Documentation/acpi/einj: Correct and streamline text
[deliverable/linux.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44
45 #include <asm/processor.h>
46 #include <asm/mce.h>
47 #include <asm/msr.h>
48
49 #include "mce-internal.h"
50
51 static DEFINE_MUTEX(mce_chrdev_read_mutex);
52
53 #define rcu_dereference_check_mce(p) \
54 rcu_dereference_index_check((p), \
55 rcu_read_lock_sched_held() || \
56 lockdep_is_held(&mce_chrdev_read_mutex))
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mce.h>
60
61 #define SPINUNIT 100 /* 100ns */
62
63 DEFINE_PER_CPU(unsigned, mce_exception_count);
64
65 struct mce_bank *mce_banks __read_mostly;
66
67 struct mca_config mca_cfg __read_mostly = {
68 .bootlog = -1,
69 /*
70 * Tolerant levels:
71 * 0: always panic on uncorrected errors, log corrected errors
72 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
73 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
74 * 3: never panic or SIGBUS, log all errors (for testing only)
75 */
76 .tolerant = 1,
77 .monarch_timeout = -1
78 };
79
80 /* User mode helper program triggered by machine check event */
81 static unsigned long mce_need_notify;
82 static char mce_helper[128];
83 static char *mce_helper_argv[2] = { mce_helper, NULL };
84
85 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
86
87 static DEFINE_PER_CPU(struct mce, mces_seen);
88 static int cpu_missing;
89
90 /* CMCI storm detection filter */
91 static DEFINE_PER_CPU(unsigned long, mce_polled_error);
92
93 /*
94 * MCA banks polled by the period polling timer for corrected events.
95 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
96 */
97 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
98 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
99 };
100
101 /*
102 * MCA banks controlled through firmware first for corrected errors.
103 * This is a global list of banks for which we won't enable CMCI and we
104 * won't poll. Firmware controls these banks and is responsible for
105 * reporting corrected errors through GHES. Uncorrected/recoverable
106 * errors are still notified through a machine check.
107 */
108 mce_banks_t mce_banks_ce_disabled;
109
110 static DEFINE_PER_CPU(struct work_struct, mce_work);
111
112 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
113
114 /*
115 * CPU/chipset specific EDAC code can register a notifier call here to print
116 * MCE errors in a human-readable form.
117 */
118 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
119
120 /* Do initial initialization of a struct mce */
121 void mce_setup(struct mce *m)
122 {
123 memset(m, 0, sizeof(struct mce));
124 m->cpu = m->extcpu = smp_processor_id();
125 rdtscll(m->tsc);
126 /* We hope get_seconds stays lockless */
127 m->time = get_seconds();
128 m->cpuvendor = boot_cpu_data.x86_vendor;
129 m->cpuid = cpuid_eax(1);
130 m->socketid = cpu_data(m->extcpu).phys_proc_id;
131 m->apicid = cpu_data(m->extcpu).initial_apicid;
132 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
133 }
134
135 DEFINE_PER_CPU(struct mce, injectm);
136 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
137
138 /*
139 * Lockless MCE logging infrastructure.
140 * This avoids deadlocks on printk locks without having to break locks. Also
141 * separate MCEs from kernel messages to avoid bogus bug reports.
142 */
143
144 static struct mce_log mcelog = {
145 .signature = MCE_LOG_SIGNATURE,
146 .len = MCE_LOG_LEN,
147 .recordlen = sizeof(struct mce),
148 };
149
150 void mce_log(struct mce *mce)
151 {
152 unsigned next, entry;
153 int ret = 0;
154
155 /* Emit the trace record: */
156 trace_mce_record(mce);
157
158 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
159 if (ret == NOTIFY_STOP)
160 return;
161
162 mce->finished = 0;
163 wmb();
164 for (;;) {
165 entry = rcu_dereference_check_mce(mcelog.next);
166 for (;;) {
167
168 /*
169 * When the buffer fills up discard new entries.
170 * Assume that the earlier errors are the more
171 * interesting ones:
172 */
173 if (entry >= MCE_LOG_LEN) {
174 set_bit(MCE_OVERFLOW,
175 (unsigned long *)&mcelog.flags);
176 return;
177 }
178 /* Old left over entry. Skip: */
179 if (mcelog.entry[entry].finished) {
180 entry++;
181 continue;
182 }
183 break;
184 }
185 smp_rmb();
186 next = entry + 1;
187 if (cmpxchg(&mcelog.next, entry, next) == entry)
188 break;
189 }
190 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
191 wmb();
192 mcelog.entry[entry].finished = 1;
193 wmb();
194
195 mce->finished = 1;
196 set_bit(0, &mce_need_notify);
197 }
198
199 static void drain_mcelog_buffer(void)
200 {
201 unsigned int next, i, prev = 0;
202
203 next = ACCESS_ONCE(mcelog.next);
204
205 do {
206 struct mce *m;
207
208 /* drain what was logged during boot */
209 for (i = prev; i < next; i++) {
210 unsigned long start = jiffies;
211 unsigned retries = 1;
212
213 m = &mcelog.entry[i];
214
215 while (!m->finished) {
216 if (time_after_eq(jiffies, start + 2*retries))
217 retries++;
218
219 cpu_relax();
220
221 if (!m->finished && retries >= 4) {
222 pr_err("skipping error being logged currently!\n");
223 break;
224 }
225 }
226 smp_rmb();
227 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
228 }
229
230 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
231 prev = next;
232 next = cmpxchg(&mcelog.next, prev, 0);
233 } while (next != prev);
234 }
235
236
237 void mce_register_decode_chain(struct notifier_block *nb)
238 {
239 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
240 drain_mcelog_buffer();
241 }
242 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
243
244 void mce_unregister_decode_chain(struct notifier_block *nb)
245 {
246 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
247 }
248 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
249
250 static void print_mce(struct mce *m)
251 {
252 int ret = 0;
253
254 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
255 m->extcpu, m->mcgstatus, m->bank, m->status);
256
257 if (m->ip) {
258 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
259 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
260 m->cs, m->ip);
261
262 if (m->cs == __KERNEL_CS)
263 print_symbol("{%s}", m->ip);
264 pr_cont("\n");
265 }
266
267 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
268 if (m->addr)
269 pr_cont("ADDR %llx ", m->addr);
270 if (m->misc)
271 pr_cont("MISC %llx ", m->misc);
272
273 pr_cont("\n");
274 /*
275 * Note this output is parsed by external tools and old fields
276 * should not be changed.
277 */
278 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
279 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
280 cpu_data(m->extcpu).microcode);
281
282 /*
283 * Print out human-readable details about the MCE error,
284 * (if the CPU has an implementation for that)
285 */
286 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
287 if (ret == NOTIFY_STOP)
288 return;
289
290 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
291 }
292
293 #define PANIC_TIMEOUT 5 /* 5 seconds */
294
295 static atomic_t mce_panicked;
296
297 static int fake_panic;
298 static atomic_t mce_fake_panicked;
299
300 /* Panic in progress. Enable interrupts and wait for final IPI */
301 static void wait_for_panic(void)
302 {
303 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
304
305 preempt_disable();
306 local_irq_enable();
307 while (timeout-- > 0)
308 udelay(1);
309 if (panic_timeout == 0)
310 panic_timeout = mca_cfg.panic_timeout;
311 panic("Panicing machine check CPU died");
312 }
313
314 static void mce_panic(char *msg, struct mce *final, char *exp)
315 {
316 int i, apei_err = 0;
317
318 if (!fake_panic) {
319 /*
320 * Make sure only one CPU runs in machine check panic
321 */
322 if (atomic_inc_return(&mce_panicked) > 1)
323 wait_for_panic();
324 barrier();
325
326 bust_spinlocks(1);
327 console_verbose();
328 } else {
329 /* Don't log too much for fake panic */
330 if (atomic_inc_return(&mce_fake_panicked) > 1)
331 return;
332 }
333 /* First print corrected ones that are still unlogged */
334 for (i = 0; i < MCE_LOG_LEN; i++) {
335 struct mce *m = &mcelog.entry[i];
336 if (!(m->status & MCI_STATUS_VAL))
337 continue;
338 if (!(m->status & MCI_STATUS_UC)) {
339 print_mce(m);
340 if (!apei_err)
341 apei_err = apei_write_mce(m);
342 }
343 }
344 /* Now print uncorrected but with the final one last */
345 for (i = 0; i < MCE_LOG_LEN; i++) {
346 struct mce *m = &mcelog.entry[i];
347 if (!(m->status & MCI_STATUS_VAL))
348 continue;
349 if (!(m->status & MCI_STATUS_UC))
350 continue;
351 if (!final || memcmp(m, final, sizeof(struct mce))) {
352 print_mce(m);
353 if (!apei_err)
354 apei_err = apei_write_mce(m);
355 }
356 }
357 if (final) {
358 print_mce(final);
359 if (!apei_err)
360 apei_err = apei_write_mce(final);
361 }
362 if (cpu_missing)
363 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
364 if (exp)
365 pr_emerg(HW_ERR "Machine check: %s\n", exp);
366 if (!fake_panic) {
367 if (panic_timeout == 0)
368 panic_timeout = mca_cfg.panic_timeout;
369 panic(msg);
370 } else
371 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
372 }
373
374 /* Support code for software error injection */
375
376 static int msr_to_offset(u32 msr)
377 {
378 unsigned bank = __this_cpu_read(injectm.bank);
379
380 if (msr == mca_cfg.rip_msr)
381 return offsetof(struct mce, ip);
382 if (msr == MSR_IA32_MCx_STATUS(bank))
383 return offsetof(struct mce, status);
384 if (msr == MSR_IA32_MCx_ADDR(bank))
385 return offsetof(struct mce, addr);
386 if (msr == MSR_IA32_MCx_MISC(bank))
387 return offsetof(struct mce, misc);
388 if (msr == MSR_IA32_MCG_STATUS)
389 return offsetof(struct mce, mcgstatus);
390 return -1;
391 }
392
393 /* MSR access wrappers used for error injection */
394 static u64 mce_rdmsrl(u32 msr)
395 {
396 u64 v;
397
398 if (__this_cpu_read(injectm.finished)) {
399 int offset = msr_to_offset(msr);
400
401 if (offset < 0)
402 return 0;
403 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
404 }
405
406 if (rdmsrl_safe(msr, &v)) {
407 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
408 /*
409 * Return zero in case the access faulted. This should
410 * not happen normally but can happen if the CPU does
411 * something weird, or if the code is buggy.
