d086a09c087d7fa3cf8d1ee3f20176623b1df9f6
[deliverable/linux.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40 #include <linux/export.h>
41
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50 #define rcu_dereference_check_mce(p) \
51 rcu_dereference_index_check((p), \
52 rcu_read_lock_sched_held() || \
53 lockdep_is_held(&mce_chrdev_read_mutex))
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57
58 int mce_disabled __read_mostly;
59
60 #define MISC_MCELOG_MINOR 227
61
62 #define SPINUNIT 100 /* 100ns */
63
64 atomic_t mce_entry;
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 /*
69 * Tolerant levels:
70 * 0: always panic on uncorrected errors, log corrected errors
71 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
72 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 * 3: never panic or SIGBUS, log all errors (for testing only)
74 */
75 static int tolerant __read_mostly = 1;
76 static int banks __read_mostly;
77 static int rip_msr __read_mostly;
78 static int mce_bootlog __read_mostly = -1;
79 static int monarch_timeout __read_mostly = -1;
80 static int mce_panic_timeout __read_mostly;
81 static int mce_dont_log_ce __read_mostly;
82 int mce_cmci_disabled __read_mostly;
83 int mce_ignore_ce __read_mostly;
84 int mce_ser __read_mostly;
85
86 struct mce_bank *mce_banks __read_mostly;
87
88 /* User mode helper program triggered by machine check event */
89 static unsigned long mce_need_notify;
90 static char mce_helper[128];
91 static char *mce_helper_argv[2] = { mce_helper, NULL };
92
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int cpu_missing;
97
98 /* MCA banks polled by the period polling timer for corrected events */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102
103 static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105 /*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111 /* Do initial initialization of a struct mce */
112 void mce_setup(struct mce *m)
113 {
114 memset(m, 0, sizeof(struct mce));
115 m->cpu = m->extcpu = smp_processor_id();
116 rdtscll(m->tsc);
117 /* We hope get_seconds stays lockless */
118 m->time = get_seconds();
119 m->cpuvendor = boot_cpu_data.x86_vendor;
120 m->cpuid = cpuid_eax(1);
121 m->socketid = cpu_data(m->extcpu).phys_proc_id;
122 m->apicid = cpu_data(m->extcpu).initial_apicid;
123 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124 }
125
126 DEFINE_PER_CPU(struct mce, injectm);
127 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129 /*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135 static struct mce_log mcelog = {
136 .signature = MCE_LOG_SIGNATURE,
137 .len = MCE_LOG_LEN,
138 .recordlen = sizeof(struct mce),
139 };
140
141 void mce_log(struct mce *mce)
142 {
143 unsigned next, entry;
144 int ret = 0;
145
146 /* Emit the trace record: */
147 trace_mce_record(mce);
148
149 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150 if (ret == NOTIFY_STOP)
151 return;
152
153 mce->finished = 0;
154 wmb();
155 for (;;) {
156 entry = rcu_dereference_check_mce(mcelog.next);
157 for (;;) {
158
159 /*
160 * When the buffer fills up discard new entries.
161 * Assume that the earlier errors are the more
162 * interesting ones:
163 */
164 if (entry >= MCE_LOG_LEN) {
165 set_bit(MCE_OVERFLOW,
166 (unsigned long *)&mcelog.flags);
167 return;
168 }
169 /* Old left over entry. Skip: */
170 if (mcelog.entry[entry].finished) {
171 entry++;
172 continue;
173 }
174 break;
175 }
176 smp_rmb();
177 next = entry + 1;
178 if (cmpxchg(&mcelog.next, entry, next) == entry)
179 break;
180 }
181 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182 wmb();
183 mcelog.entry[entry].finished = 1;
184 wmb();
185
186 mce->finished = 1;
187 set_bit(0, &mce_need_notify);
188 }
189
190 static void drain_mcelog_buffer(void)
191 {
192 unsigned int next, i, prev = 0;
193
194 next = ACCESS_ONCE(mcelog.next);
195
196 do {
197 struct mce *m;
198
199 /* drain what was logged during boot */
200 for (i = prev; i < next; i++) {
201 unsigned long start = jiffies;
202 unsigned retries = 1;
203
204 m = &mcelog.entry[i];
205
206 while (!m->finished) {
207 if (time_after_eq(jiffies, start + 2*retries))
208 retries++;
209
210 cpu_relax();
211
212 if (!m->finished && retries >= 4) {
213 pr_err("MCE: skipping error being logged currently!\n");
214 break;
215 }
216 }
217 smp_rmb();
218 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219 }
220
221 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222 prev = next;
223 next = cmpxchg(&mcelog.next, prev, 0);
224 } while (next != prev);
225 }
226
227
228 void mce_register_decode_chain(struct notifier_block *nb)
229 {
230 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231 drain_mcelog_buffer();
232 }
233 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
235 void mce_unregister_decode_chain(struct notifier_block *nb)
236 {
237 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238 }
239 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
241 static void print_mce(struct mce *m)
242 {
243 int ret = 0;
244
245 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246 m->extcpu, m->mcgstatus, m->bank, m->status);
247
248 if (m->ip) {
249 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251 m->cs, m->ip);
252
253 if (m->cs == __KERNEL_CS)
254 print_symbol("{%s}", m->ip);
255 pr_cont("\n");
256 }
257
258 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259 if (m->addr)
260 pr_cont("ADDR %llx ", m->addr);
261 if (m->misc)
262 pr_cont("MISC %llx ", m->misc);
263
264 pr_cont("\n");
265 /*
266 * Note this output is parsed by external tools and old fields
267 * should not be changed.
268 */
269 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271 cpu_data(m->extcpu).microcode);
272
273 /*
274 * Print out human-readable details about the MCE error,
275 * (if the CPU has an implementation for that)
276 */
277 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278 if (ret == NOTIFY_STOP)
279 return;
280
281 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282 }
283
284 #define PANIC_TIMEOUT 5 /* 5 seconds */
285
286 static atomic_t mce_paniced;
287
288 static int fake_panic;
289 static atomic_t mce_fake_paniced;
290
291 /* Panic in progress. Enable interrupts and wait for final IPI */
292 static void wait_for_panic(void)
293 {
294 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296 preempt_disable();
297 local_irq_enable();
298 while (timeout-- > 0)
299 udelay(1);
300 if (panic_timeout == 0)
301 panic_timeout = mce_panic_timeout;
302 panic("Panicing machine check CPU died");
303 }
304
305 static void mce_panic(char *msg, struct mce *final, char *exp)
306 {
307 int i, apei_err = 0;
308
309 if (!fake_panic) {
310 /*
311 * Make sure only one CPU runs in machine check panic
312 */
313 if (atomic_inc_return(&mce_paniced) > 1)
314 wait_for_panic();
315 barrier();
316
317 bust_spinlocks(1);
318 console_verbose();
319 } else {
320 /* Don't log too much for fake panic */
321 if (atomic_inc_return(&mce_fake_paniced) > 1)
322 return;
323 }
324 /* First print corrected ones that are still unlogged */
325 for (i = 0; i < MCE_LOG_LEN; i++) {
326 struct mce *m = &mcelog.entry[i];
327 if (!(m->status & MCI_STATUS_VAL))
328 continue;
329 if (!(m->status & MCI_STATUS_UC)) {
330 print_mce(m);
331 if (!apei_err)
332 apei_err = apei_write_mce(m);
333 }
334 }
335 /* Now print uncorrected but with the final one last */
336 for (i = 0; i < MCE_LOG_LEN; i++) {
337 struct mce *m = &mcelog.entry[i];
338 if (!(m->status & MCI_STATUS_VAL))
339 continue;
340 if (!(m->status & MCI_STATUS_UC))
341 continue;
342 if (!final || memcmp(m, final, sizeof(struct mce))) {
343 print_mce(m);
344 if (!apei_err)
345 apei_err = apei_write_mce(m);
346 }
347 }
348 if (final) {
349 print_mce(final);
350 if (!apei_err)
351 apei_err = apei_write_mce(final);
352 }
353 if (cpu_missing)
354 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355 if (exp)
356 pr_emerg(HW_ERR "Machine check: %s\n", exp);
357 if (!fake_panic) {
358 if (panic_timeout == 0)
359 panic_timeout = mce_panic_timeout;
360 panic(msg);
361 } else
362 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363 }
364
365 /* Support code for software error injection */
366
367 static int msr_to_offset(u32 msr)
368 {
369 unsigned bank = __this_cpu_read(injectm.bank);
370
371 if (msr == rip_msr)
372 return offsetof(struct mce, ip);
373 if (msr == MSR_IA32_MCx_STATUS(bank))
374 return offsetof(struct mce, status);
375 if (msr == MSR_IA32_MCx_ADDR(bank))
376 return offsetof(struct mce, addr);
377 if (msr == MSR_IA32_MCx_MISC(bank))
378 return offsetof(struct mce, misc);
379 if (msr == MSR_IA32_MCG_STATUS)
380 return offsetof(struct mce, mcgstatus);
381 return -1;
382 }
383
384 /* MSR access wrappers used for error injection */
385 static u64 mce_rdmsrl(u32 msr)
386 {
387 u64 v;
388
389 if (__this_cpu_read(injectm.finished)) {
390 int offset = msr_to_offset(msr);
391
392 if (offset < 0)
393 return 0;
394 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395 }
396
397 if (rdmsrl_safe(msr, &v)) {
398 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399 /*
400 * Return zero in case the access faulted. This should
401 * not happen normally but can happen if the CPU does
402 * something weird, or if the code is buggy.
