Merge tag 'timer' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44
45 #include <asm/processor.h>
46 #include <asm/mce.h>
47 #include <asm/msr.h>
48
49 #include "mce-internal.h"
50
51 static DEFINE_MUTEX(mce_chrdev_read_mutex);
52
53 #define rcu_dereference_check_mce(p) \
54 rcu_dereference_index_check((p), \
55 rcu_read_lock_sched_held() || \
56 lockdep_is_held(&mce_chrdev_read_mutex))
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mce.h>
60
61 int mce_disabled __read_mostly;
62
63 #define MISC_MCELOG_MINOR 227
64
65 #define SPINUNIT 100 /* 100ns */
66
67 atomic_t mce_entry;
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 /*
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
77 */
78 static int tolerant __read_mostly = 1;
79 static int banks __read_mostly;
80 static int rip_msr __read_mostly;
81 static int mce_bootlog __read_mostly = -1;
82 static int monarch_timeout __read_mostly = -1;
83 static int mce_panic_timeout __read_mostly;
84 static int mce_dont_log_ce __read_mostly;
85 int mce_cmci_disabled __read_mostly;
86 int mce_ignore_ce __read_mostly;
87 int mce_ser __read_mostly;
88
89 struct mce_bank *mce_banks __read_mostly;
90
91 /* User mode helper program triggered by machine check event */
92 static unsigned long mce_need_notify;
93 static char mce_helper[128];
94 static char *mce_helper_argv[2] = { mce_helper, NULL };
95
96 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
97
98 static DEFINE_PER_CPU(struct mce, mces_seen);
99 static int cpu_missing;
100
101 /* MCA banks polled by the period polling timer for corrected events */
102 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
103 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
104 };
105
106 static DEFINE_PER_CPU(struct work_struct, mce_work);
107
108 /*
109 * CPU/chipset specific EDAC code can register a notifier call here to print
110 * MCE errors in a human-readable form.
111 */
112 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
113
114 /* Do initial initialization of a struct mce */
115 void mce_setup(struct mce *m)
116 {
117 memset(m, 0, sizeof(struct mce));
118 m->cpu = m->extcpu = smp_processor_id();
119 rdtscll(m->tsc);
120 /* We hope get_seconds stays lockless */
121 m->time = get_seconds();
122 m->cpuvendor = boot_cpu_data.x86_vendor;
123 m->cpuid = cpuid_eax(1);
124 m->socketid = cpu_data(m->extcpu).phys_proc_id;
125 m->apicid = cpu_data(m->extcpu).initial_apicid;
126 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
127 }
128
129 DEFINE_PER_CPU(struct mce, injectm);
130 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
131
132 /*
133 * Lockless MCE logging infrastructure.
134 * This avoids deadlocks on printk locks without having to break locks. Also
135 * separate MCEs from kernel messages to avoid bogus bug reports.
136 */
137
138 static struct mce_log mcelog = {
139 .signature = MCE_LOG_SIGNATURE,
140 .len = MCE_LOG_LEN,
141 .recordlen = sizeof(struct mce),
142 };
143
144 void mce_log(struct mce *mce)
145 {
146 unsigned next, entry;
147 int ret = 0;
148
149 /* Emit the trace record: */
150 trace_mce_record(mce);
151
152 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
153 if (ret == NOTIFY_STOP)
154 return;
155
156 mce->finished = 0;
157 wmb();
158 for (;;) {
159 entry = rcu_dereference_check_mce(mcelog.next);
160 for (;;) {
161
162 /*
163 * When the buffer fills up discard new entries.
164 * Assume that the earlier errors are the more
165 * interesting ones:
166 */
167 if (entry >= MCE_LOG_LEN) {
168 set_bit(MCE_OVERFLOW,
169 (unsigned long *)&mcelog.flags);
170 return;
171 }
172 /* Old left over entry. Skip: */
173 if (mcelog.entry[entry].finished) {
174 entry++;
175 continue;
176 }
177 break;
178 }
179 smp_rmb();
180 next = entry + 1;
181 if (cmpxchg(&mcelog.next, entry, next) == entry)
182 break;
183 }
184 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
185 wmb();
186 mcelog.entry[entry].finished = 1;
187 wmb();
188
189 mce->finished = 1;
190 set_bit(0, &mce_need_notify);
191 }
192
193 static void drain_mcelog_buffer(void)
194 {
195 unsigned int next, i, prev = 0;
196
197 next = ACCESS_ONCE(mcelog.next);
198
199 do {
200 struct mce *m;
201
202 /* drain what was logged during boot */
203 for (i = prev; i < next; i++) {
204 unsigned long start = jiffies;
205 unsigned retries = 1;
206
207 m = &mcelog.entry[i];
208
209 while (!m->finished) {
210 if (time_after_eq(jiffies, start + 2*retries))
211 retries++;
212
213 cpu_relax();
214
215 if (!m->finished && retries >= 4) {
216 pr_err("skipping error being logged currently!\n");
217 break;
218 }
219 }
220 smp_rmb();
221 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
222 }
223
224 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
225 prev = next;
226 next = cmpxchg(&mcelog.next, prev, 0);
227 } while (next != prev);
228 }
229
230
231 void mce_register_decode_chain(struct notifier_block *nb)
232 {
233 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
234 drain_mcelog_buffer();
235 }
236 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
237
238 void mce_unregister_decode_chain(struct notifier_block *nb)
239 {
240 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
241 }
242 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
243
244 static void print_mce(struct mce *m)
245 {
246 int ret = 0;
247
248 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
249 m->extcpu, m->mcgstatus, m->bank, m->status);
250
251 if (m->ip) {
252 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
253 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
254 m->cs, m->ip);
255
256 if (m->cs == __KERNEL_CS)
257 print_symbol("{%s}", m->ip);
258 pr_cont("\n");
259 }
260
261 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
262 if (m->addr)
263 pr_cont("ADDR %llx ", m->addr);
264 if (m->misc)
265 pr_cont("MISC %llx ", m->misc);
266
267 pr_cont("\n");
268 /*
269 * Note this output is parsed by external tools and old fields
270 * should not be changed.
271 */
272 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
273 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
274 cpu_data(m->extcpu).microcode);
275
276 /*
277 * Print out human-readable details about the MCE error,
278 * (if the CPU has an implementation for that)
279 */
280 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
281 if (ret == NOTIFY_STOP)
282 return;
283
284 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
285 }
286
287 #define PANIC_TIMEOUT 5 /* 5 seconds */
288
289 static atomic_t mce_paniced;
290
291 static int fake_panic;
292 static atomic_t mce_fake_paniced;
293
294 /* Panic in progress. Enable interrupts and wait for final IPI */
295 static void wait_for_panic(void)
296 {
297 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
298
299 preempt_disable();
300 local_irq_enable();
301 while (timeout-- > 0)
302 udelay(1);
303 if (panic_timeout == 0)
304 panic_timeout = mce_panic_timeout;
305 panic("Panicing machine check CPU died");
306 }
307
308 static void mce_panic(char *msg, struct mce *final, char *exp)
309 {
310 int i, apei_err = 0;
311
312 if (!fake_panic) {
313 /*
314 * Make sure only one CPU runs in machine check panic
315 */
316 if (atomic_inc_return(&mce_paniced) > 1)
317 wait_for_panic();
318 barrier();
319
320 bust_spinlocks(1);
321 console_verbose();
322 } else {
323 /* Don't log too much for fake panic */
324 if (atomic_inc_return(&mce_fake_paniced) > 1)
325 return;
326 }
327 /* First print corrected ones that are still unlogged */
328 for (i = 0; i < MCE_LOG_LEN; i++) {
329 struct mce *m = &mcelog.entry[i];
330 if (!(m->status & MCI_STATUS_VAL))
331 continue;
332 if (!(m->status & MCI_STATUS_UC)) {
333 print_mce(m);
334 if (!apei_err)
335 apei_err = apei_write_mce(m);
336 }
337 }
338 /* Now print uncorrected but with the final one last */
339 for (i = 0; i < MCE_LOG_LEN; i++) {
340 struct mce *m = &mcelog.entry[i];
341 if (!(m->status & MCI_STATUS_VAL))
342 continue;
343 if (!(m->status & MCI_STATUS_UC))
344 continue;
345 if (!final || memcmp(m, final, sizeof(struct mce))) {
346 print_mce(m);
347 if (!apei_err)
348 apei_err = apei_write_mce(m);
349 }
350 }
351 if (final) {
352 print_mce(final);
353 if (!apei_err)
354 apei_err = apei_write_mce(final);
355 }
356 if (cpu_missing)
357 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
358 if (exp)
359 pr_emerg(HW_ERR "Machine check: %s\n", exp);
360 if (!fake_panic) {
361 if (panic_timeout == 0)
362 panic_timeout = mce_panic_timeout;
363 panic(msg);
364 } else
365 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
366 }
367
368 /* Support code for software error injection */
369
370 static int msr_to_offset(u32 msr)
371 {
372 unsigned bank = __this_cpu_read(injectm.bank);
373
374 if (msr == rip_msr)
375 return offsetof(struct mce, ip);
376 if (msr == MSR_IA32_MCx_STATUS(bank))
377 return offsetof(struct mce, status);
378 if (msr == MSR_IA32_MCx_ADDR(bank))
379 return offsetof(struct mce, addr);
380 if (msr == MSR_IA32_MCx_MISC(bank))
381 return offsetof(struct mce, misc);
382 if (msr == MSR_IA32_MCG_STATUS)
383 return offsetof(struct mce, mcgstatus);
384 return -1;
385 }
386
387 /* MSR access wrappers used for error injection */
388 static u64 mce_rdmsrl(u32 msr)
389 {
390 u64 v;
391
392 if (__this_cpu_read(injectm.finished)) {
393 int offset = msr_to_offset(msr);
394
395 if (offset < 0)
396 return 0;
397 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
398 }
399
400 if (rdmsrl_safe(msr, &v)) {
401 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
402 /*
403 * Return zero in case the access faulted. This should
404 * not happen normally but can happen if the CPU does
405 * something weird, or if the code is buggy.