412 */
413 v = 0;
414 }
415
416 return v;
417 }
418
419 static void mce_wrmsrl(u32 msr, u64 v)
420 {
421 if (__this_cpu_read(injectm.finished)) {
422 int offset = msr_to_offset(msr);
423
424 if (offset >= 0)
425 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
426 return;
427 }
428 wrmsrl(msr, v);
429 }
430
431 /*
432 * Collect all global (w.r.t. this processor) status about this machine
433 * check into our "mce" struct so that we can use it later to assess
434 * the severity of the problem as we read per-bank specific details.
435 */
436 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
437 {
438 mce_setup(m);
439
440 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
441 if (regs) {
442 /*
443 * Get the address of the instruction at the time of
444 * the machine check error.
445 */
446 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
447 m->ip = regs->ip;
448 m->cs = regs->cs;
449
450 /*
451 * When in VM86 mode make the cs look like ring 3
452 * always. This is a lie, but it's better than passing
453 * the additional vm86 bit around everywhere.
454 */
455 if (v8086_mode(regs))
456 m->cs |= 3;
457 }
458 /* Use accurate RIP reporting if available. */
459 if (mca_cfg.rip_msr)
460 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
461 }
462 }
463
464 /*
465 * Simple lockless ring to communicate PFNs from the exception handler with the
466 * process context work function. This is vastly simplified because there's
467 * only a single reader and a single writer.
468 */
469 #define MCE_RING_SIZE 16 /* we use one entry less */
470
471 struct mce_ring {
472 unsigned short start;
473 unsigned short end;
474 unsigned long ring[MCE_RING_SIZE];
475 };
476 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
477
478 /* Runs with CPU affinity in workqueue */
479 static int mce_ring_empty(void)
480 {
481 struct mce_ring *r = this_cpu_ptr(&mce_ring);
482
483 return r->start == r->end;
484 }
485
486 static int mce_ring_get(unsigned long *pfn)
487 {
488 struct mce_ring *r;
489 int ret = 0;
490
491 *pfn = 0;
492 get_cpu();
493 r = this_cpu_ptr(&mce_ring);
494 if (r->start == r->end)
495 goto out;
496 *pfn = r->ring[r->start];
497 r->start = (r->start + 1) % MCE_RING_SIZE;
498 ret = 1;
499 out:
500 put_cpu();
501 return ret;
502 }
503
504 /* Always runs in MCE context with preempt off */
505 static int mce_ring_add(unsigned long pfn)
506 {
507 struct mce_ring *r = this_cpu_ptr(&mce_ring);
508 unsigned next;
509
510 next = (r->end + 1) % MCE_RING_SIZE;
511 if (next == r->start)
512 return -1;
513 r->ring[r->end] = pfn;
514 wmb();
515 r->end = next;
516 return 0;
517 }
518
519 int mce_available(struct cpuinfo_x86 *c)
520 {
521 if (mca_cfg.disabled)
522 return 0;
523 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
524 }
525
526 static void mce_schedule_work(void)
527 {
528 if (!mce_ring_empty())
529 schedule_work(this_cpu_ptr(&mce_work));
530 }
531
532 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
533
534 static void mce_irq_work_cb(struct irq_work *entry)
535 {
536 mce_notify_irq();
537 mce_schedule_work();
538 }
539
540 static void mce_report_event(struct pt_regs *regs)
541 {
542 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
543 mce_notify_irq();
544 /*
545 * Triggering the work queue here is just an insurance
546 * policy in case the syscall exit notify handler
547 * doesn't run soon enough or ends up running on the
548 * wrong CPU (can happen when audit sleeps)
549 */
550 mce_schedule_work();
551 return;
552 }
553
554 irq_work_queue(this_cpu_ptr(&mce_irq_work));
555 }
556
557 /*
558 * Read ADDR and MISC registers.
559 */
560 static void mce_read_aux(struct mce *m, int i)
561 {
562 if (m->status & MCI_STATUS_MISCV)
563 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
564 if (m->status & MCI_STATUS_ADDRV) {
565 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
566
567 /*
568 * Mask the reported address by the reported granularity.
569 */
570 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
571 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
572 m->addr >>= shift;
573 m->addr <<= shift;
574 }
575 }
576 }
577
578 static bool memory_error(struct mce *m)
579 {
580 struct cpuinfo_x86 *c = &boot_cpu_data;
581
582 if (c->x86_vendor == X86_VENDOR_AMD) {
583 /*
584 * coming soon
585 */
586 return false;
587 } else if (c->x86_vendor == X86_VENDOR_INTEL) {
588 /*
589 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
590 *
591 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
592 * indicating a memory error. Bit 8 is used for indicating a
593 * cache hierarchy error. The combination of bit 2 and bit 3
594 * is used for indicating a `generic' cache hierarchy error
595 * But we can't just blindly check the above bits, because if
596 * bit 11 is set, then it is a bus/interconnect error - and
597 * either way the above bits just gives more detail on what
598 * bus/interconnect error happened. Note that bit 12 can be
599 * ignored, as it's the "filter" bit.
600 */
601 return (m->status & 0xef80) == BIT(7) ||
602 (m->status & 0xef00) == BIT(8) ||
603 (m->status & 0xeffc) == 0xc;
604 }
605
606 return false;
607 }
608
609 DEFINE_PER_CPU(unsigned, mce_poll_count);
610
611 /*
612 * Poll for corrected events or events that happened before reset.
613 * Those are just logged through /dev/mcelog.
614 *
615 * This is executed in standard interrupt context.
616 *
617 * Note: spec recommends to panic for fatal unsignalled
618 * errors here. However this would be quite problematic --
619 * we would need to reimplement the Monarch handling and
620 * it would mess up the exclusion between exception handler
621 * and poll hander -- * so we skip this for now.
622 * These cases should not happen anyways, or only when the CPU
623 * is already totally * confused. In this case it's likely it will
624 * not fully execute the machine check handler either.
625 */
626 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
627 {
628 struct mce m;
629 int severity;
630 int i;
631
632 this_cpu_inc(mce_poll_count);
633
634 mce_gather_info(&m, NULL);
635
636 for (i = 0; i < mca_cfg.banks; i++) {
637 if (!mce_banks[i].ctl || !test_bit(i, *b))
638 continue;
639
640 m.misc = 0;
641 m.addr = 0;
642 m.bank = i;
643 m.tsc = 0;
644
645 barrier();
646 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
647 if (!(m.status & MCI_STATUS_VAL))
648 continue;
649
650 this_cpu_write(mce_polled_error, 1);
651 /*
652 * Uncorrected or signalled events are handled by the exception
653 * handler when it is enabled, so don't process those here.
654 *
655 * TBD do the same check for MCI_STATUS_EN here?
656 */
657 if (!(flags & MCP_UC) &&
658 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
659 continue;
660
661 mce_read_aux(&m, i);
662
663 if (!(flags & MCP_TIMESTAMP))
664 m.tsc = 0;
665
666 severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
667
668 /*
669 * In the cases where we don't have a valid address after all,
670 * do not add it into the ring buffer.