403 */
404 v = 0;
405 }
406
407 return v;
408 }
409
410 static void mce_wrmsrl(u32 msr, u64 v)
411 {
412 if (__this_cpu_read(injectm.finished)) {
413 int offset = msr_to_offset(msr);
414
415 if (offset >= 0)
416 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417 return;
418 }
419 wrmsrl(msr, v);
420 }
421
422 /*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
427 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428 {
429 mce_setup(m);
430
431 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432 if (regs) {
433 /*
434 * Get the address of the instruction at the time of
435 * the machine check error.
436 */
437 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438 m->ip = regs->ip;
439 m->cs = regs->cs;
440 }
441 /* Use accurate RIP reporting if available. */
442 if (rip_msr)
443 m->ip = mce_rdmsrl(rip_msr);
444 }
445 }
446
447 /*
448 * Simple lockless ring to communicate PFNs from the exception handler with the
449 * process context work function. This is vastly simplified because there's
450 * only a single reader and a single writer.
451 */
452 #define MCE_RING_SIZE 16 /* we use one entry less */
453
454 struct mce_ring {
455 unsigned short start;
456 unsigned short end;
457 unsigned long ring[MCE_RING_SIZE];
458 };
459 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
460
461 /* Runs with CPU affinity in workqueue */
462 static int mce_ring_empty(void)
463 {
464 struct mce_ring *r = &__get_cpu_var(mce_ring);
465
466 return r->start == r->end;
467 }
468
469 static int mce_ring_get(unsigned long *pfn)
470 {
471 struct mce_ring *r;
472 int ret = 0;
473
474 *pfn = 0;
475 get_cpu();
476 r = &__get_cpu_var(mce_ring);
477 if (r->start == r->end)
478 goto out;
479 *pfn = r->ring[r->start];
480 r->start = (r->start + 1) % MCE_RING_SIZE;
481 ret = 1;
482 out:
483 put_cpu();
484 return ret;
485 }
486
487 /* Always runs in MCE context with preempt off */
488 static int mce_ring_add(unsigned long pfn)
489 {
490 struct mce_ring *r = &__get_cpu_var(mce_ring);
491 unsigned next;
492
493 next = (r->end + 1) % MCE_RING_SIZE;
494 if (next == r->start)
495 return -1;
496 r->ring[r->end] = pfn;
497 wmb();
498 r->end = next;
499 return 0;
500 }
501
502 int mce_available(struct cpuinfo_x86 *c)
503 {
504 if (mce_disabled)
505 return 0;
506 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
507 }
508
509 static void mce_schedule_work(void)
510 {
511 if (!mce_ring_empty()) {
512 struct work_struct *work = &__get_cpu_var(mce_work);
513 if (!work_pending(work))
514 schedule_work(work);
515 }
516 }
517
518 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
519
520 static void mce_irq_work_cb(struct irq_work *entry)
521 {
522 mce_notify_irq();
523 mce_schedule_work();
524 }
525
526 static void mce_report_event(struct pt_regs *regs)
527 {
528 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
529 mce_notify_irq();
530 /*
531 * Triggering the work queue here is just an insurance
532 * policy in case the syscall exit notify handler
533 * doesn't run soon enough or ends up running on the
534 * wrong CPU (can happen when audit sleeps)
535 */
536 mce_schedule_work();
537 return;
538 }
539
540 irq_work_queue(&__get_cpu_var(mce_irq_work));
541 }
542
543 /*
544 * Read ADDR and MISC registers.
545 */
546 static void mce_read_aux(struct mce *m, int i)
547 {
548 if (m->status & MCI_STATUS_MISCV)
549 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
550 if (m->status & MCI_STATUS_ADDRV) {
551 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
552
553 /*
554 * Mask the reported address by the reported granularity.
555 */
556 if (mce_ser && (m->status & MCI_STATUS_MISCV)) {
557 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
558 m->addr >>= shift;
559 m->addr <<= shift;
560 }
561 }
562 }
563
564 DEFINE_PER_CPU(unsigned, mce_poll_count);
565
566 /*
567 * Poll for corrected events or events that happened before reset.
568 * Those are just logged through /dev/mcelog.
569 *
570 * This is executed in standard interrupt context.
571 *
572 * Note: spec recommends to panic for fatal unsignalled
573 * errors here. However this would be quite problematic --
574 * we would need to reimplement the Monarch handling and
575 * it would mess up the exclusion between exception handler
576 * and poll hander -- * so we skip this for now.
577 * These cases should not happen anyways, or only when the CPU
578 * is already totally * confused. In this case it's likely it will
579 * not fully execute the machine check handler either.
580 */
581 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
582 {
583 struct mce m;
584 int i;
585
586 percpu_inc(mce_poll_count);
587
588 mce_gather_info(&m, NULL);
589
590 for (i = 0; i < banks; i++) {
591 if (!mce_banks[i].ctl || !test_bit(i, *b))
592 continue;
593
594 m.misc = 0;
595 m.addr = 0;
596 m.bank = i;
597 m.tsc = 0;
598
599 barrier();
600 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
601 if (!(m.status & MCI_STATUS_VAL))
602 continue;
603
604 /*
605 * Uncorrected or signalled events are handled by the exception
606 * handler when it is enabled, so don't process those here.
607 *
608 * TBD do the same check for MCI_STATUS_EN here?
609 */
610 if (!(flags & MCP_UC) &&
611 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
612 continue;
613
614 mce_read_aux(&m, i);
615
616 if (!(flags & MCP_TIMESTAMP))
617 m.tsc = 0;
618 /*
619 * Don't get the IP here because it's unlikely to
620 * have anything to do with the actual error location.
621 */
622 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
623 mce_log(&m);
624
625 /*
626 * Clear state for this bank.
627 */
628 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
629 }
630
631 /*
632 * Don't clear MCG_STATUS here because it's only defined for
633 * exceptions.
634 */
635
636 sync_core();
637 }
638 EXPORT_SYMBOL_GPL(machine_check_poll);
639
640 /*
641 * Do a quick check if any of the events requires a panic.
642 * This decides if we keep the events around or clear them.
643 */
644 static int mce_no_way_out(struct mce *m, char **msg)
645 {
646 int i;
647
648 for (i = 0; i < banks; i++) {
649 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
650 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
651 return 1;
652 }
653 return 0;
654 }
655
656 /*
657 * Variable to establish order between CPUs while scanning.
