 17 && mce_bootlog < 0) {
1242 /*
1243 * Lots of broken BIOS around that don't clear them
1244 * by default and leave crap in there. Don't log:
1245 */
1246 mce_bootlog = 0;
1247 }
1248 /*
1249 * Various K7s with broken bank 0 around. Always disable
1250 * by default.
1251 */
1252 if (c->x86 == 6 && banks > 0)
1253 bank[0] = 0;
1254 }
1255
1256 if (c->x86_vendor == X86_VENDOR_INTEL) {
1257 /*
1258 * SDM documents that on family 6 bank 0 should not be written
1259 * because it aliases to another special BIOS controlled
1260 * register.
1261 * But it's not aliased anymore on model 0x1a+
1262 * Don't ignore bank 0 completely because there could be a
1263 * valid event later, merely don't write CTL0.
1264 */
1265
1266 if (c->x86 == 6 && c->x86_model < 0x1A)
1267 __set_bit(0, &dont_init_banks);
1268
1269 /*
1270 * All newer Intel systems support MCE broadcasting. Enable
1271 * synchronization with a one second timeout.
1272 */
1273 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1274 monarch_timeout < 0)
1275 monarch_timeout = USEC_PER_SEC;
1276 }
1277 if (monarch_timeout < 0)
1278 monarch_timeout = 0;
1279 if (mce_bootlog != 0)
1280 mce_panic_timeout = 30;
1281 }
1282
1283 static void __cpuinit mce_ancient_init(struct cpuinfo_x86 *c)
1284 {
1285 if (c->x86 != 5)
1286 return;
1287 switch (c->x86_vendor) {
1288 case X86_VENDOR_INTEL:
1289 intel_p5_mcheck_init(c);
1290 break;
1291 case X86_VENDOR_CENTAUR:
1292 winchip_mcheck_init(c);
1293 break;
1294 }
1295 }
1296
1297 static void mce_cpu_features(struct cpuinfo_x86 *c)
1298 {
1299 switch (c->x86_vendor) {
1300 case X86_VENDOR_INTEL:
1301 mce_intel_feature_init(c);
1302 break;
1303 case X86_VENDOR_AMD:
1304 mce_amd_feature_init(c);
1305 break;
1306 default:
1307 break;
1308 }
1309 }
1310
1311 static void mce_init_timer(void)
1312 {
1313 struct timer_list *t = &__get_cpu_var(mce_timer);
1314 int *n = &__get_cpu_var(mce_next_interval);
1315
1316 if (mce_ignore_ce)
1317 return;
1318
1319 *n = check_interval * HZ;
1320 if (!*n)
1321 return;
1322 setup_timer(t, mcheck_timer, smp_processor_id());
1323 t->expires = round_jiffies(jiffies + *n);
1324 add_timer_on(t, smp_processor_id());
1325 }
1326
1327 /*
1328 * Called for each booted CPU to set up machine checks.
1329 * Must be called with preempt off:
1330 */
1331 void __cpuinit mcheck_init(struct cpuinfo_x86 *c)
1332 {
1333 if (mce_disabled)
1334 return;
1335
1336 mce_ancient_init(c);
1337
1338 if (!mce_available(c))
1339 return;
1340
1341 if (mce_cap_init() < 0) {
1342 mce_disabled = 1;
1343 return;
1344 }
1345 mce_cpu_quirks(c);
1346
1347 machine_check_vector = do_machine_check;
1348
1349 mce_init();
1350 mce_cpu_features(c);
1351 mce_init_timer();
1352 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1353 }
1354
1355 /*
1356 * Character device to read and clear the MCE log.