406 */
407 v = 0;
408 }
409
410 return v;
411 }
412
413 static void mce_wrmsrl(u32 msr, u64 v)
414 {
415 if (__this_cpu_read(injectm.finished)) {
416 int offset = msr_to_offset(msr);
417
418 if (offset >= 0)
419 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
420 return;
421 }
422 wrmsrl(msr, v);
423 }
424
425 /*
426 * Collect all global (w.r.t. this processor) status about this machine
427 * check into our "mce" struct so that we can use it later to assess
428 * the severity of the problem as we read per-bank specific details.
429 */
430 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
431 {
432 mce_setup(m);
433
434 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
435 if (regs) {
436 /*
437 * Get the address of the instruction at the time of
438 * the machine check error.
439 */
440 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
441 m->ip = regs->ip;
442 m->cs = regs->cs;
443
444 /*
445 * When in VM86 mode make the cs look like ring 3
446 * always. This is a lie, but it's better than passing
447 * the additional vm86 bit around everywhere.
448 */
449 if (v8086_mode(regs))
450 m->cs |= 3;
451 }
452 /* Use accurate RIP reporting if available. */
453 if (rip_msr)
454 m->ip = mce_rdmsrl(rip_msr);
455 }
456 }
457
458 /*
459 * Simple lockless ring to communicate PFNs from the exception handler with the
460 * process context work function. This is vastly simplified because there's
461 * only a single reader and a single writer.
462 */
463 #define MCE_RING_SIZE 16 /* we use one entry less */
464
465 struct mce_ring {
466 unsigned short start;
467 unsigned short end;
468 unsigned long ring[MCE_RING_SIZE];
469 };
470 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
471
472 /* Runs with CPU affinity in workqueue */
473 static int mce_ring_empty(void)
474 {
475 struct mce_ring *r = &__get_cpu_var(mce_ring);
476
477 return r->start == r->end;
478 }
479
480 static int mce_ring_get(unsigned long *pfn)
481 {
482 struct mce_ring *r;
483 int ret = 0;
484
485 *pfn = 0;
486 get_cpu();
487 r = &__get_cpu_var(mce_ring);
488 if (r->start == r->end)
489 goto out;
490 *pfn = r->ring[r->start];
491 r->start = (r->start + 1) % MCE_RING_SIZE;
492 ret = 1;
493 out:
494 put_cpu();
495 return ret;
496 }
497
498 /* Always runs in MCE context with preempt off */
499 static int mce_ring_add(unsigned long pfn)
500 {
501 struct mce_ring *r = &__get_cpu_var(mce_ring);
502 unsigned next;
503
504 next = (r->end + 1) % MCE_RING_SIZE;
505 if (next == r->start)
506 return -1;
507 r->ring[r->end] = pfn;
508 wmb();
509 r->end = next;
510 return 0;
511 }
512
513 int mce_available(struct cpuinfo_x86 *c)
514 {
515 if (mce_disabled)
516 return 0;
517 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
518 }
519
520 static void mce_schedule_work(void)
521 {
522 if (!mce_ring_empty()) {
523 struct work_struct *work = &__get_cpu_var(mce_work);
524 if (!work_pending(work))
525 schedule_work(work);
526 }
527 }
528
529 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
530
531 static void mce_irq_work_cb(struct irq_work *entry)
532 {
533 mce_notify_irq();
534 mce_schedule_work();
535 }
536
537 static void mce_report_event(struct pt_regs *regs)
538 {
539 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
540 mce_notify_irq();
541 /*
542 * Triggering the work queue here is just an insurance
543 * policy in case the syscall exit notify handler
544 * doesn't run soon enough or ends up running on the
545 * wrong CPU (can happen when audit sleeps)
546 */
547 mce_schedule_work();
548 return;
549 }
550
551 irq_work_queue(&__get_cpu_var(mce_irq_work));
552 }
553
554 /*
555 * Read ADDR and MISC registers.
556 */
557 static void mce_read_aux(struct mce *m, int i)
558 {
559 if (m->status & MCI_STATUS_MISCV)
560 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
561 if (m->status & MCI_STATUS_ADDRV) {
562 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
563
564 /*
565 * Mask the reported address by the reported granularity.
566 */
567 if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
568 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
569 m->addr >>= shift;
570 m->addr <<= shift;
571 }
572 }
573 }
574
575 DEFINE_PER_CPU(unsigned, mce_poll_count);
576
577 /*
578 * Poll for corrected events or events that happened before reset.
579 * Those are just logged through /dev/mcelog.
580 *
581 * This is executed in standard interrupt context.
582 *
583 * Note: spec recommends to panic for fatal unsignalled
584 * errors here. However this would be quite problematic --
585 * we would need to reimplement the Monarch handling and
586 * it would mess up the exclusion between exception handler
587 * and poll hander -- * so we skip this for now.
588 * These cases should not happen anyways, or only when the CPU
589 * is already totally * confused. In this case it's likely it will
590 * not fully execute the machine check handler either.
591 */
592 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
593 {
594 struct mce m;
595 int i;
596
597 this_cpu_inc(mce_poll_count);
598
599 mce_gather_info(&m, NULL);
600
601 for (i = 0; i < banks; i++) {
602 if (!mce_banks[i].ctl || !test_bit(i, *b))
603 continue;
604
605 m.misc = 0;
606 m.addr = 0;
607 m.bank = i;
608 m.tsc = 0;
609
610 barrier();
611 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
612 if (!(m.status & MCI_STATUS_VAL))
613 continue;
614
615 /*
616 * Uncorrected or signalled events are handled by the exception
617 * handler when it is enabled, so don't process those here.
618 *
619 * TBD do the same check for MCI_STATUS_EN here?
620 */
621 if (!(flags & MCP_UC) &&
622 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
623 continue;
624
625 mce_read_aux(&m, i);
626
627 if (!(flags & MCP_TIMESTAMP))
628 m.tsc = 0;
629 /*
630 * Don't get the IP here because it's unlikely to
631 * have anything to do with the actual error location.
632 */
633 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
634 mce_log(&m);
635
636 /*
637 * Clear state for this bank.
638 */
639 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
640 }
641
642 /*
643 * Don't clear MCG_STATUS here because it's only defined for
644 * exceptions.
645 */
646
647 sync_core();
648 }
649 EXPORT_SYMBOL_GPL(machine_check_poll);
650
651 /*
652 * Do a quick check if any of the events requires a panic.
653 * This decides if we keep the events around or clear them.