658 * Each CPU spins initially until executing is equal its number.
659 */
660 static atomic_t mce_executing;
661
662 /*
663 * Defines order of CPUs on entry. First CPU becomes Monarch.
664 */
665 static atomic_t mce_callin;
666
667 /*
668 * Check if a timeout waiting for other CPUs happened.
669 */
670 static int mce_timed_out(u64 *t)
671 {
672 /*
673 * The others already did panic for some reason.
674 * Bail out like in a timeout.
675 * rmb() to tell the compiler that system_state
676 * might have been modified by someone else.
677 */
678 rmb();
679 if (atomic_read(&mce_paniced))
680 wait_for_panic();
681 if (!monarch_timeout)
682 goto out;
683 if ((s64)*t < SPINUNIT) {
684 /* CHECKME: Make panic default for 1 too? */
685 if (tolerant < 1)
686 mce_panic("Timeout synchronizing machine check over CPUs",
687 NULL, NULL);
688 cpu_missing = 1;
689 return 1;
690 }
691 *t -= SPINUNIT;
692 out:
693 touch_nmi_watchdog();
694 return 0;
695 }
696
697 /*
698 * The Monarch's reign. The Monarch is the CPU who entered
699 * the machine check handler first. It waits for the others to
700 * raise the exception too and then grades them. When any
701 * error is fatal panic. Only then let the others continue.
702 *
703 * The other CPUs entering the MCE handler will be controlled by the
704 * Monarch. They are called Subjects.
705 *
706 * This way we prevent any potential data corruption in a unrecoverable case
707 * and also makes sure always all CPU's errors are examined.
708 *
709 * Also this detects the case of a machine check event coming from outer
710 * space (not detected by any CPUs) In this case some external agent wants
711 * us to shut down, so panic too.
712 *
713 * The other CPUs might still decide to panic if the handler happens
714 * in a unrecoverable place, but in this case the system is in a semi-stable
715 * state and won't corrupt anything by itself. It's ok to let the others
716 * continue for a bit first.
717 *
718 * All the spin loops have timeouts; when a timeout happens a CPU
719 * typically elects itself to be Monarch.
720 */
721 static void mce_reign(void)
722 {
723 int cpu;
724 struct mce *m = NULL;
725 int global_worst = 0;
726 char *msg = NULL;
727 char *nmsg = NULL;
728
729 /*
730 * This CPU is the Monarch and the other CPUs have run
731 * through their handlers.
732 * Grade the severity of the errors of all the CPUs.
733 */
734 for_each_possible_cpu(cpu) {
735 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
736 &nmsg);
737 if (severity > global_worst) {
738 msg = nmsg;
739 global_worst = severity;
740 m = &per_cpu(mces_seen, cpu);
741 }
742 }
743
744 /*
745 * Cannot recover? Panic here then.
746 * This dumps all the mces in the log buffer and stops the
747 * other CPUs.
748 */
749 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
750 mce_panic("Fatal Machine check", m, msg);
751
752 /*
753 * For UC somewhere we let the CPU who detects it handle it.
754 * Also must let continue the others, otherwise the handling
755 * CPU could deadlock on a lock.
756 */
757
758 /*
759 * No machine check event found. Must be some external
760 * source or one CPU is hung. Panic.
761 */
762 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
763 mce_panic("Machine check from unknown source", NULL, NULL);
764
765 /*
766 * Now clear all the mces_seen so that they don't reappear on
767 * the next mce.
768 */
769 for_each_possible_cpu(cpu)
770 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
771 }
772
773 static atomic_t global_nwo;
774
775 /*
776 * Start of Monarch synchronization. This waits until all CPUs have
777 * entered the exception handler and then determines if any of them
778 * saw a fatal event that requires panic. Then it executes them
779 * in the entry order.
780 * TBD double check parallel CPU hotunplug
781 */
782 static int mce_start(int *no_way_out)
783 {
784 int order;
785 int cpus = num_online_cpus();
786 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
787
788 if (!timeout)
789 return -1;
790
791 atomic_add(*no_way_out, &global_nwo);
792 /*
793 * global_nwo should be updated before mce_callin
794 */
795 smp_wmb();
796 order = atomic_inc_return(&mce_callin);
797
798 /*
799 * Wait for everyone.
800 */
801 while (atomic_read(&mce_callin) != cpus) {
802 if (mce_timed_out(&timeout)) {
803 atomic_set(&global_nwo, 0);
804 return -1;
805 }
806 ndelay(SPINUNIT);
807 }
808
809 /*
810 * mce_callin should be read before global_nwo
811 */
812 smp_rmb();
813
814 if (order == 1) {
815 /*
816 * Monarch: Starts executing now, the others wait.
817 */
818 atomic_set(&mce_executing, 1);
819 } else {
820 /*
821 * Subject: Now start the scanning loop one by one in
822 * the original callin order.
823 * This way when there are any shared banks it will be
824 * only seen by one CPU before cleared, avoiding duplicates.
825 */
826 while (atomic_read(&mce_executing) < order) {
827 if (mce_timed_out(&timeout)) {
828 atomic_set(&global_nwo, 0);
829 return -1;
830 }
831 ndelay(SPINUNIT);
832 }
833 }
834
835 /*
836 * Cache the global no_way_out state.
837 */
838 *no_way_out = atomic_read(&global_nwo);
839
840 return order;
841 }
842
843 /*
844 * Synchronize between CPUs after main scanning loop.
845 * This invokes the bulk of the Monarch processing.
846 */
847 static int mce_end(int order)
848 {
849 int ret = -1;
850 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
851
852 if (!timeout)
853 goto reset;
854 if (order < 0)
855 goto reset;
856
857 /*
858 * Allow others to run.
859 */
860 atomic_inc(&mce_executing);
861
862 if (order == 1) {
863 /* CHECKME: Can this race with a parallel hotplug? */
864 int cpus = num_online_cpus();
865
866 /*
867 * Monarch: Wait for everyone to go through their scanning
868 * loops.
869 */
870 while (atomic_read(&mce_executing) <= cpus) {
871 if (mce_timed_out(&timeout))
872 goto reset;
873 ndelay(SPINUNIT);
874 }
875
876 mce_reign();
877 barrier();
878 ret = 0;
879 } else {
880 /*
881 * Subject: Wait for Monarch to finish.
882 */
883 while (atomic_read(&mce_executing) != 0) {
884 if (mce_timed_out(&timeout))
885 goto reset;
886 ndelay(SPINUNIT);
887 }
888
889 /*
890 * Don't reset anything. That's done by the Monarch.
891 */
892 return 0;
893 }
894
895 /*
896 * Reset all global state.
897 */
898 reset:
899 atomic_set(&global_nwo, 0);
900 atomic_set(&mce_callin, 0);
901 barrier();
902
903 /*
904 * Let others run again.
905 */
906 atomic_set(&mce_executing, 0);
907 return ret;
908 }
909
910 /*
911 * Check if the address reported by the CPU is in a format we can parse.
912 * It would be possible to add code for most other cases, but all would
913 * be somewhat complicated (e.g. segment offset would require an instruction
914 * parser). So only support physical addresses up to page granuality for now.
915 */
916 static int mce_usable_address(struct mce *m)
917 {
918 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
919 return 0;
920 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
921 return 0;
922 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
923 return 0;
924 return 1;
925 }
926
927 static void mce_clear_state(unsigned long *toclear)
928 {
929 int i;
930
931 for (i = 0; i < banks; i++) {
932 if (test_bit(i, toclear))
933 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
934 }
935 }
936
937 /*
938 * Need to save faulting physical address associated with a process
939 * in the machine check handler some place where we can grab it back
940 * later in mce_notify_process()
941 */
942 #define MCE_INFO_MAX 16
943
944 struct mce_info {
945 atomic_t inuse;
946 struct task_struct *t;
947 __u64 paddr;
948 } mce_info[MCE_INFO_MAX];
949
950 static void mce_save_info(__u64 addr)
951 {
952 struct mce_info *mi;
953
954 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
955 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
956 mi->t = current;
957 mi->paddr = addr;
958 return;
959 }
960 }
961
962 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
963 }
964
965 static struct mce_info *mce_find_info(void)
966 {
967 struct mce_info *mi;
968
969 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
970 if (atomic_read(&mi->inuse) && mi->t == current)
971 return mi;
972 return NULL;
973 }
974
975 static void mce_clear_info(struct mce_info *mi)
976 {
977 atomic_set(&mi->inuse, 0);
978 }
979
980 /*
981 * The actual machine check handler. This only handles real
982 * exceptions when something got corrupted coming in through int 18.