1357 */
1358
1359 static DEFINE_SPINLOCK(mce_state_lock);
1360 static int open_count; /* #times opened */
1361 static int open_exclu; /* already open exclusive? */
1362
1363 static int mce_open(struct inode *inode, struct file *file)
1364 {
1365 spin_lock(&mce_state_lock);
1366
1367 if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1368 spin_unlock(&mce_state_lock);
1369
1370 return -EBUSY;
1371 }
1372
1373 if (file->f_flags & O_EXCL)
1374 open_exclu = 1;
1375 open_count++;
1376
1377 spin_unlock(&mce_state_lock);
1378
1379 return nonseekable_open(inode, file);
1380 }
1381
1382 static int mce_release(struct inode *inode, struct file *file)
1383 {
1384 spin_lock(&mce_state_lock);
1385
1386 open_count--;
1387 open_exclu = 0;
1388
1389 spin_unlock(&mce_state_lock);
1390
1391 return 0;
1392 }
1393
1394 static void collect_tscs(void *data)
1395 {
1396 unsigned long *cpu_tsc = (unsigned long *)data;
1397
1398 rdtscll(cpu_tsc[smp_processor_id()]);
1399 }
1400
1401 static DEFINE_MUTEX(mce_read_mutex);
1402
1403 static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1404 loff_t *off)
1405 {
1406 char __user *buf = ubuf;
1407 unsigned long *cpu_tsc;
1408 unsigned prev, next;
1409 int i, err;
1410
1411 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1412 if (!cpu_tsc)
1413 return -ENOMEM;
1414
1415 mutex_lock(&mce_read_mutex);
1416 next = rcu_dereference(mcelog.next);
1417
1418 /* Only supports full reads right now */
1419 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1420 mutex_unlock(&mce_read_mutex);
1421 kfree(cpu_tsc);
1422
1423 return -EINVAL;
1424 }
1425
1426 err = 0;
1427 prev = 0;
1428 do {
1429 for (i = prev; i < next; i++) {
1430 unsigned long start = jiffies;
1431
1432 while (!mcelog.entry[i].finished) {
1433 if (time_after_eq(jiffies, start + 2)) {
1434 memset(mcelog.entry + i, 0,
1435 sizeof(struct mce));
1436 goto timeout;
1437 }
1438 cpu_relax();
1439 }
1440 smp_rmb();
1441 err |= copy_to_user(buf, mcelog.entry + i,
1442 sizeof(struct mce));
1443 buf += sizeof(struct mce);
1444 timeout:
1445 ;
1446 }
1447
1448 memset(mcelog.entry + prev, 0,
1449 (next - prev) * sizeof(struct mce));
1450 prev = next;
1451 next = cmpxchg(&mcelog.next, prev, 0);
1452 } while (next != prev);
1453
1454 synchronize_sched();
1455
1456 /*
1457 * Collect entries that were still getting written before the
1458 * synchronize.
1459 */
1460 on_each_cpu(collect_tscs, cpu_tsc, 1);
1461
1462 for (i = next; i < MCE_LOG_LEN; i++) {
1463 if (mcelog.entry[i].finished &&
1464 mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1465 err |= copy_to_user(buf, mcelog.entry+i,
1466 sizeof(struct mce));
1467 smp_rmb();
1468 buf += sizeof(struct mce);
1469 memset(&mcelog.entry[i], 0, sizeof(struct mce));
1470 }
1471 }
1472 mutex_unlock(&mce_read_mutex);
1473 kfree(cpu_tsc);
1474
1475 return err ? -EFAULT : buf - ubuf;
1476 }
1477
1478 static unsigned int mce_poll(struct file *file, poll_table *wait)
1479 {
1480 poll_wait(file, &mce_wait, wait);
1481 if (rcu_dereference(mcelog.next))
1482 return POLLIN | POLLRDNORM;
1483 return 0;
1484 }
1485
1486 static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1487 {
1488 int __user *p = (int __user *)arg;
1489
1490 if (!capable(CAP_SYS_ADMIN))
1491 return -EPERM;
1492
1493 switch (cmd) {
1494 case MCE_GET_RECORD_LEN:
1495 return put_user(sizeof(struct mce), p);
1496 case MCE_GET_LOG_LEN:
1497 return put_user(MCE_LOG_LEN, p);
1498 case MCE_GETCLEAR_FLAGS: {
1499 unsigned flags;
1500
1501 do {
1502 flags = mcelog.flags;
1503 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1504
1505 return put_user(flags, p);
1506 }
1507 default:
1508 return -ENOTTY;
1509 }
1510 }
1511
1512 /* Modified in mce-inject.c, so not static or const */
1513 struct file_operations mce_chrdev_ops = {
1514 .open = mce_open,
1515 .release = mce_release,
1516 .read = mce_read,
1517 .poll = mce_poll,
1518 .unlocked_ioctl = mce_ioctl,
1519 };
1520 EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1521
1522 static struct miscdevice mce_log_device = {
1523 MISC_MCELOG_MINOR,
1524 "mcelog",
1525 &mce_chrdev_ops,
1526 };
1527
1528 /*
1529 * mce=off Disables machine check
1530 * mce=no_cmci Disables CMCI
1531 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1532 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1533 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1534 * monarchtimeout is how long to wait for other CPUs on machine
1535 * check, or 0 to not wait
1536 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1537 * mce=nobootlog Don't log MCEs from before booting.