654 */
655 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp)
656 {
657 int i, ret = 0;
658
659 for (i = 0; i < banks; i++) {
660 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
661 if (m->status & MCI_STATUS_VAL)
662 __set_bit(i, validp);
663 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
664 ret = 1;
665 }
666 return ret;
667 }
668
669 /*
670 * Variable to establish order between CPUs while scanning.
671 * Each CPU spins initially until executing is equal its number.
672 */
673 static atomic_t mce_executing;
674
675 /*
676 * Defines order of CPUs on entry. First CPU becomes Monarch.
677 */
678 static atomic_t mce_callin;
679
680 /*
681 * Check if a timeout waiting for other CPUs happened.
682 */
683 static int mce_timed_out(u64 *t)
684 {
685 /*
686 * The others already did panic for some reason.
687 * Bail out like in a timeout.
688 * rmb() to tell the compiler that system_state
689 * might have been modified by someone else.
690 */
691 rmb();
692 if (atomic_read(&mce_paniced))
693 wait_for_panic();
694 if (!monarch_timeout)
695 goto out;
696 if ((s64)*t < SPINUNIT) {
697 /* CHECKME: Make panic default for 1 too? */
698 if (tolerant < 1)
699 mce_panic("Timeout synchronizing machine check over CPUs",
700 NULL, NULL);
701 cpu_missing = 1;
702 return 1;
703 }
704 *t -= SPINUNIT;
705 out:
706 touch_nmi_watchdog();
707 return 0;
708 }
709
710 /*
711 * The Monarch's reign. The Monarch is the CPU who entered
712 * the machine check handler first. It waits for the others to
713 * raise the exception too and then grades them. When any
714 * error is fatal panic. Only then let the others continue.
715 *
716 * The other CPUs entering the MCE handler will be controlled by the
717 * Monarch. They are called Subjects.
718 *
719 * This way we prevent any potential data corruption in a unrecoverable case
720 * and also makes sure always all CPU's errors are examined.
721 *
722 * Also this detects the case of a machine check event coming from outer
723 * space (not detected by any CPUs) In this case some external agent wants
724 * us to shut down, so panic too.
725 *
726 * The other CPUs might still decide to panic if the handler happens
727 * in a unrecoverable place, but in this case the system is in a semi-stable
728 * state and won't corrupt anything by itself. It's ok to let the others
729 * continue for a bit first.
730 *
731 * All the spin loops have timeouts; when a timeout happens a CPU
732 * typically elects itself to be Monarch.
733 */
734 static void mce_reign(void)
735 {
736 int cpu;
737 struct mce *m = NULL;
738 int global_worst = 0;
739 char *msg = NULL;
740 char *nmsg = NULL;
741
742 /*
743 * This CPU is the Monarch and the other CPUs have run
744 * through their handlers.
745 * Grade the severity of the errors of all the CPUs.
746 */
747 for_each_possible_cpu(cpu) {
748 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
749 &nmsg);
750 if (severity > global_worst) {
751 msg = nmsg;
752 global_worst = severity;
753 m = &per_cpu(mces_seen, cpu);
754 }
755 }
756
757 /*
758 * Cannot recover? Panic here then.
759 * This dumps all the mces in the log buffer and stops the
760 * other CPUs.
761 */
762 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
763 mce_panic("Fatal Machine check", m, msg);
764
765 /*
766 * For UC somewhere we let the CPU who detects it handle it.
767 * Also must let continue the others, otherwise the handling
768 * CPU could deadlock on a lock.
769 */
770
771 /*
772 * No machine check event found. Must be some external
773 * source or one CPU is hung. Panic.
774 */
775 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
776 mce_panic("Machine check from unknown source", NULL, NULL);
777
778 /*
779 * Now clear all the mces_seen so that they don't reappear on
780 * the next mce.
781 */
782 for_each_possible_cpu(cpu)
783 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
784 }
785
786 static atomic_t global_nwo;
787
788 /*
789 * Start of Monarch synchronization. This waits until all CPUs have
790 * entered the exception handler and then determines if any of them
791 * saw a fatal event that requires panic. Then it executes them
792 * in the entry order.
793 * TBD double check parallel CPU hotunplug
794 */
795 static int mce_start(int *no_way_out)
796 {
797 int order;
798 int cpus = num_online_cpus();
799 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
800
801 if (!timeout)
802 return -1;
803
804 atomic_add(*no_way_out, &global_nwo);
805 /*
806 * global_nwo should be updated before mce_callin
807 */
808 smp_wmb();
809 order = atomic_inc_return(&mce_callin);
810
811 /*
812 * Wait for everyone.
813 */
814 while (atomic_read(&mce_callin) != cpus) {
815 if (mce_timed_out(&timeout)) {
816 atomic_set(&global_nwo, 0);
817 return -1;
818 }
819 ndelay(SPINUNIT);
820 }
821
822 /*
823 * mce_callin should be read before global_nwo
824 */
825 smp_rmb();
826
827 if (order == 1) {
828 /*
829 * Monarch: Starts executing now, the others wait.
830 */
831 atomic_set(&mce_executing, 1);
832 } else {
833 /*
834 * Subject: Now start the scanning loop one by one in
835 * the original callin order.
836 * This way when there are any shared banks it will be
837 * only seen by one CPU before cleared, avoiding duplicates.
838 */
839 while (atomic_read(&mce_executing) < order) {
840 if (mce_timed_out(&timeout)) {
841 atomic_set(&global_nwo, 0);
842 return -1;
843 }
844 ndelay(SPINUNIT);
845 }
846 }
847
848 /*
849 * Cache the global no_way_out state.
850 */
851 *no_way_out = atomic_read(&global_nwo);
852
853 return order;
854 }
855
856 /*
857 * Synchronize between CPUs after main scanning loop.
858 * This invokes the bulk of the Monarch processing.
859 */
860 static int mce_end(int order)
861 {
862 int ret = -1;
863 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
864
865 if (!timeout)
866 goto reset;
867 if (order < 0)
868 goto reset;
869
870 /*
871 * Allow others to run.
872 */
873 atomic_inc(&mce_executing);
874
875 if (order == 1) {
876 /* CHECKME: Can this race with a parallel hotplug? */
877 int cpus = num_online_cpus();
878
879 /*
880 * Monarch: Wait for everyone to go through their scanning
881 * loops.
882 */
883 while (atomic_read(&mce_executing) <= cpus) {
884 if (mce_timed_out(&timeout))
885 goto reset;
886 ndelay(SPINUNIT);
887 }
888
889 mce_reign();
890 barrier();
891 ret = 0;
892 } else {
893 /*
894 * Subject: Wait for Monarch to finish.
895 */
896 while (atomic_read(&mce_executing) != 0) {
897 if (mce_timed_out(&timeout))
898 goto reset;
899 ndelay(SPINUNIT);
900 }
901
902 /*
903 * Don't reset anything. That's done by the Monarch.
904 */
905 return 0;
906 }
907
908 /*
909 * Reset all global state.
910 */
911 reset:
912 atomic_set(&global_nwo, 0);
913 atomic_set(&mce_callin, 0);
914 barrier();
915
916 /*
917 * Let others run again.
918 */
919 atomic_set(&mce_executing, 0);
920 return ret;
921 }
922
923 /*
924 * Check if the address reported by the CPU is in a format we can parse.
925 * It would be possible to add code for most other cases, but all would
926 * be somewhat complicated (e.g. segment offset would require an instruction
927 * parser). So only support physical addresses up to page granuality for now.
928 */
929 static int mce_usable_address(struct mce *m)
930 {
931 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
932 return 0;
933 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
934 return 0;
935 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
936 return 0;
937 return 1;
938 }
939
940 static void mce_clear_state(unsigned long *toclear)
941 {
942 int i;
943
944 for (i = 0; i < banks; i++) {
945 if (test_bit(i, toclear))
946 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
947 }
948 }
949
950 /*
951 * Need to save faulting physical address associated with a process
952 * in the machine check handler some place where we can grab it back
953 * later in mce_notify_process()
954 */
955 #define MCE_INFO_MAX 16
956
957 struct mce_info {
958 atomic_t inuse;
959 struct task_struct *t;
960 __u64 paddr;
961 int restartable;
962 } mce_info[MCE_INFO_MAX];
963
964 static void mce_save_info(__u64 addr, int c)
965 {
966 struct mce_info *mi;
967
968 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
969 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
970 mi->t = current;
971 mi->paddr = addr;
972 mi->restartable = c;
973 return;
974 }
975 }
976
977 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
978 }
979
980 static struct mce_info *mce_find_info(void)
981 {
982 struct mce_info *mi;
983
984 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
985 if (atomic_read(&mi->inuse) && mi->t == current)
986 return mi;
987 return NULL;
988 }
989
990 static void mce_clear_info(struct mce_info *mi)
991 {
992 atomic_set(&mi->inuse, 0);
993 }
994
995 /*
996 * The actual machine check handler. This only handles real
997 * exceptions when something got corrupted coming in through int 18.