983 *
984 * This is executed in NMI context not subject to normal locking rules. This
985 * implies that most kernel services cannot be safely used. Don't even
986 * think about putting a printk in there!
987 *
988 * On Intel systems this is entered on all CPUs in parallel through
989 * MCE broadcast. However some CPUs might be broken beyond repair,
990 * so be always careful when synchronizing with others.
991 */
992 void do_machine_check(struct pt_regs *regs, long error_code)
993 {
994 struct mce m, *final;
995 int i;
996 int worst = 0;
997 int severity;
998 /*
999 * Establish sequential order between the CPUs entering the machine
1000 * check handler.
1001 */
1002 int order;
1003 /*
1004 * If no_way_out gets set, there is no safe way to recover from this
1005 * MCE. If tolerant is cranked up, we'll try anyway.
1006 */
1007 int no_way_out = 0;
1008 /*
1009 * If kill_it gets set, there might be a way to recover from this
1010 * error.
1011 */
1012 int kill_it = 0;
1013 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1014 char *msg = "Unknown";
1015
1016 atomic_inc(&mce_entry);
1017
1018 percpu_inc(mce_exception_count);
1019
1020 if (!banks)
1021 goto out;
1022
1023 mce_gather_info(&m, regs);
1024
1025 final = &__get_cpu_var(mces_seen);
1026 *final = m;
1027
1028 no_way_out = mce_no_way_out(&m, &msg);
1029
1030 barrier();
1031
1032 /*
1033 * When no restart IP might need to kill or panic.
1034 * Assume the worst for now, but if we find the
1035 * severity is MCE_AR_SEVERITY we have other options.
1036 */
1037 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1038 kill_it = 1;
1039
1040 /*
1041 * Go through all the banks in exclusion of the other CPUs.
1042 * This way we don't report duplicated events on shared banks
1043 * because the first one to see it will clear it.
1044 */
1045 order = mce_start(&no_way_out);
1046 for (i = 0; i < banks; i++) {
1047 __clear_bit(i, toclear);
1048 if (!mce_banks[i].ctl)
1049 continue;
1050
1051 m.misc = 0;
1052 m.addr = 0;
1053 m.bank = i;
1054
1055 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1056 if ((m.status & MCI_STATUS_VAL) == 0)
1057 continue;
1058
1059 /*
1060 * Non uncorrected or non signaled errors are handled by
1061 * machine_check_poll. Leave them alone, unless this panics.
1062 */
1063 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1064 !no_way_out)
1065 continue;
1066
1067 /*
1068 * Set taint even when machine check was not enabled.
1069 */
1070 add_taint(TAINT_MACHINE_CHECK);
1071
1072 severity = mce_severity(&m, tolerant, NULL);
1073
1074 /*
1075 * When machine check was for corrected handler don't touch,
1076 * unless we're panicing.
1077 */
1078 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1079 continue;
1080 __set_bit(i, toclear);
1081 if (severity == MCE_NO_SEVERITY) {
1082 /*
1083 * Machine check event was not enabled. Clear, but
1084 * ignore.
1085 */
1086 continue;
1087 }
1088
1089 mce_read_aux(&m, i);
1090
1091 /*
1092 * Action optional error. Queue address for later processing.
1093 * When the ring overflows we just ignore the AO error.
1094 * RED-PEN add some logging mechanism when
1095 * usable_address or mce_add_ring fails.
1096 * RED-PEN don't ignore overflow for tolerant == 0
1097 */
1098 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1099 mce_ring_add(m.addr >> PAGE_SHIFT);
1100
1101 mce_log(&m);
1102
1103 if (severity > worst) {
1104 *final = m;
1105 worst = severity;
1106 }
1107 }
1108
1109 /* mce_clear_state will clear *final, save locally for use later */
1110 m = *final;
1111
1112 if (!no_way_out)
1113 mce_clear_state(toclear);
1114
1115 /*
1116 * Do most of the synchronization with other CPUs.
1117 * When there's any problem use only local no_way_out state.
1118 */
1119 if (mce_end(order) < 0)
1120 no_way_out = worst >= MCE_PANIC_SEVERITY;
1121
1122 /*
1123 * At insane "tolerant" levels we take no action. Otherwise
1124 * we only die if we have no other choice. For less serious
1125 * issues we try to recover, or limit damage to the current
1126 * process.
1127 */
1128 if (tolerant < 3) {
1129 if (no_way_out)
1130 mce_panic("Fatal machine check on current CPU", &m, msg);
1131 if (worst == MCE_AR_SEVERITY) {
1132 /* schedule action before return to userland */
1133 mce_save_info(m.addr);
1134 set_thread_flag(TIF_MCE_NOTIFY);
1135 } else if (kill_it) {
1136 force_sig(SIGBUS, current);
1137 }
1138 }
1139
1140 if (worst > 0)
1141 mce_report_event(regs);
1142 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1143 out:
1144 atomic_dec(&mce_entry);
1145 sync_core();
1146 }
1147 EXPORT_SYMBOL_GPL(do_machine_check);
1148
1149 #ifndef CONFIG_MEMORY_FAILURE
1150 int memory_failure(unsigned long pfn, int vector, int flags)
1151 {
1152 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1153 BUG_ON(flags & MF_ACTION_REQUIRED);
1154 printk(KERN_ERR "Uncorrected memory error in page 0x%lx ignored\n"
1155 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n", pfn);
1156
1157 return 0;
1158 }
1159 #endif
1160
1161 /*
1162 * Called in process context that interrupted by MCE and marked with
1163 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1164 * This code is allowed to sleep.
1165 * Attempt possible recovery such as calling the high level VM handler to
1166 * process any corrupted pages, and kill/signal current process if required.
1167 * Action required errors are handled here.
1168 */
1169 void mce_notify_process(void)
1170 {
1171 unsigned long pfn;
1172 struct mce_info *mi = mce_find_info();
1173
1174 if (!mi)
1175 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1176 pfn = mi->paddr >> PAGE_SHIFT;
1177
1178 clear_thread_flag(TIF_MCE_NOTIFY);
1179
1180 pr_err("Uncorrected hardware memory error in user-access at %llx",
1181 mi->paddr);
1182 if (memory_failure(pfn, MCE_VECTOR, MF_ACTION_REQUIRED) < 0) {
1183 pr_err("Memory error not recovered");
1184 force_sig(SIGBUS, current);
1185 }
1186 mce_clear_info(mi);
1187 }
1188
1189 /*
1190 * Action optional processing happens here (picking up
1191 * from the list of faulting pages that do_machine_check()
1192 * placed into the "ring").
1193 */
1194 static void mce_process_work(struct work_struct *dummy)
1195 {
1196 unsigned long pfn;
1197
1198 while (mce_ring_get(&pfn))
1199 memory_failure(pfn, MCE_VECTOR, 0);
1200 }
1201
1202 #ifdef CONFIG_X86_MCE_INTEL
1203 /***
1204 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1205 * @cpu: The CPU on which the event occurred.
1206 * @status: Event status information
1207 *
1208 * This function should be called by the thermal interrupt after the
1209 * event has been processed and the decision was made to log the event
1210 * further.