1538 */
1539 static int __init mcheck_enable(char *str)
1540 {
1541 if (*str == 0)
1542 enable_p5_mce();
1543 if (*str == '=')
1544 str++;
1545 if (!strcmp(str, "off"))
1546 mce_disabled = 1;
1547 else if (!strcmp(str, "no_cmci"))
1548 mce_cmci_disabled = 1;
1549 else if (!strcmp(str, "dont_log_ce"))
1550 mce_dont_log_ce = 1;
1551 else if (!strcmp(str, "ignore_ce"))
1552 mce_ignore_ce = 1;
1553 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1554 mce_bootlog = (str[0] == 'b');
1555 else if (isdigit(str[0])) {
1556 get_option(&str, &tolerant);
1557 if (*str == ',') {
1558 ++str;
1559 get_option(&str, &monarch_timeout);
1560 }
1561 } else {
1562 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1563 str);
1564 return 0;
1565 }
1566 return 1;
1567 }
1568 __setup("mce", mcheck_enable);
1569
1570 /*
1571 * Sysfs support
1572 */
1573
1574 /*
1575 * Disable machine checks on suspend and shutdown. We can't really handle
1576 * them later.
1577 */
1578 static int mce_disable(void)
1579 {
1580 int i;
1581
1582 for (i = 0; i < banks; i++) {
1583 if (!skip_bank_init(i))
1584 wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1585 }
1586 return 0;
1587 }
1588
1589 static int mce_suspend(struct sys_device *dev, pm_message_t state)
1590 {
1591 return mce_disable();
1592 }
1593
1594 static int mce_shutdown(struct sys_device *dev)
1595 {
1596 return mce_disable();
1597 }
1598
1599 /*
1600 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1601 * Only one CPU is active at this time, the others get re-added later using
1602 * CPU hotplug:
1603 */
1604 static int mce_resume(struct sys_device *dev)
1605 {
1606 mce_init();
1607 mce_cpu_features(&current_cpu_data);
1608
1609 return 0;
1610 }
1611
1612 static void mce_cpu_restart(void *data)
1613 {
1614 del_timer_sync(&__get_cpu_var(mce_timer));
1615 if (!mce_available(&current_cpu_data))
1616 return;
1617 mce_init();
1618 mce_init_timer();
1619 }
1620
1621 /* Reinit MCEs after user configuration changes */
1622 static void mce_restart(void)
1623 {
1624 on_each_cpu(mce_cpu_restart, NULL, 1);
1625 }
1626
1627 /* Toggle features for corrected errors */
1628 static void mce_disable_ce(void *all)
1629 {
1630 if (!mce_available(&current_cpu_data))
1631 return;
1632 if (all)
1633 del_timer_sync(&__get_cpu_var(mce_timer));
1634 cmci_clear();
1635 }
1636
1637 static void mce_enable_ce(void *all)
1638 {
1639 if (!mce_available(&current_cpu_data))
1640 return;
1641 cmci_reenable();
1642 cmci_recheck();
1643 if (all)
1644 mce_init_timer();
1645 }
1646
1647 static struct sysdev_class mce_sysclass = {
1648 .suspend = mce_suspend,
1649 .shutdown = mce_shutdown,
1650 .resume = mce_resume,
1651 .name = "machinecheck",
1652 };
1653
1654 DEFINE_PER_CPU(struct sys_device, mce_dev);
1655
1656 __cpuinitdata
1657 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1658
1659 static struct sysdev_attribute *bank_attrs;
1660
1661 static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1662 char *buf)
1663 {
1664 u64 b = bank[attr - bank_attrs];
1665
1666 return sprintf(buf, "%llx\n", b);
1667 }
1668
1669 static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1670 const char *buf, size_t size)