998 *
999 * This is executed in NMI context not subject to normal locking rules. This
1000 * implies that most kernel services cannot be safely used. Don't even
1001 * think about putting a printk in there!
1002 *
1003 * On Intel systems this is entered on all CPUs in parallel through
1004 * MCE broadcast. However some CPUs might be broken beyond repair,
1005 * so be always careful when synchronizing with others.
1006 */
1007 void do_machine_check(struct pt_regs *regs, long error_code)
1008 {
1009 struct mce m, *final;
1010 int i;
1011 int worst = 0;
1012 int severity;
1013 /*
1014 * Establish sequential order between the CPUs entering the machine
1015 * check handler.
1016 */
1017 int order;
1018 /*
1019 * If no_way_out gets set, there is no safe way to recover from this
1020 * MCE. If tolerant is cranked up, we'll try anyway.
1021 */
1022 int no_way_out = 0;
1023 /*
1024 * If kill_it gets set, there might be a way to recover from this
1025 * error.
1026 */
1027 int kill_it = 0;
1028 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1029 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1030 char *msg = "Unknown";
1031
1032 atomic_inc(&mce_entry);
1033
1034 this_cpu_inc(mce_exception_count);
1035
1036 if (!banks)
1037 goto out;
1038
1039 mce_gather_info(&m, regs);
1040
1041 final = &__get_cpu_var(mces_seen);
1042 *final = m;
1043
1044 memset(valid_banks, 0, sizeof(valid_banks));
1045 no_way_out = mce_no_way_out(&m, &msg, valid_banks);
1046
1047 barrier();
1048
1049 /*
1050 * When no restart IP might need to kill or panic.
1051 * Assume the worst for now, but if we find the
1052 * severity is MCE_AR_SEVERITY we have other options.
1053 */
1054 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1055 kill_it = 1;
1056
1057 /*
1058 * Go through all the banks in exclusion of the other CPUs.
1059 * This way we don't report duplicated events on shared banks
1060 * because the first one to see it will clear it.
1061 */
1062 order = mce_start(&no_way_out);
1063 for (i = 0; i < banks; i++) {
1064 __clear_bit(i, toclear);
1065 if (!test_bit(i, valid_banks))
1066 continue;
1067 if (!mce_banks[i].ctl)
1068 continue;
1069
1070 m.misc = 0;
1071 m.addr = 0;
1072 m.bank = i;
1073
1074 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1075 if ((m.status & MCI_STATUS_VAL) == 0)
1076 continue;
1077
1078 /*
1079 * Non uncorrected or non signaled errors are handled by
1080 * machine_check_poll. Leave them alone, unless this panics.
1081 */
1082 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1083 !no_way_out)
1084 continue;
1085
1086 /*
1087 * Set taint even when machine check was not enabled.
1088 */
1089 add_taint(TAINT_MACHINE_CHECK);
1090
1091 severity = mce_severity(&m, tolerant, NULL);
1092
1093 /*
1094 * When machine check was for corrected handler don't touch,
1095 * unless we're panicing.
1096 */
1097 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1098 continue;
1099 __set_bit(i, toclear);
1100 if (severity == MCE_NO_SEVERITY) {
1101 /*
1102 * Machine check event was not enabled. Clear, but
1103 * ignore.
1104 */
1105 continue;
1106 }
1107
1108 mce_read_aux(&m, i);
1109
1110 /*
1111 * Action optional error. Queue address for later processing.
1112 * When the ring overflows we just ignore the AO error.
1113 * RED-PEN add some logging mechanism when
1114 * usable_address or mce_add_ring fails.
1115 * RED-PEN don't ignore overflow for tolerant == 0
1116 */
1117 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1118 mce_ring_add(m.addr >> PAGE_SHIFT);
1119
1120 mce_log(&m);
1121
1122 if (severity > worst) {
1123 *final = m;
1124 worst = severity;
1125 }
1126 }
1127
1128 /* mce_clear_state will clear *final, save locally for use later */
1129 m = *final;
1130
1131 if (!no_way_out)
1132 mce_clear_state(toclear);
1133
1134 /*
1135 * Do most of the synchronization with other CPUs.
1136 * When there's any problem use only local no_way_out state.
1137 */
1138 if (mce_end(order) < 0)
1139 no_way_out = worst >= MCE_PANIC_SEVERITY;
1140
1141 /*
1142 * At insane "tolerant" levels we take no action. Otherwise
1143 * we only die if we have no other choice. For less serious
1144 * issues we try to recover, or limit damage to the current
1145 * process.
1146 */
1147 if (tolerant < 3) {
1148 if (no_way_out)
1149 mce_panic("Fatal machine check on current CPU", &m, msg);
1150 if (worst == MCE_AR_SEVERITY) {
1151 /* schedule action before return to userland */
1152 mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1153 set_thread_flag(TIF_MCE_NOTIFY);
1154 } else if (kill_it) {
1155 force_sig(SIGBUS, current);
1156 }
1157 }
1158
1159 if (worst > 0)
1160 mce_report_event(regs);
1161 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1162 out:
1163 atomic_dec(&mce_entry);
1164 sync_core();
1165 }
1166 EXPORT_SYMBOL_GPL(do_machine_check);
1167
1168 #ifndef CONFIG_MEMORY_FAILURE
1169 int memory_failure(unsigned long pfn, int vector, int flags)
1170 {
1171 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1172 BUG_ON(flags & MF_ACTION_REQUIRED);
1173 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1174 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1175 pfn);
1176
1177 return 0;
1178 }
1179 #endif
1180
1181 /*
1182 * Called in process context that interrupted by MCE and marked with
1183 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1184 * This code is allowed to sleep.
1185 * Attempt possible recovery such as calling the high level VM handler to
1186 * process any corrupted pages, and kill/signal current process if required.
1187 * Action required errors are handled here.
1188 */
1189 void mce_notify_process(void)
1190 {
1191 unsigned long pfn;
1192 struct mce_info *mi = mce_find_info();
1193 int flags = MF_ACTION_REQUIRED;
1194
1195 if (!mi)
1196 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1197 pfn = mi->paddr >> PAGE_SHIFT;
1198
1199 clear_thread_flag(TIF_MCE_NOTIFY);
1200
1201 pr_err("Uncorrected hardware memory error in user-access at %llx",
1202 mi->paddr);
1203 /*
1204 * We must call memory_failure() here even if the current process is
1205 * doomed. We still need to mark the page as poisoned and alert any
1206 * other users of the page.
1207 */
1208 if (!mi->restartable)
1209 flags |= MF_MUST_KILL;
1210 if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1211 pr_err("Memory error not recovered");
1212 force_sig(SIGBUS, current);
1213 }
1214 mce_clear_info(mi);
1215 }
1216
1217 /*
1218 * Action optional processing happens here (picking up
1219 * from the list of faulting pages that do_machine_check()
1220 * placed into the "ring").
1221 */
1222 static void mce_process_work(struct work_struct *dummy)
1223 {
1224 unsigned long pfn;
1225
1226 while (mce_ring_get(&pfn))
1227 memory_failure(pfn, MCE_VECTOR, 0);
1228 }
1229
1230 #ifdef CONFIG_X86_MCE_INTEL
1231 /***
1232 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1233 * @cpu: The CPU on which the event occurred.
1234 * @status: Event status information
1235 *
1236 * This function should be called by the thermal interrupt after the
1237 * event has been processed and the decision was made to log the event
1238 * further.