671 */
672 if (severity == MCE_DEFERRED_SEVERITY && memory_error(&m)) {
673 if (m.status & MCI_STATUS_ADDRV) {
674 mce_ring_add(m.addr >> PAGE_SHIFT);
675 mce_schedule_work();
676 }
677 }
678
679 /*
680 * Don't get the IP here because it's unlikely to
681 * have anything to do with the actual error location.
682 */
683 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
684 mce_log(&m);
685
686 /*
687 * Clear state for this bank.
688 */
689 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
690 }
691
692 /*
693 * Don't clear MCG_STATUS here because it's only defined for
694 * exceptions.
695 */
696
697 sync_core();
698 }
699 EXPORT_SYMBOL_GPL(machine_check_poll);
700
701 /*
702 * Do a quick check if any of the events requires a panic.
703 * This decides if we keep the events around or clear them.
704 */
705 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
706 struct pt_regs *regs)
707 {
708 int i, ret = 0;
709
710 for (i = 0; i < mca_cfg.banks; i++) {
711 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
712 if (m->status & MCI_STATUS_VAL) {
713 __set_bit(i, validp);
714 if (quirk_no_way_out)
715 quirk_no_way_out(i, m, regs);
716 }
717 if (mce_severity(m, mca_cfg.tolerant, msg, true) >=
718 MCE_PANIC_SEVERITY)
719 ret = 1;
720 }
721 return ret;
722 }
723
724 /*
725 * Variable to establish order between CPUs while scanning.
726 * Each CPU spins initially until executing is equal its number.
727 */
728 static atomic_t mce_executing;
729
730 /*
731 * Defines order of CPUs on entry. First CPU becomes Monarch.
732 */
733 static atomic_t mce_callin;
734
735 /*
736 * Check if a timeout waiting for other CPUs happened.
737 */
738 static int mce_timed_out(u64 *t)
739 {
740 /*
741 * The others already did panic for some reason.
742 * Bail out like in a timeout.
743 * rmb() to tell the compiler that system_state
744 * might have been modified by someone else.
745 */
746 rmb();
747 if (atomic_read(&mce_panicked))
748 wait_for_panic();
749 if (!mca_cfg.monarch_timeout)
750 goto out;
751 if ((s64)*t < SPINUNIT) {
752 if (mca_cfg.tolerant <= 1)
753 mce_panic("Timeout synchronizing machine check over CPUs",
754 NULL, NULL);
755 cpu_missing = 1;
756 return 1;
757 }
758 *t -= SPINUNIT;
759 out:
760 touch_nmi_watchdog();
761 return 0;
762 }
763
764 /*
765 * The Monarch's reign. The Monarch is the CPU who entered
766 * the machine check handler first. It waits for the others to
767 * raise the exception too and then grades them. When any
768 * error is fatal panic. Only then let the others continue.
769 *
770 * The other CPUs entering the MCE handler will be controlled by the
771 * Monarch. They are called Subjects.
772 *
773 * This way we prevent any potential data corruption in a unrecoverable case
774 * and also makes sure always all CPU's errors are examined.
775 *
776 * Also this detects the case of a machine check event coming from outer
777 * space (not detected by any CPUs) In this case some external agent wants
778 * us to shut down, so panic too.
779 *
780 * The other CPUs might still decide to panic if the handler happens
781 * in a unrecoverable place, but in this case the system is in a semi-stable
782 * state and won't corrupt anything by itself. It's ok to let the others
783 * continue for a bit first.
784 *
785 * All the spin loops have timeouts; when a timeout happens a CPU
786 * typically elects itself to be Monarch.
787 */
788 static void mce_reign(void)
789 {
790 int cpu;
791 struct mce *m = NULL;
792 int global_worst = 0;
793 char *msg = NULL;
794 char *nmsg = NULL;
795
796 /*
797 * This CPU is the Monarch and the other CPUs have run
798 * through their handlers.
799 * Grade the severity of the errors of all the CPUs.
800 */
801 for_each_possible_cpu(cpu) {
802 int severity = mce_severity(&per_cpu(mces_seen, cpu),
803 mca_cfg.tolerant,
804 &nmsg, true);
805 if (severity > global_worst) {
806 msg = nmsg;
807 global_worst = severity;
808 m = &per_cpu(mces_seen, cpu);
809 }
810 }
811
812 /*
813 * Cannot recover? Panic here then.
814 * This dumps all the mces in the log buffer and stops the
815 * other CPUs.
816 */
817 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
818 mce_panic("Fatal Machine check", m, msg);
819
820 /*
821 * For UC somewhere we let the CPU who detects it handle it.
822 * Also must let continue the others, otherwise the handling
823 * CPU could deadlock on a lock.
824 */
825
826 /*
827 * No machine check event found. Must be some external
828 * source or one CPU is hung. Panic.
829 */
830 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
831 mce_panic("Machine check from unknown source", NULL, NULL);
832
833 /*
834 * Now clear all the mces_seen so that they don't reappear on
835 * the next mce.
836 */
837 for_each_possible_cpu(cpu)
838 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
839 }
840
841 static atomic_t global_nwo;
842
843 /*
844 * Start of Monarch synchronization. This waits until all CPUs have
845 * entered the exception handler and then determines if any of them
846 * saw a fatal event that requires panic. Then it executes them
847 * in the entry order.
848 * TBD double check parallel CPU hotunplug
849 */
850 static int mce_start(int *no_way_out)
851 {
852 int order;
853 int cpus = num_online_cpus();
854 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
855
856 if (!timeout)
857 return -1;
858
859 atomic_add(*no_way_out, &global_nwo);
860 /*
861 * global_nwo should be updated before mce_callin
862 */
863 smp_wmb();
864 order = atomic_inc_return(&mce_callin);
865
866 /*
867 * Wait for everyone.
868 */
869 while (atomic_read(&mce_callin) != cpus) {
870 if (mce_timed_out(&timeout)) {
871 atomic_set(&global_nwo, 0);
872 return -1;
873 }
874 ndelay(SPINUNIT);
875 }
876
877 /*
878 * mce_callin should be read before global_nwo
879 */
880 smp_rmb();
881
882 if (order == 1) {
883 /*
884 * Monarch: Starts executing now, the others wait.
885 */
886 atomic_set(&mce_executing, 1);
887 } else {
888 /*
889 * Subject: Now start the scanning loop one by one in
890 * the original callin order.
891 * This way when there are any shared banks it will be
892 * only seen by one CPU before cleared, avoiding duplicates.
893 */
894 while (atomic_read(&mce_executing) < order) {
895 if (mce_timed_out(&timeout)) {
896 atomic_set(&global_nwo, 0);
897 return -1;
898 }
899 ndelay(SPINUNIT);
900 }
901 }
902
903 /*
904 * Cache the global no_way_out state.
905 */
906 *no_way_out = atomic_read(&global_nwo);
907
908 return order;
909 }
910
911 /*
912 * Synchronize between CPUs after main scanning loop.
913 * This invokes the bulk of the Monarch processing.
914 */
915 static int mce_end(int order)
916 {
917 int ret = -1;
918 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
919
920 if (!timeout)
921 goto reset;
922 if (order < 0)
923 goto reset;
924
925 /*
926 * Allow others to run.
927 */
928 atomic_inc(&mce_executing);
929
930 if (order == 1) {
931 /* CHECKME: Can this race with a parallel hotplug? */
932 int cpus = num_online_cpus();
933
934 /*
935 * Monarch: Wait for everyone to go through their scanning
936 * loops.
937 */
938 while (atomic_read(&mce_executing) <= cpus) {
939 if (mce_timed_out(&timeout))
940 goto reset;
941 ndelay(SPINUNIT);
942 }
943
944 mce_reign();
945 barrier();
946 ret = 0;
947 } else {
948 /*
949 * Subject: Wait for Monarch to finish.
950 */
951 while (atomic_read(&mce_executing) != 0) {
952 if (mce_timed_out(&timeout))
953 goto reset;
954 ndelay(SPINUNIT);
955 }
956
957 /*
958 * Don't reset anything. That's done by the Monarch.
959 */
960 return 0;
961 }
962
963 /*
964 * Reset all global state.
965 */
966 reset:
967 atomic_set(&global_nwo, 0);
968 atomic_set(&mce_callin, 0);
969 barrier();
970
971 /*
972 * Let others run again.
973 */
974 atomic_set(&mce_executing, 0);
975 return ret;
976 }
977
978 /*
979 * Check if the address reported by the CPU is in a format we can parse.