1211 *
1212 * The status parameter will be saved to the 'status' field of 'struct mce'
1213 * and historically has been the register value of the
1214 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1215 */
1216 void mce_log_therm_throt_event(__u64 status)
1217 {
1218 struct mce m;
1219
1220 mce_setup(&m);
1221 m.bank = MCE_THERMAL_BANK;
1222 m.status = status;
1223 mce_log(&m);
1224 }
1225 #endif /* CONFIG_X86_MCE_INTEL */
1226
1227 /*
1228 * Periodic polling timer for "silent" machine check errors. If the
1229 * poller finds an MCE, poll 2x faster. When the poller finds no more
1230 * errors, poll 2x slower (up to check_interval seconds).
1231 */
1232 static int check_interval = 5 * 60; /* 5 minutes */
1233
1234 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1235 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1236
1237 static void mce_start_timer(unsigned long data)
1238 {
1239 struct timer_list *t = &per_cpu(mce_timer, data);
1240 int *n;
1241
1242 WARN_ON(smp_processor_id() != data);
1243
1244 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1245 machine_check_poll(MCP_TIMESTAMP,
1246 &__get_cpu_var(mce_poll_banks));
1247 }
1248
1249 /*
1250 * Alert userspace if needed. If we logged an MCE, reduce the
1251 * polling interval, otherwise increase the polling interval.
1252 */
1253 n = &__get_cpu_var(mce_next_interval);
1254 if (mce_notify_irq())
1255 *n = max(*n/2, HZ/100);
1256 else
1257 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1258
1259 t->expires = jiffies + *n;
1260 add_timer_on(t, smp_processor_id());
1261 }
1262
1263 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1264 static void mce_timer_delete_all(void)
1265 {
1266 int cpu;
1267
1268 for_each_online_cpu(cpu)
1269 del_timer_sync(&per_cpu(mce_timer, cpu));
1270 }
1271
1272 static void mce_do_trigger(struct work_struct *work)
1273 {
1274 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1275 }
1276
1277 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1278
1279 /*
1280 * Notify the user(s) about new machine check events.
1281 * Can be called from interrupt context, but not from machine check/NMI
1282 * context.
1283 */
1284 int mce_notify_irq(void)
1285 {
1286 /* Not more than two messages every minute */
1287 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1288
1289 if (test_and_clear_bit(0, &mce_need_notify)) {
1290 /* wake processes polling /dev/mcelog */
1291 wake_up_interruptible(&mce_chrdev_wait);
1292
1293 /*
1294 * There is no risk of missing notifications because
1295 * work_pending is always cleared before the function is
1296 * executed.
1297 */
1298 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1299 schedule_work(&mce_trigger_work);
1300
1301 if (__ratelimit(&ratelimit))
1302 pr_info(HW_ERR "Machine check events logged\n");
1303
1304 return 1;
1305 }
1306 return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(mce_notify_irq);
1309
1310 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1311 {
1312 int i;
1313
1314 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1315 if (!mce_banks)
1316 return -ENOMEM;
1317 for (i = 0; i < banks; i++) {
1318 struct mce_bank *b = &mce_banks[i];
1319
1320 b->ctl = -1ULL;
1321 b->init = 1;
1322 }
1323 return 0;
1324 }
1325
1326 /*
1327 * Initialize Machine Checks for a CPU.
1328 */
1329 static int __cpuinit __mcheck_cpu_cap_init(void)
1330 {
1331 unsigned b;
1332 u64 cap;
1333
1334 rdmsrl(MSR_IA32_MCG_CAP, cap);
1335
1336 b = cap & MCG_BANKCNT_MASK;
1337 if (!banks)
1338 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1339
1340 if (b > MAX_NR_BANKS) {
1341 printk(KERN_WARNING
1342 "MCE: Using only %u machine check banks out of %u\n",
1343 MAX_NR_BANKS, b);
1344 b = MAX_NR_BANKS;
1345 }
1346
1347 /* Don't support asymmetric configurations today */
1348 WARN_ON(banks != 0 && b != banks);
1349 banks = b;
1350 if (!mce_banks) {
1351 int err = __mcheck_cpu_mce_banks_init();
1352
1353 if (err)
1354 return err;
1355 }
1356
1357 /* Use accurate RIP reporting if available. */
1358 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1359 rip_msr = MSR_IA32_MCG_EIP;
1360
1361 if (cap & MCG_SER_P)
1362 mce_ser = 1;
1363
1364 return 0;
1365 }
1366
1367 static void __mcheck_cpu_init_generic(void)
1368 {
1369 mce_banks_t all_banks;
1370 u64 cap;
1371 int i;
1372
1373 /*
1374 * Log the machine checks left over from the previous reset.
1375 */
1376 bitmap_fill(all_banks, MAX_NR_BANKS);
1377 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1378
1379 set_in_cr4(X86_CR4_MCE);
1380
1381 rdmsrl(MSR_IA32_MCG_CAP, cap);
1382 if (cap & MCG_CTL_P)
1383 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1384
1385 for (i = 0; i < banks; i++) {
1386 struct mce_bank *b = &mce_banks[i];
1387
1388 if (!b->init)
1389 continue;
1390 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1391 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1392 }
1393 }
1394
1395 /* Add per CPU specific workarounds here */
1396 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1397 {
1398 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1399 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1400 return -EOPNOTSUPP;
1401 }
1402
1403 /* This should be disabled by the BIOS, but isn't always */
1404 if (c->x86_vendor == X86_VENDOR_AMD) {
1405 if (c->x86 == 15 && banks > 4) {
1406 /*
1407 * disable GART TBL walk error reporting, which
1408 * trips off incorrectly with the IOMMU & 3ware
1409 * & Cerberus:
1410 */
1411 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1412 }
1413 if (c->x86 <= 17 && mce_bootlog < 0) {
1414 /*
1415 * Lots of broken BIOS around that don't clear them
1416 * by default and leave crap in there. Don't log:
1417 */
1418 mce_bootlog = 0;
1419 }
1420 /*
1421 * Various K7s with broken bank 0 around. Always disable
1422 * by default.
1423 */
1424 if (c->x86 == 6 && banks > 0)
1425 mce_banks[0].ctl = 0;
1426 }
1427
1428 if (c->x86_vendor == X86_VENDOR_INTEL) {
1429 /*
1430 * SDM documents that on family 6 bank 0 should not be written
1431 * because it aliases to another special BIOS controlled
1432 * register.
1433 * But it's not aliased anymore on model 0x1a+
1434 * Don't ignore bank 0 completely because there could be a
1435 * valid event later, merely don't write CTL0.
1436 */
1437
1438 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1439 mce_banks[0].init = 0;
1440
1441 /*
1442 * All newer Intel systems support MCE broadcasting. Enable
1443 * synchronization with a one second timeout.
1444 */
1445 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1446 monarch_timeout < 0)
1447 monarch_timeout = USEC_PER_SEC;
1448
1449 /*
1450 * There are also broken BIOSes on some Pentium M and
1451 * earlier systems:
1452 */
1453 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1454 mce_bootlog = 0;
1455 }
1456 if (monarch_timeout < 0)
1457 monarch_timeout = 0;
1458 if (mce_bootlog != 0)
1459 mce_panic_timeout = 30;
1460
1461 return 0;
1462 }
1463
1464 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1465 {
1466 if (c->x86 != 5)
1467 return 0;
1468
1469 switch (c->x86_vendor) {
1470 case X86_VENDOR_INTEL:
1471 intel_p5_mcheck_init(c);
1472 return 1;
1473 break;
1474 case X86_VENDOR_CENTAUR:
1475 winchip_mcheck_init(c);
1476 return 1;
1477 break;
1478 }
1479
1480 return 0;
1481 }
1482
1483 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1484 {
1485 switch (c->x86_vendor) {
1486 case X86_VENDOR_INTEL:
1487 mce_intel_feature_init(c);
1488 break;
1489 case X86_VENDOR_AMD:
1490 mce_amd_feature_init(c);
1491 break;
1492 default:
1493 break;
1494 }
1495 }
1496
1497 static void __mcheck_cpu_init_timer(void)
1498 {
1499 struct timer_list *t = &__get_cpu_var(mce_timer);
1500 int *n = &__get_cpu_var(mce_next_interval);
1501
1502 setup_timer(t, mce_start_timer, smp_processor_id());
1503
1504 if (mce_ignore_ce)
1505 return;
1506
1507 *n = check_interval * HZ;
1508 if (!*n)
1509 return;
1510 t->expires = round_jiffies(jiffies + *n);
1511 add_timer_on(t, smp_processor_id());
1512 }
1513
1514 /* Handle unconfigured int18 (should never happen) */
1515 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1516 {
1517 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1518 smp_processor_id());
1519 }
1520
1521 /* Call the installed machine check handler for this CPU setup. */
1522 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1523 unexpected_machine_check;
1524
1525 /*
1526 * Called for each booted CPU to set up machine checks.