1239 *
1240 * The status parameter will be saved to the 'status' field of 'struct mce'
1241 * and historically has been the register value of the
1242 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1243 */
1244 void mce_log_therm_throt_event(__u64 status)
1245 {
1246 struct mce m;
1247
1248 mce_setup(&m);
1249 m.bank = MCE_THERMAL_BANK;
1250 m.status = status;
1251 mce_log(&m);
1252 }
1253 #endif /* CONFIG_X86_MCE_INTEL */
1254
1255 /*
1256 * Periodic polling timer for "silent" machine check errors. If the
1257 * poller finds an MCE, poll 2x faster. When the poller finds no more
1258 * errors, poll 2x slower (up to check_interval seconds).
1259 */
1260 static unsigned long check_interval = 5 * 60; /* 5 minutes */
1261
1262 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1263 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1264
1265 static void mce_timer_fn(unsigned long data)
1266 {
1267 struct timer_list *t = &__get_cpu_var(mce_timer);
1268 unsigned long iv;
1269
1270 WARN_ON(smp_processor_id() != data);
1271
1272 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1273 machine_check_poll(MCP_TIMESTAMP,
1274 &__get_cpu_var(mce_poll_banks));
1275 }
1276
1277 /*
1278 * Alert userspace if needed. If we logged an MCE, reduce the
1279 * polling interval, otherwise increase the polling interval.
1280 */
1281 iv = __this_cpu_read(mce_next_interval);
1282 if (mce_notify_irq())
1283 iv = max(iv / 2, (unsigned long) HZ/100);
1284 else
1285 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1286 __this_cpu_write(mce_next_interval, iv);
1287
1288 t->expires = jiffies + iv;
1289 add_timer_on(t, smp_processor_id());
1290 }
1291
1292 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1293 static void mce_timer_delete_all(void)
1294 {
1295 int cpu;
1296
1297 for_each_online_cpu(cpu)
1298 del_timer_sync(&per_cpu(mce_timer, cpu));
1299 }
1300
1301 static void mce_do_trigger(struct work_struct *work)
1302 {
1303 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1304 }
1305
1306 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1307
1308 /*
1309 * Notify the user(s) about new machine check events.
1310 * Can be called from interrupt context, but not from machine check/NMI
1311 * context.
1312 */
1313 int mce_notify_irq(void)
1314 {
1315 /* Not more than two messages every minute */
1316 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1317
1318 if (test_and_clear_bit(0, &mce_need_notify)) {
1319 /* wake processes polling /dev/mcelog */
1320 wake_up_interruptible(&mce_chrdev_wait);
1321
1322 /*
1323 * There is no risk of missing notifications because
1324 * work_pending is always cleared before the function is
1325 * executed.
1326 */
1327 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1328 schedule_work(&mce_trigger_work);
1329
1330 if (__ratelimit(&ratelimit))
1331 pr_info(HW_ERR "Machine check events logged\n");
1332
1333 return 1;
1334 }
1335 return 0;
1336 }
1337 EXPORT_SYMBOL_GPL(mce_notify_irq);
1338
1339 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1340 {
1341 int i;
1342
1343 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1344 if (!mce_banks)
1345 return -ENOMEM;
1346 for (i = 0; i < banks; i++) {
1347 struct mce_bank *b = &mce_banks[i];
1348
1349 b->ctl = -1ULL;
1350 b->init = 1;
1351 }
1352 return 0;
1353 }
1354
1355 /*
1356 * Initialize Machine Checks for a CPU.
1357 */
1358 static int __cpuinit __mcheck_cpu_cap_init(void)
1359 {
1360 unsigned b;
1361 u64 cap;
1362
1363 rdmsrl(MSR_IA32_MCG_CAP, cap);
1364
1365 b = cap & MCG_BANKCNT_MASK;
1366 if (!banks)
1367 pr_info("CPU supports %d MCE banks\n", b);
1368
1369 if (b > MAX_NR_BANKS) {
1370 pr_warn("Using only %u machine check banks out of %u\n",
1371 MAX_NR_BANKS, b);
1372 b = MAX_NR_BANKS;
1373 }
1374
1375 /* Don't support asymmetric configurations today */
1376 WARN_ON(banks != 0 && b != banks);
1377 banks = b;
1378 if (!mce_banks) {
1379 int err = __mcheck_cpu_mce_banks_init();
1380
1381 if (err)
1382 return err;
1383 }
1384
1385 /* Use accurate RIP reporting if available. */
1386 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1387 rip_msr = MSR_IA32_MCG_EIP;
1388
1389 if (cap & MCG_SER_P)
1390 mce_ser = 1;
1391
1392 return 0;
1393 }
1394
1395 static void __mcheck_cpu_init_generic(void)
1396 {
1397 mce_banks_t all_banks;
1398 u64 cap;
1399 int i;
1400
1401 /*
1402 * Log the machine checks left over from the previous reset.
1403 */
1404 bitmap_fill(all_banks, MAX_NR_BANKS);
1405 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1406
1407 set_in_cr4(X86_CR4_MCE);
1408
1409 rdmsrl(MSR_IA32_MCG_CAP, cap);
1410 if (cap & MCG_CTL_P)
1411 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1412
1413 for (i = 0; i < banks; i++) {
1414 struct mce_bank *b = &mce_banks[i];
1415
1416 if (!b->init)
1417 continue;
1418 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1419 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1420 }
1421 }
1422
1423 /* Add per CPU specific workarounds here */
1424 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1425 {
1426 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1427 pr_info("unknown CPU type - not enabling MCE support\n");
1428 return -EOPNOTSUPP;
1429 }
1430
1431 /* This should be disabled by the BIOS, but isn't always */
1432 if (c->x86_vendor == X86_VENDOR_AMD) {
1433 if (c->x86 == 15 && banks > 4) {
1434 /*
1435 * disable GART TBL walk error reporting, which
1436 * trips off incorrectly with the IOMMU & 3ware
1437 * & Cerberus:
1438 */
1439 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1440 }
1441 if (c->x86 <= 17 && mce_bootlog < 0) {
1442 /*
1443 * Lots of broken BIOS around that don't clear them
1444 * by default and leave crap in there. Don't log:
1445 */
1446 mce_bootlog = 0;
1447 }
1448 /*
1449 * Various K7s with broken bank 0 around. Always disable
1450 * by default.
1451 */
1452 if (c->x86 == 6 && banks > 0)
1453 mce_banks[0].ctl = 0;
1454
1455 /*
1456 * Turn off MC4_MISC thresholding banks on those models since
1457 * they're not supported there.
1458 */
1459 if (c->x86 == 0x15 &&
1460 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1461 int i;
1462 u64 val, hwcr;
1463 bool need_toggle;
1464 u32 msrs[] = {
1465 0x00000413, /* MC4_MISC0 */
1466 0xc0000408, /* MC4_MISC1 */
1467 };
1468
1469 rdmsrl(MSR_K7_HWCR, hwcr);
1470
1471 /* McStatusWrEn has to be set */
1472 need_toggle = !(hwcr & BIT(18));
1473
1474 if (need_toggle)
1475 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1476
1477 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1478 rdmsrl(msrs[i], val);
1479
1480 /* CntP bit set? */
1481 if (val & BIT_64(62)) {
1482 val &= ~BIT_64(62);
1483 wrmsrl(msrs[i], val);
1484 }
1485 }
1486
1487 /* restore old settings */
1488 if (need_toggle)
1489 wrmsrl(MSR_K7_HWCR, hwcr);
1490 }
1491 }
1492
1493 if (c->x86_vendor == X86_VENDOR_INTEL) {
1494 /*
1495 * SDM documents that on family 6 bank 0 should not be written
1496 * because it aliases to another special BIOS controlled
1497 * register.
1498 * But it's not aliased anymore on model 0x1a+
1499 * Don't ignore bank 0 completely because there could be a
1500 * valid event later, merely don't write CTL0.
1501 */
1502
1503 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1504 mce_banks[0].init = 0;
1505
1506 /*
1507 * All newer Intel systems support MCE broadcasting. Enable
1508 * synchronization with a one second timeout.