980 * It would be possible to add code for most other cases, but all would
981 * be somewhat complicated (e.g. segment offset would require an instruction
982 * parser). So only support physical addresses up to page granuality for now.
983 */
984 static int mce_usable_address(struct mce *m)
985 {
986 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
987 return 0;
988 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
989 return 0;
990 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
991 return 0;
992 return 1;
993 }
994
995 static void mce_clear_state(unsigned long *toclear)
996 {
997 int i;
998
999 for (i = 0; i < mca_cfg.banks; i++) {
1000 if (test_bit(i, toclear))
1001 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1002 }
1003 }
1004
1005 /*
1006 * Need to save faulting physical address associated with a process
1007 * in the machine check handler some place where we can grab it back
1008 * later in mce_notify_process()
1009 */
1010 #define MCE_INFO_MAX 16
1011
1012 struct mce_info {
1013 atomic_t inuse;
1014 struct task_struct *t;
1015 __u64 paddr;
1016 int restartable;
1017 } mce_info[MCE_INFO_MAX];
1018
1019 static void mce_save_info(__u64 addr, int c)
1020 {
1021 struct mce_info *mi;
1022
1023 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
1024 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
1025 mi->t = current;
1026 mi->paddr = addr;
1027 mi->restartable = c;
1028 return;
1029 }
1030 }
1031
1032 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
1033 }
1034
1035 static struct mce_info *mce_find_info(void)
1036 {
1037 struct mce_info *mi;
1038
1039 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
1040 if (atomic_read(&mi->inuse) && mi->t == current)
1041 return mi;
1042 return NULL;
1043 }
1044
1045 static void mce_clear_info(struct mce_info *mi)
1046 {
1047 atomic_set(&mi->inuse, 0);
1048 }
1049
1050 /*
1051 * The actual machine check handler. This only handles real
1052 * exceptions when something got corrupted coming in through int 18.
1053 *
1054 * This is executed in NMI context not subject to normal locking rules. This
1055 * implies that most kernel services cannot be safely used. Don't even
1056 * think about putting a printk in there!
1057 *
1058 * On Intel systems this is entered on all CPUs in parallel through
1059 * MCE broadcast. However some CPUs might be broken beyond repair,
1060 * so be always careful when synchronizing with others.
1061 */
1062 void do_machine_check(struct pt_regs *regs, long error_code)
1063 {
1064 struct mca_config *cfg = &mca_cfg;
1065 struct mce m, *final;
1066 int i;
1067 int worst = 0;
1068 int severity;
1069 /*
1070 * Establish sequential order between the CPUs entering the machine
1071 * check handler.
1072 */
1073 int order;
1074 /*
1075 * If no_way_out gets set, there is no safe way to recover from this
1076 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1077 */
1078 int no_way_out = 0;
1079 /*
1080 * If kill_it gets set, there might be a way to recover from this
1081 * error.
1082 */
1083 int kill_it = 0;
1084 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1085 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1086 char *msg = "Unknown";
1087
1088 this_cpu_inc(mce_exception_count);
1089
1090 if (!cfg->banks)
1091 goto out;
1092
1093 mce_gather_info(&m, regs);
1094
1095 final = this_cpu_ptr(&mces_seen);
1096 *final = m;
1097
1098 memset(valid_banks, 0, sizeof(valid_banks));
1099 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1100
1101 barrier();
1102
1103 /*
1104 * When no restart IP might need to kill or panic.
1105 * Assume the worst for now, but if we find the
1106 * severity is MCE_AR_SEVERITY we have other options.
1107 */
1108 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1109 kill_it = 1;
1110
1111 /*
1112 * Go through all the banks in exclusion of the other CPUs.
1113 * This way we don't report duplicated events on shared banks
1114 * because the first one to see it will clear it.
1115 */
1116 order = mce_start(&no_way_out);
1117 for (i = 0; i < cfg->banks; i++) {
1118 __clear_bit(i, toclear);
1119 if (!test_bit(i, valid_banks))
1120 continue;
1121 if (!mce_banks[i].ctl)
1122 continue;
1123
1124 m.misc = 0;
1125 m.addr = 0;
1126 m.bank = i;
1127
1128 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1129 if ((m.status & MCI_STATUS_VAL) == 0)
1130 continue;
1131
1132 /*
1133 * Non uncorrected or non signaled errors are handled by
1134 * machine_check_poll. Leave them alone, unless this panics.
1135 */
1136 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1137 !no_way_out)
1138 continue;
1139
1140 /*
1141 * Set taint even when machine check was not enabled.
1142 */
1143 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1144
1145 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1146
1147 /*
1148 * When machine check was for corrected/deferred handler don't
1149 * touch, unless we're panicing.
1150 */
1151 if ((severity == MCE_KEEP_SEVERITY ||
1152 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1153 continue;
1154 __set_bit(i, toclear);
1155 if (severity == MCE_NO_SEVERITY) {
1156 /*
1157 * Machine check event was not enabled. Clear, but
1158 * ignore.
1159 */
1160 continue;
1161 }
1162
1163 mce_read_aux(&m, i);
1164
1165 /*
1166 * Action optional error. Queue address for later processing.
1167 * When the ring overflows we just ignore the AO error.
1168 * RED-PEN add some logging mechanism when
1169 * usable_address or mce_add_ring fails.
1170 * RED-PEN don't ignore overflow for mca_cfg.tolerant == 0
1171 */
1172 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1173 mce_ring_add(m.addr >> PAGE_SHIFT);
1174
1175 mce_log(&m);
1176
1177 if (severity > worst) {
1178 *final = m;
1179 worst = severity;
1180 }
1181 }
1182
1183 /* mce_clear_state will clear *final, save locally for use later */
1184 m = *final;
1185
1186 if (!no_way_out)
1187 mce_clear_state(toclear);
1188
1189 /*
1190 * Do most of the synchronization with other CPUs.
1191 * When there's any problem use only local no_way_out state.
1192 */
1193 if (mce_end(order) < 0)
1194 no_way_out = worst >= MCE_PANIC_SEVERITY;
1195
1196 /*
1197 * At insane "tolerant" levels we take no action. Otherwise
1198 * we only die if we have no other choice. For less serious
1199 * issues we try to recover, or limit damage to the current
1200 * process.
1201 */
1202 if (cfg->tolerant < 3) {
1203 if (no_way_out)
1204 mce_panic("Fatal machine check on current CPU", &m, msg);
1205 if (worst == MCE_AR_SEVERITY) {
1206 /* schedule action before return to userland */
1207 mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1208 set_thread_flag(TIF_MCE_NOTIFY);
1209 } else if (kill_it) {
1210 force_sig(SIGBUS, current);
1211 }
1212 }
1213
1214 if (worst > 0)
1215 mce_report_event(regs);
1216 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1217 out:
1218 sync_core();
1219 }
1220 EXPORT_SYMBOL_GPL(do_machine_check);
1221
1222 #ifndef CONFIG_MEMORY_FAILURE
1223 int memory_failure(unsigned long pfn, int vector, int flags)
1224 {
1225 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1226 BUG_ON(flags & MF_ACTION_REQUIRED);
1227 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1228 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1229 pfn);
1230
1231 return 0;
1232 }
1233 #endif
1234
1235 /*
1236 * Called in process context that interrupted by MCE and marked with
1237 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1238 * This code is allowed to sleep.
1239 * Attempt possible recovery such as calling the high level VM handler to
1240 * process any corrupted pages, and kill/signal current process if required.
1241 * Action required errors are handled here.
1242 */
1243 void mce_notify_process(void)
1244 {
1245 unsigned long pfn;
1246 struct mce_info *mi = mce_find_info();
1247 int flags = MF_ACTION_REQUIRED;
1248
1249 if (!mi)
1250 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1251 pfn = mi->paddr >> PAGE_SHIFT;
1252
1253 clear_thread_flag(TIF_MCE_NOTIFY);
1254
1255 pr_err("Uncorrected hardware memory error in user-access at %llx",
1256 mi->paddr);
1257 /*
1258 * We must call memory_failure() here even if the current process is
1259 * doomed. We still need to mark the page as poisoned and alert any
1260 * other users of the page.
1261 */
1262 if (!mi->restartable)
1263 flags |= MF_MUST_KILL;
1264 if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1265 pr_err("Memory error not recovered");
1266 force_sig(SIGBUS, current);
1267 }
1268 mce_clear_info(mi);
1269 }
1270
1271 /*
1272 * Action optional processing happens here (picking up
1273 * from the list of faulting pages that do_machine_check()
1274 * placed into the "ring").
1275 */
1276 static void mce_process_work(struct work_struct *dummy)
1277 {
1278 unsigned long pfn;
1279
1280 while (mce_ring_get(&pfn))
1281 memory_failure(pfn, MCE_VECTOR, 0);
1282 }
1283
1284 #ifdef CONFIG_X86_MCE_INTEL
1285 /***
1286 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1287 * @cpu: The CPU on which the event occurred.