1527 * Must be called with preempt off:
1528 */
1529 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1530 {
1531 if (mce_disabled)
1532 return;
1533
1534 if (__mcheck_cpu_ancient_init(c))
1535 return;
1536
1537 if (!mce_available(c))
1538 return;
1539
1540 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1541 mce_disabled = 1;
1542 return;
1543 }
1544
1545 machine_check_vector = do_machine_check;
1546
1547 __mcheck_cpu_init_generic();
1548 __mcheck_cpu_init_vendor(c);
1549 __mcheck_cpu_init_timer();
1550 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1551 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1552 }
1553
1554 /*
1555 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1556 */
1557
1558 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1559 static int mce_chrdev_open_count; /* #times opened */
1560 static int mce_chrdev_open_exclu; /* already open exclusive? */
1561
1562 static int mce_chrdev_open(struct inode *inode, struct file *file)
1563 {
1564 spin_lock(&mce_chrdev_state_lock);
1565
1566 if (mce_chrdev_open_exclu ||
1567 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1568 spin_unlock(&mce_chrdev_state_lock);
1569
1570 return -EBUSY;
1571 }
1572
1573 if (file->f_flags & O_EXCL)
1574 mce_chrdev_open_exclu = 1;
1575 mce_chrdev_open_count++;
1576
1577 spin_unlock(&mce_chrdev_state_lock);
1578
1579 return nonseekable_open(inode, file);
1580 }
1581
1582 static int mce_chrdev_release(struct inode *inode, struct file *file)
1583 {
1584 spin_lock(&mce_chrdev_state_lock);
1585
1586 mce_chrdev_open_count--;
1587 mce_chrdev_open_exclu = 0;
1588
1589 spin_unlock(&mce_chrdev_state_lock);
1590
1591 return 0;
1592 }
1593
1594 static void collect_tscs(void *data)
1595 {
1596 unsigned long *cpu_tsc = (unsigned long *)data;
1597
1598 rdtscll(cpu_tsc[smp_processor_id()]);
1599 }
1600
1601 static int mce_apei_read_done;
1602
1603 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1604 static int __mce_read_apei(char __user **ubuf, size_t usize)
1605 {
1606 int rc;
1607 u64 record_id;
1608 struct mce m;
1609
1610 if (usize < sizeof(struct mce))
1611 return -EINVAL;
1612
1613 rc = apei_read_mce(&m, &record_id);
1614 /* Error or no more MCE record */
1615 if (rc <= 0) {
1616 mce_apei_read_done = 1;
1617 /*
1618 * When ERST is disabled, mce_chrdev_read() should return
1619 * "no record" instead of "no device."
1620 */
1621 if (rc == -ENODEV)
1622 return 0;
1623 return rc;
1624 }
1625 rc = -EFAULT;
1626 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1627 return rc;
1628 /*
1629 * In fact, we should have cleared the record after that has
1630 * been flushed to the disk or sent to network in
1631 * /sbin/mcelog, but we have no interface to support that now,
1632 * so just clear it to avoid duplication.
1633 */
1634 rc = apei_clear_mce(record_id);
1635 if (rc) {
1636 mce_apei_read_done = 1;
1637 return rc;
1638 }
1639 *ubuf += sizeof(struct mce);
1640
1641 return 0;
1642 }
1643
1644 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1645 size_t usize, loff_t *off)
1646 {
1647 char __user *buf = ubuf;
1648 unsigned long *cpu_tsc;
1649 unsigned prev, next;
1650 int i, err;
1651
1652 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1653 if (!cpu_tsc)
1654 return -ENOMEM;
1655
1656 mutex_lock(&mce_chrdev_read_mutex);
1657
1658 if (!mce_apei_read_done) {
1659 err = __mce_read_apei(&buf, usize);
1660 if (err || buf != ubuf)
1661 goto out;
1662 }
1663
1664 next = rcu_dereference_check_mce(mcelog.next);
1665
1666 /* Only supports full reads right now */
1667 err = -EINVAL;
1668 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1669 goto out;
1670
1671 err = 0;
1672 prev = 0;
1673 do {
1674 for (i = prev; i < next; i++) {
1675 unsigned long start = jiffies;
1676 struct mce *m = &mcelog.entry[i];
1677
1678 while (!m->finished) {
1679 if (time_after_eq(jiffies, start + 2)) {
1680 memset(m, 0, sizeof(*m));
1681 goto timeout;
1682 }
1683 cpu_relax();
1684 }
1685 smp_rmb();
1686 err |= copy_to_user(buf, m, sizeof(*m));
1687 buf += sizeof(*m);
1688 timeout:
1689 ;
1690 }
1691
1692 memset(mcelog.entry + prev, 0,
1693 (next - prev) * sizeof(struct mce));
1694 prev = next;
1695 next = cmpxchg(&mcelog.next, prev, 0);
1696 } while (next != prev);
1697
1698 synchronize_sched();
1699
1700 /*
1701 * Collect entries that were still getting written before the
1702 * synchronize.
1703 */
1704 on_each_cpu(collect_tscs, cpu_tsc, 1);
1705
1706 for (i = next; i < MCE_LOG_LEN; i++) {
1707 struct mce *m = &mcelog.entry[i];
1708
1709 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1710 err |= copy_to_user(buf, m, sizeof(*m));
1711 smp_rmb();
1712 buf += sizeof(*m);
1713 memset(m, 0, sizeof(*m));
1714 }
1715 }
1716
1717 if (err)
1718 err = -EFAULT;
1719
1720 out:
1721 mutex_unlock(&mce_chrdev_read_mutex);
1722 kfree(cpu_tsc);
1723
1724 return err ? err : buf - ubuf;
1725 }
1726
1727 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1728 {
1729 poll_wait(file, &mce_chrdev_wait, wait);
1730 if (rcu_access_index(mcelog.next))
1731 return POLLIN | POLLRDNORM;
1732 if (!mce_apei_read_done && apei_check_mce())
1733 return POLLIN | POLLRDNORM;
1734 return 0;
1735 }
1736
1737 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1738 unsigned long arg)
1739 {
1740 int __user *p = (int __user *)arg;
1741
1742 if (!capable(CAP_SYS_ADMIN))
1743 return -EPERM;
1744
1745 switch (cmd) {
1746 case MCE_GET_RECORD_LEN:
1747 return put_user(sizeof(struct mce), p);
1748 case MCE_GET_LOG_LEN:
1749 return put_user(MCE_LOG_LEN, p);
1750 case MCE_GETCLEAR_FLAGS: {
1751 unsigned flags;
1752
1753 do {
1754 flags = mcelog.flags;
1755 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1756
1757 return put_user(flags, p);
1758 }
1759 default:
1760 return -ENOTTY;
1761 }
1762 }
1763
1764 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1765 size_t usize, loff_t *off);
1766
1767 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1768 const char __user *ubuf,
1769 size_t usize, loff_t *off))
1770 {
1771 mce_write = fn;
1772 }
1773 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1774
1775 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1776 size_t usize, loff_t *off)
1777 {
1778 if (mce_write)
1779 return mce_write(filp, ubuf, usize, off);
1780 else
1781 return -EINVAL;
1782 }
1783
1784 static const struct file_operations mce_chrdev_ops = {
1785 .open = mce_chrdev_open,
1786 .release = mce_chrdev_release,
1787 .read = mce_chrdev_read,
1788 .write = mce_chrdev_write,
1789 .poll = mce_chrdev_poll,
1790 .unlocked_ioctl = mce_chrdev_ioctl,
1791 .llseek = no_llseek,
1792 };
1793
1794 static struct miscdevice mce_chrdev_device = {
1795 MISC_MCELOG_MINOR,
1796 "mcelog",
1797 &mce_chrdev_ops,
1798 };
1799
1800 /*
1801 * mce=off Disables machine check
1802 * mce=no_cmci Disables CMCI
1803 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1804 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1805 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1806 * monarchtimeout is how long to wait for other CPUs on machine
1807 * check, or 0 to not wait
1808 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1809 * mce=nobootlog Don't log MCEs from before booting.