1671 {
1672 u64 new;
1673
1674 if (strict_strtoull(buf, 0, &new) < 0)
1675 return -EINVAL;
1676
1677 bank[attr - bank_attrs] = new;
1678 mce_restart();
1679
1680 return size;
1681 }
1682
1683 static ssize_t
1684 show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1685 {
1686 strcpy(buf, mce_helper);
1687 strcat(buf, "\n");
1688 return strlen(mce_helper) + 1;
1689 }
1690
1691 static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1692 const char *buf, size_t siz)
1693 {
1694 char *p;
1695 int len;
1696
1697 strncpy(mce_helper, buf, sizeof(mce_helper));
1698 mce_helper[sizeof(mce_helper)-1] = 0;
1699 len = strlen(mce_helper);
1700 p = strchr(mce_helper, '\n');
1701
1702 if (*p)
1703 *p = 0;
1704
1705 return len;
1706 }
1707
1708 static ssize_t set_ignore_ce(struct sys_device *s,
1709 struct sysdev_attribute *attr,
1710 const char *buf, size_t size)
1711 {
1712 u64 new;
1713
1714 if (strict_strtoull(buf, 0, &new) < 0)
1715 return -EINVAL;
1716
1717 if (mce_ignore_ce ^ !!new) {
1718 if (new) {
1719 /* disable ce features */
1720 on_each_cpu(mce_disable_ce, (void *)1, 1);
1721 mce_ignore_ce = 1;
1722 } else {
1723 /* enable ce features */
1724 mce_ignore_ce = 0;
1725 on_each_cpu(mce_enable_ce, (void *)1, 1);
1726 }
1727 }
1728 return size;
1729 }
1730
1731 static ssize_t set_cmci_disabled(struct sys_device *s,
1732 struct sysdev_attribute *attr,
1733 const char *buf, size_t size)
1734 {
1735 u64 new;
1736
1737 if (strict_strtoull(buf, 0, &new) < 0)
1738 return -EINVAL;
1739
1740 if (mce_cmci_disabled ^ !!new) {
1741 if (new) {
1742 /* disable cmci */
1743 on_each_cpu(mce_disable_ce, NULL, 1);
1744 mce_cmci_disabled = 1;
1745 } else {
1746 /* enable cmci */
1747 mce_cmci_disabled = 0;
1748 on_each_cpu(mce_enable_ce, NULL, 1);
1749 }
1750 }
1751 return size;
1752 }
1753
1754 static ssize_t store_int_with_restart(struct sys_device *s,
1755 struct sysdev_attribute *attr,
1756 const char *buf, size_t size)
1757 {
1758 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1759 mce_restart();
1760 return ret;
1761 }
1762
1763 static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1764 static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1765 static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1766 static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1767
1768 static struct sysdev_ext_attribute attr_check_interval = {
1769 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1770 store_int_with_restart),
1771 &check_interval
1772 };
1773
1774 static struct sysdev_ext_attribute attr_ignore_ce = {
1775 _SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1776 &mce_ignore_ce
1777 };
1778
1779 static struct sysdev_ext_attribute attr_cmci_disabled = {
1780 _SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1781 &mce_cmci_disabled
1782 };
1783
1784 static struct sysdev_attribute *mce_attrs[] = {
1785 &attr_tolerant.attr,
1786 &attr_check_interval.attr,
1787 &attr_trigger,
1788 &attr_monarch_timeout.attr,
1789 &attr_dont_log_ce.attr,
1790 &attr_ignore_ce.attr,
1791 &attr_cmci_disabled.attr,
1792 NULL
1793 };