1509 */
1510 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1511 monarch_timeout < 0)
1512 monarch_timeout = USEC_PER_SEC;
1513
1514 /*
1515 * There are also broken BIOSes on some Pentium M and
1516 * earlier systems:
1517 */
1518 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1519 mce_bootlog = 0;
1520 }
1521 if (monarch_timeout < 0)
1522 monarch_timeout = 0;
1523 if (mce_bootlog != 0)
1524 mce_panic_timeout = 30;
1525
1526 return 0;
1527 }
1528
1529 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1530 {
1531 if (c->x86 != 5)
1532 return 0;
1533
1534 switch (c->x86_vendor) {
1535 case X86_VENDOR_INTEL:
1536 intel_p5_mcheck_init(c);
1537 return 1;
1538 break;
1539 case X86_VENDOR_CENTAUR:
1540 winchip_mcheck_init(c);
1541 return 1;
1542 break;
1543 }
1544
1545 return 0;
1546 }
1547
1548 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1549 {
1550 switch (c->x86_vendor) {
1551 case X86_VENDOR_INTEL:
1552 mce_intel_feature_init(c);
1553 break;
1554 case X86_VENDOR_AMD:
1555 mce_amd_feature_init(c);
1556 break;
1557 default:
1558 break;
1559 }
1560 }
1561
1562 static void __mcheck_cpu_init_timer(void)
1563 {
1564 struct timer_list *t = &__get_cpu_var(mce_timer);
1565 unsigned long iv = check_interval * HZ;
1566
1567 setup_timer(t, mce_timer_fn, smp_processor_id());
1568
1569 if (mce_ignore_ce)
1570 return;
1571
1572 __this_cpu_write(mce_next_interval, iv);
1573 if (!iv)
1574 return;
1575 t->expires = round_jiffies(jiffies + iv);
1576 add_timer_on(t, smp_processor_id());
1577 }
1578
1579 /* Handle unconfigured int18 (should never happen) */
1580 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1581 {
1582 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1583 smp_processor_id());
1584 }
1585
1586 /* Call the installed machine check handler for this CPU setup. */
1587 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1588 unexpected_machine_check;
1589
1590 /*
1591 * Called for each booted CPU to set up machine checks.
1592 * Must be called with preempt off:
1593 */
1594 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1595 {
1596 if (mce_disabled)
1597 return;
1598
1599 if (__mcheck_cpu_ancient_init(c))
1600 return;
1601
1602 if (!mce_available(c))
1603 return;
1604
1605 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1606 mce_disabled = 1;
1607 return;
1608 }
1609
1610 machine_check_vector = do_machine_check;
1611
1612 __mcheck_cpu_init_generic();
1613 __mcheck_cpu_init_vendor(c);
1614 __mcheck_cpu_init_timer();
1615 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1616 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1617 }
1618
1619 /*
1620 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1621 */
1622
1623 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1624 static int mce_chrdev_open_count; /* #times opened */
1625 static int mce_chrdev_open_exclu; /* already open exclusive? */
1626
1627 static int mce_chrdev_open(struct inode *inode, struct file *file)
1628 {
1629 spin_lock(&mce_chrdev_state_lock);
1630
1631 if (mce_chrdev_open_exclu ||
1632 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1633 spin_unlock(&mce_chrdev_state_lock);
1634
1635 return -EBUSY;
1636 }
1637
1638 if (file->f_flags & O_EXCL)
1639 mce_chrdev_open_exclu = 1;
1640 mce_chrdev_open_count++;
1641
1642 spin_unlock(&mce_chrdev_state_lock);
1643
1644 return nonseekable_open(inode, file);
1645 }
1646
1647 static int mce_chrdev_release(struct inode *inode, struct file *file)
1648 {
1649 spin_lock(&mce_chrdev_state_lock);
1650
1651 mce_chrdev_open_count--;
1652 mce_chrdev_open_exclu = 0;
1653
1654 spin_unlock(&mce_chrdev_state_lock);
1655
1656 return 0;
1657 }
1658
1659 static void collect_tscs(void *data)
1660 {
1661 unsigned long *cpu_tsc = (unsigned long *)data;
1662
1663 rdtscll(cpu_tsc[smp_processor_id()]);
1664 }
1665
1666 static int mce_apei_read_done;
1667
1668 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1669 static int __mce_read_apei(char __user **ubuf, size_t usize)
1670 {
1671 int rc;
1672 u64 record_id;
1673 struct mce m;
1674
1675 if (usize < sizeof(struct mce))
1676 return -EINVAL;
1677
1678 rc = apei_read_mce(&m, &record_id);
1679 /* Error or no more MCE record */
1680 if (rc <= 0) {
1681 mce_apei_read_done = 1;
1682 /*
1683 * When ERST is disabled, mce_chrdev_read() should return
1684 * "no record" instead of "no device."
1685 */
1686 if (rc == -ENODEV)
1687 return 0;
1688 return rc;
1689 }
1690 rc = -EFAULT;
1691 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1692 return rc;
1693 /*
1694 * In fact, we should have cleared the record after that has
1695 * been flushed to the disk or sent to network in
1696 * /sbin/mcelog, but we have no interface to support that now,
1697 * so just clear it to avoid duplication.
1698 */
1699 rc = apei_clear_mce(record_id);
1700 if (rc) {
1701 mce_apei_read_done = 1;
1702 return rc;
1703 }
1704 *ubuf += sizeof(struct mce);
1705
1706 return 0;
1707 }
1708
1709 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1710 size_t usize, loff_t *off)
1711 {
1712 char __user *buf = ubuf;
1713 unsigned long *cpu_tsc;
1714 unsigned prev, next;
1715 int i, err;
1716
1717 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1718 if (!cpu_tsc)
1719 return -ENOMEM;
1720
1721 mutex_lock(&mce_chrdev_read_mutex);
1722
1723 if (!mce_apei_read_done) {
1724 err = __mce_read_apei(&buf, usize);
1725 if (err || buf != ubuf)
1726 goto out;
1727 }
1728
1729 next = rcu_dereference_check_mce(mcelog.next);
1730
1731 /* Only supports full reads right now */
1732 err = -EINVAL;
1733 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1734 goto out;
1735
1736 err = 0;
1737 prev = 0;
1738 do {
1739 for (i = prev; i < next; i++) {
1740 unsigned long start = jiffies;
1741 struct mce *m = &mcelog.entry[i];
1742
1743 while (!m->finished) {
1744 if (time_after_eq(jiffies, start + 2)) {
1745 memset(m, 0, sizeof(*m));
1746 goto timeout;
1747 }
1748 cpu_relax();
1749 }
1750 smp_rmb();
1751 err |= copy_to_user(buf, m, sizeof(*m));
1752 buf += sizeof(*m);
1753 timeout:
1754 ;
1755 }
1756
1757 memset(mcelog.entry + prev, 0,
1758 (next - prev) * sizeof(struct mce));
1759 prev = next;
1760 next = cmpxchg(&mcelog.next, prev, 0);
1761 } while (next != prev);
1762
1763 synchronize_sched();
1764
1765 /*
1766 * Collect entries that were still getting written before the
1767 * synchronize.
1768 */
1769 on_each_cpu(collect_tscs, cpu_tsc, 1);
1770
1771 for (i = next; i < MCE_LOG_LEN; i++) {
1772 struct mce *m = &mcelog.entry[i];
1773
1774 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1775 err |= copy_to_user(buf, m, sizeof(*m));
1776 smp_rmb();
1777 buf += sizeof(*m);
1778 memset(m, 0, sizeof(*m));
1779 }
1780 }
1781
1782 if (err)
1783 err = -EFAULT;
1784
1785 out:
1786 mutex_unlock(&mce_chrdev_read_mutex);
1787 kfree(cpu_tsc);
1788
1789 return err ? err : buf - ubuf;
1790 }
1791
1792 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1793 {
1794 poll_wait(file, &mce_chrdev_wait, wait);
1795 if (rcu_access_index(mcelog.next))
1796 return POLLIN | POLLRDNORM;
1797 if (!mce_apei_read_done && apei_check_mce())
1798 return POLLIN | POLLRDNORM;
1799 return 0;
1800 }
1801
1802 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1803 unsigned long arg)
1804 {
1805 int __user *p = (int __user *)arg;
1806
1807 if (!capable(CAP_SYS_ADMIN))
1808 return -EPERM;
1809
1810 switch (cmd) {
1811 case MCE_GET_RECORD_LEN:
1812 return put_user(sizeof(struct mce), p);
1813 case MCE_GET_LOG_LEN:
1814 return put_user(MCE_LOG_LEN, p);
1815 case MCE_GETCLEAR_FLAGS: {
1816 unsigned flags;
1817
1818 do {
1819 flags = mcelog.flags;
1820 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1821
1822 return put_user(flags, p);
1823 }
1824 default:
1825 return -ENOTTY;
1826 }
1827 }
1828
1829 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1830 size_t usize, loff_t *off);
1831
1832 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1833 const char __user *ubuf,
1834 size_t usize, loff_t *off))
1835 {
1836 mce_write = fn;
1837 }
1838 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1839
1840 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1841 size_t usize, loff_t *off)
1842 {
1843 if (mce_write)
1844 return mce_write(filp, ubuf, usize, off);
1845 else
1846 return -EINVAL;
1847 }
1848
1849 static const struct file_operations mce_chrdev_ops = {
1850 .open = mce_chrdev_open,
1851 .release = mce_chrdev_release,
1852 .read = mce_chrdev_read,
1853 .write = mce_chrdev_write,
1854 .poll = mce_chrdev_poll,
1855 .unlocked_ioctl = mce_chrdev_ioctl,
1856 .llseek = no_llseek,
1857 };
1858
1859 static struct miscdevice mce_chrdev_device = {
1860 MISC_MCELOG_MINOR,
1861 "mcelog",
1862 &mce_chrdev_ops,
1863 };
1864
1865 /*
1866 * mce=off Disables machine check
1867 * mce=no_cmci Disables CMCI
1868 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1869 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1870 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1871 * monarchtimeout is how long to wait for other CPUs on machine
1872 * check, or 0 to not wait
1873 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1874 * mce=nobootlog Don't log MCEs from before booting.