1810 */
1811 static int __init mcheck_enable(char *str)
1812 {
1813 if (*str == 0) {
1814 enable_p5_mce();
1815 return 1;
1816 }
1817 if (*str == '=')
1818 str++;
1819 if (!strcmp(str, "off"))
1820 mce_disabled = 1;
1821 else if (!strcmp(str, "no_cmci"))
1822 mce_cmci_disabled = 1;
1823 else if (!strcmp(str, "dont_log_ce"))
1824 mce_dont_log_ce = 1;
1825 else if (!strcmp(str, "ignore_ce"))
1826 mce_ignore_ce = 1;
1827 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1828 mce_bootlog = (str[0] == 'b');
1829 else if (isdigit(str[0])) {
1830 get_option(&str, &tolerant);
1831 if (*str == ',') {
1832 ++str;
1833 get_option(&str, &monarch_timeout);
1834 }
1835 } else {
1836 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1837 str);
1838 return 0;
1839 }
1840 return 1;
1841 }
1842 __setup("mce", mcheck_enable);
1843
1844 int __init mcheck_init(void)
1845 {
1846 mcheck_intel_therm_init();
1847
1848 return 0;
1849 }
1850
1851 /*
1852 * mce_syscore: PM support
1853 */
1854
1855 /*
1856 * Disable machine checks on suspend and shutdown. We can't really handle
1857 * them later.
1858 */
1859 static int mce_disable_error_reporting(void)
1860 {
1861 int i;
1862
1863 for (i = 0; i < banks; i++) {
1864 struct mce_bank *b = &mce_banks[i];
1865
1866 if (b->init)
1867 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1868 }
1869 return 0;
1870 }
1871
1872 static int mce_syscore_suspend(void)
1873 {
1874 return mce_disable_error_reporting();
1875 }
1876
1877 static void mce_syscore_shutdown(void)
1878 {
1879 mce_disable_error_reporting();
1880 }
1881
1882 /*
1883 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1884 * Only one CPU is active at this time, the others get re-added later using
1885 * CPU hotplug:
1886 */
1887 static void mce_syscore_resume(void)
1888 {
1889 __mcheck_cpu_init_generic();
1890 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1891 }
1892
1893 static struct syscore_ops mce_syscore_ops = {
1894 .suspend = mce_syscore_suspend,
1895 .shutdown = mce_syscore_shutdown,
1896 .resume = mce_syscore_resume,
1897 };
1898
1899 /*
1900 * mce_device: Sysfs support
1901 */
1902
1903 static void mce_cpu_restart(void *data)
1904 {
1905 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1906 return;
1907 __mcheck_cpu_init_generic();
1908 __mcheck_cpu_init_timer();
1909 }
1910
1911 /* Reinit MCEs after user configuration changes */
1912 static void mce_restart(void)
1913 {
1914 mce_timer_delete_all();
1915 on_each_cpu(mce_cpu_restart, NULL, 1);
1916 }
1917
1918 /* Toggle features for corrected errors */
1919 static void mce_disable_cmci(void *data)
1920 {
1921 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1922 return;
1923 cmci_clear();
1924 }
1925
1926 static void mce_enable_ce(void *all)
1927 {
1928 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1929 return;
1930 cmci_reenable();
1931 cmci_recheck();
1932 if (all)
1933 __mcheck_cpu_init_timer();
1934 }
1935
1936 static struct bus_type mce_subsys = {
1937 .name = "machinecheck",
1938 .dev_name = "machinecheck",
1939 };
1940
1941 DEFINE_PER_CPU(struct device *, mce_device);
1942
1943 __cpuinitdata
1944 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1945
1946 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1947 {
1948 return container_of(attr, struct mce_bank, attr);
1949 }
1950
1951 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1952 char *buf)
1953 {
1954 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1955 }
1956
1957 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
1958 const char *buf, size_t size)
1959 {
1960 u64 new;
1961
1962 if (strict_strtoull(buf, 0, &new) < 0)
1963 return -EINVAL;
1964
1965 attr_to_bank(attr)->ctl = new;
1966 mce_restart();
1967
1968 return size;
1969 }
1970
1971 static ssize_t
1972 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
1973 {
1974 strcpy(buf, mce_helper);
1975 strcat(buf, "\n");
1976 return strlen(mce_helper) + 1;
1977 }
1978
1979 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
1980 const char *buf, size_t siz)
1981 {
1982 char *p;
1983
1984 strncpy(mce_helper, buf, sizeof(mce_helper));
1985 mce_helper[sizeof(mce_helper)-1] = 0;
1986 p = strchr(mce_helper, '\n');
1987
1988 if (p)
1989 *p = 0;
1990
1991 return strlen(mce_helper) + !!p;
1992 }
1993
1994 static ssize_t set_ignore_ce(struct device *s,
1995 struct device_attribute *attr,
1996 const char *buf, size_t size)
1997 {
1998 u64 new;
1999
2000 if (strict_strtoull(buf, 0, &new) < 0)
2001 return -EINVAL;
2002
2003 if (mce_ignore_ce ^ !!new) {
2004 if (new) {
2005 /* disable ce features */
2006 mce_timer_delete_all();
2007 on_each_cpu(mce_disable_cmci, NULL, 1);
2008 mce_ignore_ce = 1;
2009 } else {
2010 /* enable ce features */
2011 mce_ignore_ce = 0;
2012 on_each_cpu(mce_enable_ce, (void *)1, 1);
2013 }
2014 }
2015 return size;
2016 }
2017
2018 static ssize_t set_cmci_disabled(struct device *s,
2019 struct device_attribute *attr,
2020 const char *buf, size_t size)
2021 {
2022 u64 new;
2023
2024 if (strict_strtoull(buf, 0, &new) < 0)
2025 return -EINVAL;
2026
2027 if (mce_cmci_disabled ^ !!new) {
2028 if (new) {
2029 /* disable cmci */
2030 on_each_cpu(mce_disable_cmci, NULL, 1);
2031 mce_cmci_disabled = 1;
2032 } else {
2033 /* enable cmci */
2034 mce_cmci_disabled = 0;
2035 on_each_cpu(mce_enable_ce, NULL, 1);
2036 }
2037 }
2038 return size;
2039 }
2040
2041 static ssize_t store_int_with_restart(struct device *s,
2042 struct device_attribute *attr,
2043 const char *buf, size_t size)
2044 {
2045 ssize_t ret = device_store_int(s, attr, buf, size);
2046 mce_restart();
2047 return ret;
2048 }
2049
2050 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2051 static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
2052 static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
2053 static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
2054
2055 static struct dev_ext_attribute dev_attr_check_interval = {
2056 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2057 &check_interval
2058 };
2059
2060 static struct dev_ext_attribute dev_attr_ignore_ce = {
2061 __ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
2062 &mce_ignore_ce
2063 };
2064
2065 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2066 __ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
2067 &mce_cmci_disabled
2068 };
2069
2070 static struct device_attribute *mce_device_attrs[] = {
2071 &dev_attr_tolerant.attr,
2072 &dev_attr_check_interval.attr,
2073 &dev_attr_trigger,
2074 &dev_attr_monarch_timeout.attr,
2075 &dev_attr_dont_log_ce.attr,
2076 &dev_attr_ignore_ce.attr,
2077 &dev_attr_cmci_disabled.attr,
2078 NULL
2079 };