1794
1795 static cpumask_var_t mce_dev_initialized;
1796
1797 /* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1798 static __cpuinit int mce_create_device(unsigned int cpu)
1799 {
1800 int err;
1801 int i, j;
1802
1803 if (!mce_available(&boot_cpu_data))
1804 return -EIO;
1805
1806 memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1807 per_cpu(mce_dev, cpu).id = cpu;
1808 per_cpu(mce_dev, cpu).cls = &mce_sysclass;
1809
1810 err = sysdev_register(&per_cpu(mce_dev, cpu));
1811 if (err)
1812 return err;
1813
1814 for (i = 0; mce_attrs[i]; i++) {
1815 err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1816 if (err)
1817 goto error;
1818 }
1819 for (j = 0; j < banks; j++) {
1820 err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1821 &bank_attrs[j]);
1822 if (err)
1823 goto error2;
1824 }
1825 cpumask_set_cpu(cpu, mce_dev_initialized);
1826
1827 return 0;
1828 error2:
1829 while (--j >= 0)
1830 sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[j]);
1831 error:
1832 while (--i >= 0)
1833 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1834
1835 sysdev_unregister(&per_cpu(mce_dev, cpu));
1836
1837 return err;
1838 }
1839
1840 static __cpuinit void mce_remove_device(unsigned int cpu)
1841 {
1842 int i;
1843
1844 if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1845 return;
1846
1847 for (i = 0; mce_attrs[i]; i++)
1848 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1849
1850 for (i = 0; i < banks; i++)
1851 sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1852
1853 sysdev_unregister(&per_cpu(mce_dev, cpu));
1854 cpumask_clear_cpu(cpu, mce_dev_initialized);
1855 }
1856
1857 /* Make sure there are no machine checks on offlined CPUs. */
1858 static void mce_disable_cpu(void *h)
1859 {
1860 unsigned long action = *(unsigned long *)h;
1861 int i;
1862
1863 if (!mce_available(&current_cpu_data))
1864 return;
1865 if (!(action & CPU_TASKS_FROZEN))
1866 cmci_clear();
1867 for (i = 0; i < banks; i++) {
1868 if (!skip_bank_init(i))
1869 wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1870 }
1871 }
1872
1873 static void mce_reenable_cpu(void *h)
1874 {
1875 unsigned long action = *(unsigned long *)h;
1876 int i;
1877
1878 if (!mce_available(&current_cpu_data))
1879 return;
1880
1881 if (!(action & CPU_TASKS_FROZEN))
1882 cmci_reenable();
1883 for (i = 0; i < banks; i++) {
1884 if (!skip_bank_init(i))
1885 wrmsrl(MSR_IA32_MC0_CTL + i*4, bank[i]);
1886 }
1887 }
1888
1889 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
1890 static int __cpuinit
1891 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
1892 {
1893 unsigned int cpu = (unsigned long)hcpu;
1894 struct timer_list *t = &per_cpu(mce_timer, cpu);
1895
1896 switch (action) {
1897 case CPU_ONLINE:
1898 case CPU_ONLINE_FROZEN:
1899 mce_create_device(cpu);
1900 if (threshold_cpu_callback)
1901 threshold_cpu_callback(action, cpu);
1902 break;
1903 case CPU_DEAD:
1904 case CPU_DEAD_FROZEN:
1905 if (threshold_cpu_callback)
1906 threshold_cpu_callback(action, cpu);
1907 mce_remove_device(cpu);
1908 break;
1909 case CPU_DOWN_PREPARE:
1910 case CPU_DOWN_PREPARE_FROZEN:
1911 del_timer_sync(t);