1875 */
1876 static int __init mcheck_enable(char *str)
1877 {
1878 if (*str == 0) {
1879 enable_p5_mce();
1880 return 1;
1881 }
1882 if (*str == '=')
1883 str++;
1884 if (!strcmp(str, "off"))
1885 mce_disabled = 1;
1886 else if (!strcmp(str, "no_cmci"))
1887 mce_cmci_disabled = 1;
1888 else if (!strcmp(str, "dont_log_ce"))
1889 mce_dont_log_ce = 1;
1890 else if (!strcmp(str, "ignore_ce"))
1891 mce_ignore_ce = 1;
1892 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1893 mce_bootlog = (str[0] == 'b');
1894 else if (isdigit(str[0])) {
1895 get_option(&str, &tolerant);
1896 if (*str == ',') {
1897 ++str;
1898 get_option(&str, &monarch_timeout);
1899 }
1900 } else {
1901 pr_info("mce argument %s ignored. Please use /sys\n", str);
1902 return 0;
1903 }
1904 return 1;
1905 }
1906 __setup("mce", mcheck_enable);
1907
1908 int __init mcheck_init(void)
1909 {
1910 mcheck_intel_therm_init();
1911
1912 return 0;
1913 }
1914
1915 /*
1916 * mce_syscore: PM support
1917 */
1918
1919 /*
1920 * Disable machine checks on suspend and shutdown. We can't really handle
1921 * them later.
1922 */
1923 static int mce_disable_error_reporting(void)
1924 {
1925 int i;
1926
1927 for (i = 0; i < banks; i++) {
1928 struct mce_bank *b = &mce_banks[i];
1929
1930 if (b->init)
1931 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1932 }
1933 return 0;
1934 }
1935
1936 static int mce_syscore_suspend(void)
1937 {
1938 return mce_disable_error_reporting();
1939 }
1940
1941 static void mce_syscore_shutdown(void)
1942 {
1943 mce_disable_error_reporting();
1944 }
1945
1946 /*
1947 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1948 * Only one CPU is active at this time, the others get re-added later using
1949 * CPU hotplug:
1950 */
1951 static void mce_syscore_resume(void)
1952 {
1953 __mcheck_cpu_init_generic();
1954 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1955 }
1956
1957 static struct syscore_ops mce_syscore_ops = {
1958 .suspend = mce_syscore_suspend,
1959 .shutdown = mce_syscore_shutdown,
1960 .resume = mce_syscore_resume,
1961 };
1962
1963 /*
1964 * mce_device: Sysfs support
1965 */
1966
1967 static void mce_cpu_restart(void *data)
1968 {
1969 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1970 return;
1971 __mcheck_cpu_init_generic();
1972 __mcheck_cpu_init_timer();
1973 }
1974
1975 /* Reinit MCEs after user configuration changes */
1976 static void mce_restart(void)
1977 {
1978 mce_timer_delete_all();
1979 on_each_cpu(mce_cpu_restart, NULL, 1);
1980 }
1981
1982 /* Toggle features for corrected errors */
1983 static void mce_disable_cmci(void *data)
1984 {
1985 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1986 return;
1987 cmci_clear();
1988 }
1989
1990 static void mce_enable_ce(void *all)
1991 {
1992 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1993 return;
1994 cmci_reenable();
1995 cmci_recheck();
1996 if (all)
1997 __mcheck_cpu_init_timer();
1998 }
1999
2000 static struct bus_type mce_subsys = {
2001 .name = "machinecheck",
2002 .dev_name = "machinecheck",
2003 };
2004
2005 DEFINE_PER_CPU(struct device *, mce_device);
2006
2007 __cpuinitdata
2008 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2009
2010 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2011 {
2012 return container_of(attr, struct mce_bank, attr);
2013 }
2014
2015 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2016 char *buf)
2017 {
2018 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2019 }
2020
2021 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2022 const char *buf, size_t size)
2023 {
2024 u64 new;
2025
2026 if (strict_strtoull(buf, 0, &new) < 0)
2027 return -EINVAL;
2028
2029 attr_to_bank(attr)->ctl = new;
2030 mce_restart();
2031
2032 return size;
2033 }
2034
2035 static ssize_t
2036 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2037 {
2038 strcpy(buf, mce_helper);
2039 strcat(buf, "\n");
2040 return strlen(mce_helper) + 1;
2041 }
2042
2043 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2044 const char *buf, size_t siz)
2045 {
2046 char *p;
2047
2048 strncpy(mce_helper, buf, sizeof(mce_helper));
2049 mce_helper[sizeof(mce_helper)-1] = 0;
2050 p = strchr(mce_helper, '\n');
2051
2052 if (p)
2053 *p = 0;
2054
2055 return strlen(mce_helper) + !!p;
2056 }
2057
2058 static ssize_t set_ignore_ce(struct device *s,
2059 struct device_attribute *attr,
2060 const char *buf, size_t size)
2061 {
2062 u64 new;
2063
2064 if (strict_strtoull(buf, 0, &new) < 0)
2065 return -EINVAL;
2066
2067 if (mce_ignore_ce ^ !!new) {
2068 if (new) {
2069 /* disable ce features */
2070 mce_timer_delete_all();
2071 on_each_cpu(mce_disable_cmci, NULL, 1);
2072 mce_ignore_ce = 1;
2073 } else {
2074 /* enable ce features */
2075 mce_ignore_ce = 0;
2076 on_each_cpu(mce_enable_ce, (void *)1, 1);
2077 }
2078 }
2079 return size;
2080 }
2081
2082 static ssize_t set_cmci_disabled(struct device *s,
2083 struct device_attribute *attr,
2084 const char *buf, size_t size)
2085 {
2086 u64 new;
2087
2088 if (strict_strtoull(buf, 0, &new) < 0)
2089 return -EINVAL;
2090
2091 if (mce_cmci_disabled ^ !!new) {
2092 if (new) {
2093 /* disable cmci */
2094 on_each_cpu(mce_disable_cmci, NULL, 1);
2095 mce_cmci_disabled = 1;
2096 } else {
2097 /* enable cmci */
2098 mce_cmci_disabled = 0;
2099 on_each_cpu(mce_enable_ce, NULL, 1);
2100 }
2101 }
2102 return size;
2103 }
2104
2105 static ssize_t store_int_with_restart(struct device *s,
2106 struct device_attribute *attr,
2107 const char *buf, size_t size)
2108 {
2109 ssize_t ret = device_store_int(s, attr, buf, size);
2110 mce_restart();
2111 return ret;
2112 }
2113
2114 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2115 static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2116 static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2117 static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2118
2119 static struct dev_ext_attribute dev_attr_check_interval = {
2120 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2121 &check_interval
2122 };
2123
2124 static struct dev_ext_attribute dev_attr_ignore_ce = {
2125 __ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2126 &mce_ignore_ce
2127 };
2128
2129 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2130 __ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2131 &mce_cmci_disabled
2132 };
2133
2134 static struct device_attribute *mce_device_attrs[] = {
2135 &dev_attr_tolerant.attr,
2136 &dev_attr_check_interval.attr,
2137 &dev_attr_trigger,
2138 &dev_attr_monarch_timeout.attr,
2139 &dev_attr_dont_log_ce.attr,
2140 &dev_attr_ignore_ce.attr,
2141 &dev_attr_cmci_disabled.attr,
2142 NULL
2143 };