2080
2081 static cpumask_var_t mce_device_initialized;
2082
2083 static void mce_device_release(struct device *dev)
2084 {
2085 kfree(dev);
2086 }
2087
2088 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2089 static __cpuinit int mce_device_create(unsigned int cpu)
2090 {
2091 struct device *dev;
2092 int err;
2093 int i, j;
2094
2095 if (!mce_available(&boot_cpu_data))
2096 return -EIO;
2097
2098 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2099 if (!dev)
2100 return -ENOMEM;
2101 dev->id = cpu;
2102 dev->bus = &mce_subsys;
2103 dev->release = &mce_device_release;
2104
2105 err = device_register(dev);
2106 if (err)
2107 return err;
2108
2109 for (i = 0; mce_device_attrs[i]; i++) {
2110 err = device_create_file(dev, mce_device_attrs[i]);
2111 if (err)
2112 goto error;
2113 }
2114 for (j = 0; j < banks; j++) {
2115 err = device_create_file(dev, &mce_banks[j].attr);
2116 if (err)
2117 goto error2;
2118 }
2119 cpumask_set_cpu(cpu, mce_device_initialized);
2120 per_cpu(mce_device, cpu) = dev;
2121
2122 return 0;
2123 error2:
2124 while (--j >= 0)
2125 device_remove_file(dev, &mce_banks[j].attr);
2126 error:
2127 while (--i >= 0)
2128 device_remove_file(dev, mce_device_attrs[i]);
2129
2130 device_unregister(dev);
2131
2132 return err;
2133 }
2134
2135 static __cpuinit void mce_device_remove(unsigned int cpu)
2136 {
2137 struct device *dev = per_cpu(mce_device, cpu);
2138 int i;
2139
2140 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2141 return;
2142
2143 for (i = 0; mce_device_attrs[i]; i++)
2144 device_remove_file(dev, mce_device_attrs[i]);
2145
2146 for (i = 0; i < banks; i++)
2147 device_remove_file(dev, &mce_banks[i].attr);
2148
2149 device_unregister(dev);
2150 cpumask_clear_cpu(cpu, mce_device_initialized);
2151 per_cpu(mce_device, cpu) = NULL;
2152 }
2153
2154 /* Make sure there are no machine checks on offlined CPUs. */
2155 static void __cpuinit mce_disable_cpu(void *h)
2156 {
2157 unsigned long action = *(unsigned long *)h;
2158 int i;
2159
2160 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2161 return;
2162
2163 if (!(action & CPU_TASKS_FROZEN))
2164 cmci_clear();
2165 for (i = 0; i < banks; i++) {
2166 struct mce_bank *b = &mce_banks[i];
2167
2168 if (b->init)
2169 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2170 }
2171 }
2172
2173 static void __cpuinit mce_reenable_cpu(void *h)
2174 {
2175 unsigned long action = *(unsigned long *)h;
2176 int i;
2177
2178 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2179 return;
2180
2181 if (!(action & CPU_TASKS_FROZEN))
2182 cmci_reenable();
2183 for (i = 0; i < banks; i++) {
2184 struct mce_bank *b = &mce_banks[i];
2185
2186 if (b->init)
2187 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2188 }
2189 }
2190
2191 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2192 static int __cpuinit
2193 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2194 {
2195 unsigned int cpu = (unsigned long)hcpu;
2196 struct timer_list *t = &per_cpu(mce_timer, cpu);
2197
2198 switch (action) {
2199 case CPU_ONLINE:
2200 case CPU_ONLINE_FROZEN:
2201 mce_device_create(cpu);
2202 if (threshold_cpu_callback)
2203 threshold_cpu_callback(action, cpu);
2204 break;
2205 case CPU_DEAD:
2206 case CPU_DEAD_FROZEN:
2207 if (threshold_cpu_callback)
2208 threshold_cpu_callback(action, cpu);
2209 mce_device_remove(cpu);
2210 break;
2211 case CPU_DOWN_PREPARE:
2212 case CPU_DOWN_PREPARE_FROZEN:
2213 del_timer_sync(t);
2214 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2215 break;
2216 case CPU_DOWN_FAILED:
2217 case CPU_DOWN_FAILED_FROZEN:
2218 if (!mce_ignore_ce && check_interval) {
2219 t->expires = round_jiffies(jiffies +
2220 __get_cpu_var(mce_next_interval));
2221 add_timer_on(t, cpu);
2222 }
2223 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2224 break;
2225 case CPU_POST_DEAD:
2226 /* intentionally ignoring frozen here */
2227 cmci_rediscover(cpu);
2228 break;
2229 }
2230 return NOTIFY_OK;
2231 }
2232
2233 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2234 .notifier_call = mce_cpu_callback,
2235 };
2236
2237 static __init void mce_init_banks(void)
2238 {
2239 int i;
2240
2241 for (i = 0; i < banks; i++) {
2242 struct mce_bank *b = &mce_banks[i];
2243 struct device_attribute *a = &b->attr;
2244
2245 sysfs_attr_init(&a->attr);
2246 a->attr.name = b->attrname;
2247 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2248
2249 a->attr.mode = 0644;
2250 a->show = show_bank;
2251 a->store = set_bank;
2252 }
2253 }
2254
2255 static __init int mcheck_init_device(void)
2256 {
2257 int err;
2258 int i = 0;
2259
2260 if (!mce_available(&boot_cpu_data))
2261 return -EIO;
2262
2263 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2264
2265 mce_init_banks();
2266
2267 err = subsys_system_register(&mce_subsys, NULL);
2268 if (err)
2269 return err;
2270
2271 for_each_online_cpu(i) {
2272 err = mce_device_create(i);
2273 if (err)
2274 return err;
2275 }
2276
2277 register_syscore_ops(&mce_syscore_ops);
2278 register_hotcpu_notifier(&mce_cpu_notifier);
2279
2280 /* register character device /dev/mcelog */
2281 misc_register(&mce_chrdev_device);
2282
2283 return err;
2284 }
2285 device_initcall(mcheck_init_device);
2286
2287 /*
2288 * Old style boot options parsing. Only for compatibility.
2289 */
2290 static int __init mcheck_disable(char *str)
2291 {
2292 mce_disabled = 1;
2293 return 1;
2294 }
2295 __setup("nomce", mcheck_disable);
2296
2297 #ifdef CONFIG_DEBUG_FS
2298 struct dentry *mce_get_debugfs_dir(void)
2299 {
2300 static struct dentry *dmce;
2301
2302 if (!dmce)
2303 dmce = debugfs_create_dir("mce", NULL);
2304
2305 return dmce;
2306 }
2307
2308 static void mce_reset(void)
2309 {
2310 cpu_missing = 0;
2311 atomic_set(&mce_fake_paniced, 0);
2312 atomic_set(&mce_executing, 0);
2313 atomic_set(&mce_callin, 0);
2314 atomic_set(&global_nwo, 0);
2315 }
2316
2317 static int fake_panic_get(void *data, u64 *val)
2318 {
2319 *val = fake_panic;
2320 return 0;
2321 }
2322
2323 static int fake_panic_set(void *data, u64 val)
2324 {
2325 mce_reset();
2326 fake_panic = val;
2327 return 0;
2328 }
2329
2330 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2331 fake_panic_set, "%llu\n");
2332
2333 static int __init mcheck_debugfs_init(void)
2334 {
2335 struct dentry *dmce, *ffake_panic;
2336
2337 dmce = mce_get_debugfs_dir();
2338 if (!dmce)
2339 return -ENOMEM;
2340 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2341 &fake_panic_fops);
2342 if (!ffake_panic)
2343 return -ENOMEM;
2344
2345 return 0;
2346 }
2347 late_initcall(mcheck_debugfs_init);
2348 #endif
This page took 0.110603 seconds and 4 git commands to generate.