1912 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
1913 break;
1914 case CPU_DOWN_FAILED:
1915 case CPU_DOWN_FAILED_FROZEN:
1916 t->expires = round_jiffies(jiffies +
1917 __get_cpu_var(mce_next_interval));
1918 add_timer_on(t, cpu);
1919 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
1920 break;
1921 case CPU_POST_DEAD:
1922 /* intentionally ignoring frozen here */
1923 cmci_rediscover(cpu);
1924 break;
1925 }
1926 return NOTIFY_OK;
1927 }
1928
1929 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
1930 .notifier_call = mce_cpu_callback,
1931 };
1932
1933 static __init int mce_init_banks(void)
1934 {
1935 int i;
1936
1937 bank_attrs = kzalloc(sizeof(struct sysdev_attribute) * banks,
1938 GFP_KERNEL);
1939 if (!bank_attrs)
1940 return -ENOMEM;
1941
1942 for (i = 0; i < banks; i++) {
1943 struct sysdev_attribute *a = &bank_attrs[i];
1944
1945 a->attr.name = kasprintf(GFP_KERNEL, "bank%d", i);
1946 if (!a->attr.name)
1947 goto nomem;
1948
1949 a->attr.mode = 0644;
1950 a->show = show_bank;
1951 a->store = set_bank;
1952 }
1953 return 0;
1954
1955 nomem:
1956 while (--i >= 0)
1957 kfree(bank_attrs[i].attr.name);
1958 kfree(bank_attrs);
1959 bank_attrs = NULL;
1960
1961 return -ENOMEM;
1962 }
1963
1964 static __init int mce_init_device(void)
1965 {
1966 int err;
1967 int i = 0;
1968
1969 if (!mce_available(&boot_cpu_data))
1970 return -EIO;
1971
1972 zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
1973
1974 err = mce_init_banks();
1975 if (err)
1976 return err;
1977
1978 err = sysdev_class_register(&mce_sysclass);
1979 if (err)
1980 return err;
1981
1982 for_each_online_cpu(i) {
1983 err = mce_create_device(i);
1984 if (err)
1985 return err;
1986 }
1987
1988 register_hotcpu_notifier(&mce_cpu_notifier);
1989 misc_register(&mce_log_device);
1990
1991 return err;
1992 }
1993
1994 device_initcall(mce_init_device);
1995
1996 #else /* CONFIG_X86_OLD_MCE: */
1997
1998 int nr_mce_banks;
1999 EXPORT_SYMBOL_GPL(nr_mce_banks); /* non-fatal.o */
2000
2001 /* This has to be run for each processor */
2002 void mcheck_init(struct cpuinfo_x86 *c)
2003 {
2004 if (mce_disabled)
2005 return;
2006
2007 switch (c->x86_vendor) {
2008 case X86_VENDOR_AMD:
2009 amd_mcheck_init(c);
2010 break;
2011
2012 case X86_VENDOR_INTEL:
2013 if (c->x86 == 5)
2014 intel_p5_mcheck_init(c);
2015 if (c->x86 == 6)
2016 intel_p6_mcheck_init(c);
2017 if (c->x86 == 15)
2018 intel_p4_mcheck_init(c);
2019 break;
2020
2021 case X86_VENDOR_CENTAUR:
2022 if (c->x86 == 5)
2023 winchip_mcheck_init(c);
2024 break;
2025
2026 default:
2027 break;
2028 }
2029 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", nr_mce_banks);
2030 }
2031
2032 static int __init mcheck_enable(char *str)
2033 {
2034 mce_p5_enabled = 1;
2035 return 1;
2036 }
2037 __setup("mce", mcheck_enable);
2038
2039 #endif /* CONFIG_X86_OLD_MCE */
2040
2041 /*
2042 * Old style boot options parsing. Only for compatibility.
2043 */
2044 static int __init mcheck_disable(char *str)
2045 {
2046 mce_disabled = 1;
2047 return 1;
2048 }
2049 __setup("nomce", mcheck_disable);
This page took 0.074726 seconds and 5 git commands to generate.