2144
2145 static cpumask_var_t mce_device_initialized;
2146
2147 static void mce_device_release(struct device *dev)
2148 {
2149 kfree(dev);
2150 }
2151
2152 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2153 static __cpuinit int mce_device_create(unsigned int cpu)
2154 {
2155 struct device *dev;
2156 int err;
2157 int i, j;
2158
2159 if (!mce_available(&boot_cpu_data))
2160 return -EIO;
2161
2162 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2163 if (!dev)
2164 return -ENOMEM;
2165 dev->id = cpu;
2166 dev->bus = &mce_subsys;
2167 dev->release = &mce_device_release;
2168
2169 err = device_register(dev);
2170 if (err)
2171 return err;
2172
2173 for (i = 0; mce_device_attrs[i]; i++) {
2174 err = device_create_file(dev, mce_device_attrs[i]);
2175 if (err)
2176 goto error;
2177 }
2178 for (j = 0; j < banks; j++) {
2179 err = device_create_file(dev, &mce_banks[j].attr);
2180 if (err)
2181 goto error2;
2182 }
2183 cpumask_set_cpu(cpu, mce_device_initialized);
2184 per_cpu(mce_device, cpu) = dev;
2185
2186 return 0;
2187 error2:
2188 while (--j >= 0)
2189 device_remove_file(dev, &mce_banks[j].attr);
2190 error:
2191 while (--i >= 0)
2192 device_remove_file(dev, mce_device_attrs[i]);
2193
2194 device_unregister(dev);
2195
2196 return err;
2197 }
2198
2199 static __cpuinit void mce_device_remove(unsigned int cpu)
2200 {
2201 struct device *dev = per_cpu(mce_device, cpu);
2202 int i;
2203
2204 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2205 return;
2206
2207 for (i = 0; mce_device_attrs[i]; i++)
2208 device_remove_file(dev, mce_device_attrs[i]);
2209
2210 for (i = 0; i < banks; i++)
2211 device_remove_file(dev, &mce_banks[i].attr);
2212
2213 device_unregister(dev);
2214 cpumask_clear_cpu(cpu, mce_device_initialized);
2215 per_cpu(mce_device, cpu) = NULL;
2216 }
2217
2218 /* Make sure there are no machine checks on offlined CPUs. */
2219 static void __cpuinit mce_disable_cpu(void *h)
2220 {
2221 unsigned long action = *(unsigned long *)h;
2222 int i;
2223
2224 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2225 return;
2226
2227 if (!(action & CPU_TASKS_FROZEN))
2228 cmci_clear();
2229 for (i = 0; i < banks; i++) {
2230 struct mce_bank *b = &mce_banks[i];
2231
2232 if (b->init)
2233 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2234 }
2235 }
2236
2237 static void __cpuinit mce_reenable_cpu(void *h)
2238 {
2239 unsigned long action = *(unsigned long *)h;
2240 int i;
2241
2242 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2243 return;
2244
2245 if (!(action & CPU_TASKS_FROZEN))
2246 cmci_reenable();
2247 for (i = 0; i < banks; i++) {
2248 struct mce_bank *b = &mce_banks[i];
2249
2250 if (b->init)
2251 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2252 }
2253 }
2254
2255 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2256 static int __cpuinit
2257 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2258 {
2259 unsigned int cpu = (unsigned long)hcpu;
2260 struct timer_list *t = &per_cpu(mce_timer, cpu);
2261
2262 switch (action) {
2263 case CPU_ONLINE:
2264 case CPU_ONLINE_FROZEN:
2265 mce_device_create(cpu);
2266 if (threshold_cpu_callback)
2267 threshold_cpu_callback(action, cpu);
2268 break;
2269 case CPU_DEAD:
2270 case CPU_DEAD_FROZEN:
2271 if (threshold_cpu_callback)
2272 threshold_cpu_callback(action, cpu);
2273 mce_device_remove(cpu);
2274 break;
2275 case CPU_DOWN_PREPARE:
2276 case CPU_DOWN_PREPARE_FROZEN:
2277 del_timer_sync(t);
2278 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2279 break;
2280 case CPU_DOWN_FAILED:
2281 case CPU_DOWN_FAILED_FROZEN:
2282 if (!mce_ignore_ce && check_interval) {
2283 t->expires = round_jiffies(jiffies +
2284 per_cpu(mce_next_interval, cpu));
2285 add_timer_on(t, cpu);
2286 }
2287 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2288 break;
2289 case CPU_POST_DEAD:
2290 /* intentionally ignoring frozen here */
2291 cmci_rediscover(cpu);
2292 break;
2293 }
2294 return NOTIFY_OK;
2295 }
2296
2297 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2298 .notifier_call = mce_cpu_callback,
2299 };
2300
2301 static __init void mce_init_banks(void)
2302 {
2303 int i;
2304
2305 for (i = 0; i < banks; i++) {
2306 struct mce_bank *b = &mce_banks[i];
2307 struct device_attribute *a = &b->attr;
2308
2309 sysfs_attr_init(&a->attr);
2310 a->attr.name = b->attrname;
2311 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2312
2313 a->attr.mode = 0644;
2314 a->show = show_bank;
2315 a->store = set_bank;
2316 }
2317 }
2318
2319 static __init int mcheck_init_device(void)
2320 {
2321 int err;
2322 int i = 0;
2323
2324 if (!mce_available(&boot_cpu_data))
2325 return -EIO;
2326
2327 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2328
2329 mce_init_banks();
2330
2331 err = subsys_system_register(&mce_subsys, NULL);
2332 if (err)
2333 return err;
2334
2335 for_each_online_cpu(i) {
2336 err = mce_device_create(i);
2337 if (err)
2338 return err;
2339 }
2340
2341 register_syscore_ops(&mce_syscore_ops);
2342 register_hotcpu_notifier(&mce_cpu_notifier);
2343
2344 /* register character device /dev/mcelog */
2345 misc_register(&mce_chrdev_device);
2346
2347 return err;
2348 }
2349 device_initcall(mcheck_init_device);
2350
2351 /*
2352 * Old style boot options parsing. Only for compatibility.
2353 */
2354 static int __init mcheck_disable(char *str)
2355 {
2356 mce_disabled = 1;
2357 return 1;
2358 }
2359 __setup("nomce", mcheck_disable);
2360
2361 #ifdef CONFIG_DEBUG_FS
2362 struct dentry *mce_get_debugfs_dir(void)
2363 {
2364 static struct dentry *dmce;
2365
2366 if (!dmce)
2367 dmce = debugfs_create_dir("mce", NULL);
2368
2369 return dmce;
2370 }
2371
2372 static void mce_reset(void)
2373 {
2374 cpu_missing = 0;
2375 atomic_set(&mce_fake_paniced, 0);
2376 atomic_set(&mce_executing, 0);
2377 atomic_set(&mce_callin, 0);
2378 atomic_set(&global_nwo, 0);
2379 }
2380
2381 static int fake_panic_get(void *data, u64 *val)
2382 {
2383 *val = fake_panic;
2384 return 0;
2385 }
2386
2387 static int fake_panic_set(void *data, u64 val)
2388 {
2389 mce_reset();
2390 fake_panic = val;
2391 return 0;
2392 }
2393
2394 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2395 fake_panic_set, "%llu\n");
2396
2397 static int __init mcheck_debugfs_init(void)
2398 {
2399 struct dentry *dmce, *ffake_panic;
2400
2401 dmce = mce_get_debugfs_dir();
2402 if (!dmce)
2403 return -ENOMEM;
2404 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2405 &fake_panic_fops);
2406 if (!ffake_panic)
2407 return -ENOMEM;
2408
2409 return 0;
2410 }
2411 late_initcall(mcheck_debugfs_init);
2412 #endif
This page took 0.08871 seconds and 5 git commands to generate.