1288 * @status: Event status information
1289 *
1290 * This function should be called by the thermal interrupt after the
1291 * event has been processed and the decision was made to log the event
1292 * further.
1293 *
1294 * The status parameter will be saved to the 'status' field of 'struct mce'
1295 * and historically has been the register value of the
1296 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1297 */
1298 void mce_log_therm_throt_event(__u64 status)
1299 {
1300 struct mce m;
1301
1302 mce_setup(&m);
1303 m.bank = MCE_THERMAL_BANK;
1304 m.status = status;
1305 mce_log(&m);
1306 }
1307 #endif /* CONFIG_X86_MCE_INTEL */
1308
1309 /*
1310 * Periodic polling timer for "silent" machine check errors. If the
1311 * poller finds an MCE, poll 2x faster. When the poller finds no more
1312 * errors, poll 2x slower (up to check_interval seconds).
1313 */
1314 static unsigned long check_interval = 5 * 60; /* 5 minutes */
1315
1316 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1317 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1318
1319 static unsigned long mce_adjust_timer_default(unsigned long interval)
1320 {
1321 return interval;
1322 }
1323
1324 static unsigned long (*mce_adjust_timer)(unsigned long interval) =
1325 mce_adjust_timer_default;
1326
1327 static int cmc_error_seen(void)
1328 {
1329 unsigned long *v = this_cpu_ptr(&mce_polled_error);
1330
1331 return test_and_clear_bit(0, v);
1332 }
1333
1334 static void mce_timer_fn(unsigned long data)
1335 {
1336 struct timer_list *t = this_cpu_ptr(&mce_timer);
1337 unsigned long iv;
1338 int notify;
1339
1340 WARN_ON(smp_processor_id() != data);
1341
1342 if (mce_available(this_cpu_ptr(&cpu_info))) {
1343 machine_check_poll(MCP_TIMESTAMP,
1344 this_cpu_ptr(&mce_poll_banks));
1345 mce_intel_cmci_poll();
1346 }
1347
1348 /*
1349 * Alert userspace if needed. If we logged an MCE, reduce the
1350 * polling interval, otherwise increase the polling interval.
1351 */
1352 iv = __this_cpu_read(mce_next_interval);
1353 notify = mce_notify_irq();
1354 notify |= cmc_error_seen();
1355 if (notify) {
1356 iv = max(iv / 2, (unsigned long) HZ/100);
1357 } else {
1358 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1359 iv = mce_adjust_timer(iv);
1360 }
1361 __this_cpu_write(mce_next_interval, iv);
1362 /* Might have become 0 after CMCI storm subsided */
1363 if (iv) {
1364 t->expires = jiffies + iv;
1365 add_timer_on(t, smp_processor_id());
1366 }
1367 }
1368
1369 /*
1370 * Ensure that the timer is firing in @interval from now.
1371 */
1372 void mce_timer_kick(unsigned long interval)
1373 {
1374 struct timer_list *t = this_cpu_ptr(&mce_timer);
1375 unsigned long when = jiffies + interval;
1376 unsigned long iv = __this_cpu_read(mce_next_interval);
1377
1378 if (timer_pending(t)) {
1379 if (time_before(when, t->expires))
1380 mod_timer_pinned(t, when);
1381 } else {
1382 t->expires = round_jiffies(when);
1383 add_timer_on(t, smp_processor_id());
1384 }
1385 if (interval < iv)
1386 __this_cpu_write(mce_next_interval, interval);
1387 }
1388
1389 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1390 static void mce_timer_delete_all(void)
1391 {
1392 int cpu;
1393
1394 for_each_online_cpu(cpu)
1395 del_timer_sync(&per_cpu(mce_timer, cpu));
1396 }
1397
1398 static void mce_do_trigger(struct work_struct *work)
1399 {
1400 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1401 }
1402
1403 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1404
1405 /*
1406 * Notify the user(s) about new machine check events.
1407 * Can be called from interrupt context, but not from machine check/NMI
1408 * context.
1409 */
1410 int mce_notify_irq(void)
1411 {
1412 /* Not more than two messages every minute */
1413 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1414
1415 if (test_and_clear_bit(0, &mce_need_notify)) {
1416 /* wake processes polling /dev/mcelog */
1417 wake_up_interruptible(&mce_chrdev_wait);
1418
1419 if (mce_helper[0])
1420 schedule_work(&mce_trigger_work);
1421
1422 if (__ratelimit(&ratelimit))
1423 pr_info(HW_ERR "Machine check events logged\n");
1424
1425 return 1;
1426 }
1427 return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(mce_notify_irq);
1430
1431 static int __mcheck_cpu_mce_banks_init(void)
1432 {
1433 int i;
1434 u8 num_banks = mca_cfg.banks;
1435
1436 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1437 if (!mce_banks)
1438 return -ENOMEM;
1439
1440 for (i = 0; i < num_banks; i++) {
1441 struct mce_bank *b = &mce_banks[i];
1442
1443 b->ctl = -1ULL;
1444 b->init = 1;
1445 }
1446 return 0;
1447 }
1448
1449 /*
1450 * Initialize Machine Checks for a CPU.
1451 */
1452 static int __mcheck_cpu_cap_init(void)
1453 {
1454 unsigned b;
1455 u64 cap;
1456
1457 rdmsrl(MSR_IA32_MCG_CAP, cap);
1458
1459 b = cap & MCG_BANKCNT_MASK;
1460 if (!mca_cfg.banks)
1461 pr_info("CPU supports %d MCE banks\n", b);
1462
1463 if (b > MAX_NR_BANKS) {
1464 pr_warn("Using only %u machine check banks out of %u\n",
1465 MAX_NR_BANKS, b);
1466 b = MAX_NR_BANKS;
1467 }
1468
1469 /* Don't support asymmetric configurations today */
1470 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1471 mca_cfg.banks = b;
1472
1473 if (!mce_banks) {
1474 int err = __mcheck_cpu_mce_banks_init();
1475
1476 if (err)
1477 return err;
1478 }
1479
1480 /* Use accurate RIP reporting if available. */
1481 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1482 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1483
1484 if (cap & MCG_SER_P)
1485 mca_cfg.ser = true;
1486
1487 return 0;
1488 }
1489
1490 static void __mcheck_cpu_init_generic(void)
1491 {
1492 enum mcp_flags m_fl = 0;
1493 mce_banks_t all_banks;
1494 u64 cap;
1495 int i;
1496
1497 if (!mca_cfg.bootlog)
1498 m_fl = MCP_DONTLOG;
1499
1500 /*
1501 * Log the machine checks left over from the previous reset.
1502 */
1503 bitmap_fill(all_banks, MAX_NR_BANKS);
1504 machine_check_poll(MCP_UC | m_fl, &all_banks);
1505
1506 set_in_cr4(X86_CR4_MCE);
1507
1508 rdmsrl(MSR_IA32_MCG_CAP, cap);
1509 if (cap & MCG_CTL_P)
1510 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1511
1512 for (i = 0; i < mca_cfg.banks; i++) {
1513 struct mce_bank *b = &mce_banks[i];
1514
1515 if (!b->init)
1516 continue;
1517 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1518 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1519 }
1520 }
1521
1522 /*
1523 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1524 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1525 * Vol 3B Table 15-20). But this confuses both the code that determines
1526 * whether the machine check occurred in kernel or user mode, and also
1527 * the severity assessment code. Pretend that EIPV was set, and take the
1528 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1529 */
1530 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1531 {
1532 if (bank != 0)
1533 return;
1534 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1535 return;
1536 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1537 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1538 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1539 MCACOD)) !=
1540 (MCI_STATUS_UC|MCI_STATUS_EN|
1541 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1542 MCI_STATUS_AR|MCACOD_INSTR))
1543 return;
1544
1545 m->mcgstatus |= MCG_STATUS_EIPV;
1546 m->ip = regs->ip;
1547 m->cs = regs->cs;
1548 }
1549
1550 /* Add per CPU specific workarounds here */
1551 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1552 {
1553 struct mca_config *cfg = &mca_cfg;
1554
1555 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1556 pr_info("unknown CPU type - not enabling MCE support\n");
1557 return -EOPNOTSUPP;
1558 }
1559
1560 /* This should be disabled by the BIOS, but isn't always */
1561 if (c->x86_vendor == X86_VENDOR_AMD) {
1562 if (c->x86 == 15 && cfg->banks > 4) {
1563 /*
1564 * disable GART TBL walk error reporting, which
1565 * trips off incorrectly with the IOMMU & 3ware
1566 * & Cerberus:
1567 */
1568 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1569 }
1570 if (c->x86 <= 17 && cfg->bootlog < 0) {
1571 /*
1572 * Lots of broken BIOS around that don't clear them
1573 * by default and leave crap in there. Don't log:
1574 */
1575 cfg->bootlog = 0;
1576 }
1577 /*
1578 * Various K7s with broken bank 0 around. Always disable
1579 * by default.
1580 */
1581 if (c->x86 == 6 && cfg->banks > 0)
1582 mce_banks[0].ctl = 0;
1583
1584 /*
1585 * Turn off MC4_MISC thresholding banks on those models since
1586 * they're not supported there.
1587 */
1588 if (c->x86 == 0x15 &&
1589 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1590 int i;
1591 u64 val, hwcr;
1592 bool need_toggle;
1593 u32 msrs[] = {
1594 0x00000413, /* MC4_MISC0 */
1595 0xc0000408, /* MC4_MISC1 */
1596 };
1597
1598 rdmsrl(MSR_K7_HWCR, hwcr);
1599
1600 /* McStatusWrEn has to be set */
1601 need_toggle = !(hwcr & BIT(18));
1602
1603 if (need_toggle)
1604 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1605
1606 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1607 rdmsrl(msrs[i], val);
1608
1609 /* CntP bit set? */
1610 if (val & BIT_64(62)) {
1611 val &= ~BIT_64(62);
1612 wrmsrl(msrs[i], val);
1613 }
1614 }
1615
1616 /* restore old settings */
1617 if (need_toggle)
1618 wrmsrl(MSR_K7_HWCR, hwcr);
1619 }
1620 }
1621
1622 if (c->x86_vendor == X86_VENDOR_INTEL) {
1623 /*
1624 * SDM documents that on family 6 bank 0 should not be written
1625 * because it aliases to another special BIOS controlled
1626 * register.
1627 * But it's not aliased anymore on model 0x1a+
1628 * Don't ignore bank 0 completely because there could be a
1629 * valid event later, merely don't write CTL0.
1630 */
1631
1632 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1633 mce_banks[0].init = 0;
1634
1635 /*
1636 * All newer Intel systems support MCE broadcasting. Enable
1637 * synchronization with a one second timeout.
1638 */
1639 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1640 cfg->monarch_timeout < 0)
1641 cfg->monarch_timeout = USEC_PER_SEC;
1642
1643 /*
1644 * There are also broken BIOSes on some Pentium M and
1645 * earlier systems:
1646 */
1647 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1648 cfg->bootlog = 0;
1649
1650 if (c->x86 == 6 && c->x86_model == 45)
1651 quirk_no_way_out = quirk_sandybridge_ifu;
1652 }
1653 if (cfg->monarch_timeout < 0)
1654 cfg->monarch_timeout = 0;
1655 if (cfg->bootlog != 0)
1656 cfg->panic_timeout = 30;
1657
1658 return 0;
1659 }
1660
1661 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1662 {
1663 if (c->x86 != 5)
1664 return 0;
1665
1666 switch (c->x86_vendor) {
1667 case X86_VENDOR_INTEL:
1668 intel_p5_mcheck_init(c);
1669 return 1;
1670 break;
1671 case X86_VENDOR_CENTAUR:
1672 winchip_mcheck_init(c);
1673 return 1;
1674 break;
1675 }
1676
1677 return 0;
1678 }
1679
1680 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1681 {
1682 switch (c->x86_vendor) {
1683 case X86_VENDOR_INTEL:
1684 mce_intel_feature_init(c);
1685 mce_adjust_timer = mce_intel_adjust_timer;
1686 break;
1687 case X86_VENDOR_AMD:
1688 mce_amd_feature_init(c);
1689 break;
1690 default:
1691 break;
1692 }
1693 }
1694
1695 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1696 {
1697 unsigned long iv = check_interval * HZ;
1698
1699 if (mca_cfg.ignore_ce || !iv)
1700 return;
1701
1702 per_cpu(mce_next_interval, cpu) = iv;
1703
1704 t->expires = round_jiffies(jiffies + iv);
1705 add_timer_on(t, cpu);
1706 }
1707
1708 static void __mcheck_cpu_init_timer(void)
1709 {
1710 struct timer_list *t = this_cpu_ptr(&mce_timer);
1711 unsigned int cpu = smp_processor_id();
1712
1713 setup_timer(t, mce_timer_fn, cpu);
1714 mce_start_timer(cpu, t);
1715 }
1716
1717 /* Handle unconfigured int18 (should never happen) */
1718 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1719 {
1720 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1721 smp_processor_id());
1722 }
1723
1724 /* Call the installed machine check handler for this CPU setup. */
1725 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1726 unexpected_machine_check;
1727
1728 /*
1729 * Called for each booted CPU to set up machine checks.
1730 * Must be called with preempt off:
1731 */
1732 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1733 {
1734 if (mca_cfg.disabled)
1735 return;
1736
1737 if (__mcheck_cpu_ancient_init(c))
1738 return;
1739
1740 if (!mce_available(c))
1741 return;
1742
1743 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1744 mca_cfg.disabled = true;
1745 return;
1746 }
1747
1748 machine_check_vector = do_machine_check;
1749
1750 __mcheck_cpu_init_generic();
1751 __mcheck_cpu_init_vendor(c);
1752 __mcheck_cpu_init_timer();
1753 INIT_WORK(this_cpu_ptr(&mce_work), mce_process_work);
1754 init_irq_work(this_cpu_ptr(&mce_irq_work), &mce_irq_work_cb);
1755 }
1756
1757 /*
1758 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1759 */
1760
1761 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1762 static int mce_chrdev_open_count; /* #times opened */
1763 static int mce_chrdev_open_exclu; /* already open exclusive? */
1764
1765 static int mce_chrdev_open(struct inode *inode, struct file *file)
1766 {
1767 spin_lock(&mce_chrdev_state_lock);
1768
1769 if (mce_chrdev_open_exclu ||
1770 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1771 spin_unlock(&mce_chrdev_state_lock);
1772
1773 return -EBUSY;
1774 }
1775
1776 if (file->f_flags & O_EXCL)
1777 mce_chrdev_open_exclu = 1;
1778 mce_chrdev_open_count++;
1779
1780 spin_unlock(&mce_chrdev_state_lock);
1781
1782 return nonseekable_open(inode, file);
1783 }
1784
1785 static int mce_chrdev_release(struct inode *inode, struct file *file)
1786 {
1787 spin_lock(&mce_chrdev_state_lock);
1788
1789 mce_chrdev_open_count--;
1790 mce_chrdev_open_exclu = 0;
1791
1792 spin_unlock(&mce_chrdev_state_lock);
1793
1794 return 0;
1795 }
1796
1797 static void collect_tscs(void *data)
1798 {
1799 unsigned long *cpu_tsc = (unsigned long *)data;
1800
1801 rdtscll(cpu_tsc[smp_processor_id()]);
1802 }
1803
1804 static int mce_apei_read_done;
1805
1806 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1807 static int __mce_read_apei(char __user **ubuf, size_t usize)
1808 {
1809 int rc;
1810 u64 record_id;
1811 struct mce m;
1812
1813 if (usize < sizeof(struct mce))
1814 return -EINVAL;
1815
1816 rc = apei_read_mce(&m, &record_id);
1817 /* Error or no more MCE record */
1818 if (rc <= 0) {
1819 mce_apei_read_done = 1;
1820 /*
1821 * When ERST is disabled, mce_chrdev_read() should return
1822 * "no record" instead of "no device."
1823 */
1824 if (rc == -ENODEV)
1825 return 0;
1826 return rc;
1827 }
1828 rc = -EFAULT;
1829 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1830 return rc;
1831 /*
1832 * In fact, we should have cleared the record after that has
1833 * been flushed to the disk or sent to network in
1834 * /sbin/mcelog, but we have no interface to support that now,
1835 * so just clear it to avoid duplication.
1836 */
1837 rc = apei_clear_mce(record_id);
1838 if (rc) {
1839 mce_apei_read_done = 1;
1840 return rc;
1841 }
1842 *ubuf += sizeof(struct mce);
1843
1844 return 0;
1845 }
1846
1847 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1848 size_t usize, loff_t *off)
1849 {
1850 char __user *buf = ubuf;
1851 unsigned long *cpu_tsc;
1852 unsigned prev, next;
1853 int i, err;
1854
1855 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1856 if (!cpu_tsc)
1857 return -ENOMEM;
1858
1859 mutex_lock(&mce_chrdev_read_mutex);
1860
1861 if (!mce_apei_read_done) {
1862 err = __mce_read_apei(&buf, usize);
1863 if (err || buf != ubuf)
1864 goto out;
1865 }
1866
1867 next = rcu_dereference_check_mce(mcelog.next);
1868
1869 /* Only supports full reads right now */
1870 err = -EINVAL;
1871 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1872 goto out;
1873
1874 err = 0;
1875 prev = 0;
1876 do {
1877 for (i = prev; i < next; i++) {
1878 unsigned long start = jiffies;
1879 struct mce *m = &mcelog.entry[i];
1880
1881 while (!m->finished) {
1882 if (time_after_eq(jiffies, start + 2)) {
1883 memset(m, 0, sizeof(*m));
1884 goto timeout;
1885 }
1886 cpu_relax();
1887 }
1888 smp_rmb();
1889 err |= copy_to_user(buf, m, sizeof(*m));
1890 buf += sizeof(*m);
1891 timeout:
1892 ;
1893 }
1894
1895 memset(mcelog.entry + prev, 0,
1896 (next - prev) * sizeof(struct mce));
1897 prev = next;
1898 next = cmpxchg(&mcelog.next, prev, 0);
1899 } while (next != prev);
1900
1901 synchronize_sched();
1902
1903 /*
1904 * Collect entries that were still getting written before the
1905 * synchronize.
1906 */
1907 on_each_cpu(collect_tscs, cpu_tsc, 1);
1908
1909 for (i = next; i < MCE_LOG_LEN; i++) {
1910 struct mce *m = &mcelog.entry[i];
1911
1912 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1913 err |= copy_to_user(buf, m, sizeof(*m));
1914 smp_rmb();
1915 buf += sizeof(*m);
1916 memset(m, 0, sizeof(*m));
1917 }
1918 }
1919
1920 if (err)
1921 err = -EFAULT;
1922
1923 out:
1924 mutex_unlock(&mce_chrdev_read_mutex);
1925 kfree(cpu_tsc);
1926
1927 return err ? err : buf - ubuf;
1928 }
1929
1930 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1931 {
1932 poll_wait(file, &mce_chrdev_wait, wait);
1933 if (rcu_access_index(mcelog.next))
1934 return POLLIN | POLLRDNORM;
1935 if (!mce_apei_read_done && apei_check_mce())
1936 return POLLIN | POLLRDNORM;
1937 return 0;
1938 }
1939
1940 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1941 unsigned long arg)
1942 {
1943 int __user *p = (int __user *)arg;
1944
1945 if (!capable(CAP_SYS_ADMIN))
1946 return -EPERM;
1947
1948 switch (cmd) {
1949 case MCE_GET_RECORD_LEN:
1950 return put_user(sizeof(struct mce), p);
1951 case MCE_GET_LOG_LEN:
1952 return put_user(MCE_LOG_LEN, p);
1953 case MCE_GETCLEAR_FLAGS: {
1954 unsigned flags;
1955
1956 do {
1957 flags = mcelog.flags;
1958 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1959
1960 return put_user(flags, p);
1961 }
1962 default:
1963 return -ENOTTY;
1964 }
1965 }
1966
1967 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1968 size_t usize, loff_t *off);
1969
1970 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1971 const char __user *ubuf,
1972 size_t usize, loff_t *off))
1973 {
1974 mce_write = fn;
1975 }
1976 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1977
1978 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1979 size_t usize, loff_t *off)
1980 {
1981 if (mce_write)
1982 return mce_write(filp, ubuf, usize, off);
1983 else
1984 return -EINVAL;
1985 }
1986
1987 static const struct file_operations mce_chrdev_ops = {
1988 .open = mce_chrdev_open,
1989 .release = mce_chrdev_release,
1990 .read = mce_chrdev_read,
1991 .write = mce_chrdev_write,
1992 .poll = mce_chrdev_poll,
1993 .unlocked_ioctl = mce_chrdev_ioctl,
1994 .llseek = no_llseek,
1995 };
1996
1997 static struct miscdevice mce_chrdev_device = {
1998 MISC_MCELOG_MINOR,
1999 "mcelog",
2000 &mce_chrdev_ops,
2001 };
2002
2003 static void __mce_disable_bank(void *arg)
2004 {
2005 int bank = *((int *)arg);
2006 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2007 cmci_disable_bank(bank);
2008 }
2009
2010 void mce_disable_bank(int bank)
2011 {
2012 if (bank >= mca_cfg.banks) {
2013 pr_warn(FW_BUG
2014 "Ignoring request to disable invalid MCA bank %d.\n",
2015 bank);
2016 return;
2017 }
2018 set_bit(bank, mce_banks_ce_disabled);
2019 on_each_cpu(__mce_disable_bank, &bank, 1);
2020 }
2021
2022 /*
2023 * mce=off Disables machine check
2024 * mce=no_cmci Disables CMCI
2025 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2026 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2027 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2028 * monarchtimeout is how long to wait for other CPUs on machine
2029 * check, or 0 to not wait
2030 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
2031 * mce=nobootlog Don't log MCEs from before booting.
2032 * mce=bios_cmci_threshold Don't program the CMCI threshold
2033 */
2034 static int __init mcheck_enable(char *str)
2035 {
2036 struct mca_config *cfg = &mca_cfg;
2037
2038 if (*str == 0) {
2039 enable_p5_mce();
2040 return 1;
2041 }
2042 if (*str == '=')
2043 str++;
2044 if (!strcmp(str, "off"))
2045 cfg->disabled = true;
2046 else if (!strcmp(str, "no_cmci"))
2047 cfg->cmci_disabled = true;
2048 else if (!strcmp(str, "dont_log_ce"))
2049 cfg->dont_log_ce = true;
2050 else if (!strcmp(str, "ignore_ce"))
2051 cfg->ignore_ce = true;
2052 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2053 cfg->bootlog = (str[0] == 'b');
2054 else if (!strcmp(str, "bios_cmci_threshold"))
2055 cfg->bios_cmci_threshold = true;
2056 else if (isdigit(str[0])) {
2057 get_option(&str, &(cfg->tolerant));
2058 if (*str == ',') {
2059 ++str;
2060 get_option(&str, &(cfg->monarch_timeout));
2061 }
2062 } else {
2063 pr_info("mce argument %s ignored. Please use /sys\n", str);
2064 return 0;
2065 }
2066 return 1;
2067 }
2068 __setup("mce", mcheck_enable);
2069
2070 int __init mcheck_init(void)
2071 {
2072 mcheck_intel_therm_init();
2073
2074 return 0;
2075 }
2076
2077 /*
2078 * mce_syscore: PM support
2079 */
2080
2081 /*
2082 * Disable machine checks on suspend and shutdown. We can't really handle
2083 * them later.
2084 */
2085 static int mce_disable_error_reporting(void)
2086 {
2087 int i;
2088
2089 for (i = 0; i < mca_cfg.banks; i++) {
2090 struct mce_bank *b = &mce_banks[i];
2091
2092 if (b->init)
2093 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2094 }
2095 return 0;
2096 }
2097
2098 static int mce_syscore_suspend(void)
2099 {
2100 return mce_disable_error_reporting();
2101 }
2102
2103 static void mce_syscore_shutdown(void)
2104 {
2105 mce_disable_error_reporting();
2106 }
2107
2108 /*
2109 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2110 * Only one CPU is active at this time, the others get re-added later using
2111 * CPU hotplug:
2112 */
2113 static void mce_syscore_resume(void)
2114 {
2115 __mcheck_cpu_init_generic();
2116 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2117 }
2118
2119 static struct syscore_ops mce_syscore_ops = {
2120 .suspend = mce_syscore_suspend,
2121 .shutdown = mce_syscore_shutdown,
2122 .resume = mce_syscore_resume,
2123 };
2124
2125 /*
2126 * mce_device: Sysfs support
2127 */
2128
2129 static void mce_cpu_restart(void *data)
2130 {
2131 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2132 return;
2133 __mcheck_cpu_init_generic();
2134 __mcheck_cpu_init_timer();
2135 }
2136
2137 /* Reinit MCEs after user configuration changes */
2138 static void mce_restart(void)
2139 {
2140 mce_timer_delete_all();
2141 on_each_cpu(mce_cpu_restart, NULL, 1);
2142 }
2143
2144 /* Toggle features for corrected errors */
2145 static void mce_disable_cmci(void *data)
2146 {
2147 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2148 return;
2149 cmci_clear();
2150 }
2151
2152 static void mce_enable_ce(void *all)
2153 {
2154 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2155 return;
2156 cmci_reenable();
2157 cmci_recheck();
2158 if (all)
2159 __mcheck_cpu_init_timer();
2160 }
2161
2162 static struct bus_type mce_subsys = {
2163 .name = "machinecheck",
2164 .dev_name = "machinecheck",
2165 };
2166
2167 DEFINE_PER_CPU(struct device *, mce_device);
2168
2169 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2170
2171 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2172 {
2173 return container_of(attr, struct mce_bank, attr);
2174 }
2175
2176 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2177 char *buf)
2178 {
2179 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2180 }
2181
2182 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2183 const char *buf, size_t size)
2184 {
2185 u64 new;
2186
2187 if (kstrtou64(buf, 0, &new) < 0)
2188 return -EINVAL;
2189
2190 attr_to_bank(attr)->ctl = new;
2191 mce_restart();
2192
2193 return size;
2194 }
2195
2196 static ssize_t
2197 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2198 {
2199 strcpy(buf, mce_helper);
2200 strcat(buf, "\n");
2201 return strlen(mce_helper) + 1;
2202 }
2203
2204 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2205 const char *buf, size_t siz)
2206 {
2207 char *p;
2208
2209 strncpy(mce_helper, buf, sizeof(mce_helper));
2210 mce_helper[sizeof(mce_helper)-1] = 0;
2211 p = strchr(mce_helper, '\n');
2212
2213 if (p)
2214 *p = 0;
2215
2216 return strlen(mce_helper) + !!p;
2217 }
2218
2219 static ssize_t set_ignore_ce(struct device *s,
2220 struct device_attribute *attr,
2221 const char *buf, size_t size)
2222 {
2223 u64 new;
2224
2225 if (kstrtou64(buf, 0, &new) < 0)
2226 return -EINVAL;
2227
2228 if (mca_cfg.ignore_ce ^ !!new) {
2229 if (new) {
2230 /* disable ce features */
2231 mce_timer_delete_all();
2232 on_each_cpu(mce_disable_cmci, NULL, 1);
2233 mca_cfg.ignore_ce = true;
2234 } else {
2235 /* enable ce features */
2236 mca_cfg.ignore_ce = false;
2237 on_each_cpu(mce_enable_ce, (void *)1, 1);
2238 }
2239 }
2240 return size;
2241 }
2242
2243 static ssize_t set_cmci_disabled(struct device *s,
2244 struct device_attribute *attr,
2245 const char *buf, size_t size)
2246 {
2247 u64 new;
2248
2249 if (kstrtou64(buf, 0, &new) < 0)
2250 return -EINVAL;
2251
2252 if (mca_cfg.cmci_disabled ^ !!new) {
2253 if (new) {
2254 /* disable cmci */
2255 on_each_cpu(mce_disable_cmci, NULL, 1);
2256 mca_cfg.cmci_disabled = true;
2257 } else {
2258 /* enable cmci */
2259 mca_cfg.cmci_disabled = false;
2260 on_each_cpu(mce_enable_ce, NULL, 1);
2261 }
2262 }
2263 return size;
2264 }
2265
2266 static ssize_t store_int_with_restart(struct device *s,
2267 struct device_attribute *attr,
2268 const char *buf, size_t size)
2269 {
2270 ssize_t ret = device_store_int(s, attr, buf, size);
2271 mce_restart();
2272 return ret;
2273 }
2274
2275 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2276 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2277 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2278 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2279
2280 static struct dev_ext_attribute dev_attr_check_interval = {
2281 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2282 &check_interval
2283 };
2284
2285 static struct dev_ext_attribute dev_attr_ignore_ce = {
2286 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2287 &mca_cfg.ignore_ce
2288 };
2289
2290 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2291 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2292 &mca_cfg.cmci_disabled
2293 };
2294
2295 static struct device_attribute *mce_device_attrs[] = {
2296 &dev_attr_tolerant.attr,
2297 &dev_attr_check_interval.attr,
2298 &dev_attr_trigger,
2299 &dev_attr_monarch_timeout.attr,
2300 &dev_attr_dont_log_ce.attr,
2301 &dev_attr_ignore_ce.attr,
2302 &dev_attr_cmci_disabled.attr,
2303 NULL
2304 };
2305
2306 static cpumask_var_t mce_device_initialized;
2307
2308 static void mce_device_release(struct device *dev)
2309 {
2310 kfree(dev);
2311 }
2312
2313 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2314 static int mce_device_create(unsigned int cpu)
2315 {
2316 struct device *dev;
2317 int err;
2318 int i, j;
2319
2320 if (!mce_available(&boot_cpu_data))
2321 return -EIO;
2322
2323 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2324 if (!dev)
2325 return -ENOMEM;
2326 dev->id = cpu;
2327 dev->bus = &mce_subsys;
2328 dev->release = &mce_device_release;
2329
2330 err = device_register(dev);
2331 if (err) {
2332 put_device(dev);
2333 return err;
2334 }
2335
2336 for (i = 0; mce_device_attrs[i]; i++) {
2337 err = device_create_file(dev, mce_device_attrs[i]);
2338 if (err)
2339 goto error;
2340 }
2341 for (j = 0; j < mca_cfg.banks; j++) {
2342 err = device_create_file(dev, &mce_banks[j].attr);
2343 if (err)
2344 goto error2;
2345 }
2346 cpumask_set_cpu(cpu, mce_device_initialized);
2347 per_cpu(mce_device, cpu) = dev;
2348
2349 return 0;
2350 error2:
2351 while (--j >= 0)
2352 device_remove_file(dev, &mce_banks[j].attr);
2353 error:
2354 while (--i >= 0)
2355 device_remove_file(dev, mce_device_attrs[i]);
2356
2357 device_unregister(dev);
2358
2359 return err;
2360 }
2361
2362 static void mce_device_remove(unsigned int cpu)
2363 {
2364 struct device *dev = per_cpu(mce_device, cpu);
2365 int i;
2366
2367 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2368 return;
2369
2370 for (i = 0; mce_device_attrs[i]; i++)
2371 device_remove_file(dev, mce_device_attrs[i]);
2372
2373 for (i = 0; i < mca_cfg.banks; i++)
2374 device_remove_file(dev, &mce_banks[i].attr);
2375
2376 device_unregister(dev);
2377 cpumask_clear_cpu(cpu, mce_device_initialized);
2378 per_cpu(mce_device, cpu) = NULL;
2379 }
2380
2381 /* Make sure there are no machine checks on offlined CPUs. */
2382 static void mce_disable_cpu(void *h)
2383 {
2384 unsigned long action = *(unsigned long *)h;
2385 int i;
2386
2387 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2388 return;
2389
2390 if (!(action & CPU_TASKS_FROZEN))
2391 cmci_clear();
2392 for (i = 0; i < mca_cfg.banks; i++) {
2393 struct mce_bank *b = &mce_banks[i];
2394
2395 if (b->init)
2396 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2397 }
2398 }
2399
2400 static void mce_reenable_cpu(void *h)
2401 {
2402 unsigned long action = *(unsigned long *)h;
2403 int i;
2404
2405 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2406 return;
2407
2408 if (!(action & CPU_TASKS_FROZEN))
2409 cmci_reenable();
2410 for (i = 0; i < mca_cfg.banks; i++) {
2411 struct mce_bank *b = &mce_banks[i];
2412
2413 if (b->init)
2414 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2415 }
2416 }
2417
2418 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2419 static int
2420 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2421 {
2422 unsigned int cpu = (unsigned long)hcpu;
2423 struct timer_list *t = &per_cpu(mce_timer, cpu);
2424
2425 switch (action & ~CPU_TASKS_FROZEN) {
2426 case CPU_ONLINE:
2427 mce_device_create(cpu);
2428 if (threshold_cpu_callback)
2429 threshold_cpu_callback(action, cpu);
2430 break;
2431 case CPU_DEAD:
2432 if (threshold_cpu_callback)
2433 threshold_cpu_callback(action, cpu);
2434 mce_device_remove(cpu);
2435 mce_intel_hcpu_update(cpu);
2436
2437 /* intentionally ignoring frozen here */
2438 if (!(action & CPU_TASKS_FROZEN))
2439 cmci_rediscover();
2440 break;
2441 case CPU_DOWN_PREPARE:
2442 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2443 del_timer_sync(t);
2444 break;
2445 case CPU_DOWN_FAILED:
2446 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2447 mce_start_timer(cpu, t);
2448 break;
2449 }
2450
2451 return NOTIFY_OK;
2452 }
2453
2454 static struct notifier_block mce_cpu_notifier = {
2455 .notifier_call = mce_cpu_callback,
2456 };
2457
2458 static __init void mce_init_banks(void)
2459 {
2460 int i;
2461
2462 for (i = 0; i < mca_cfg.banks; i++) {
2463 struct mce_bank *b = &mce_banks[i];
2464 struct device_attribute *a = &b->attr;
2465
2466 sysfs_attr_init(&a->attr);
2467 a->attr.name = b->attrname;
2468 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2469
2470 a->attr.mode = 0644;
2471 a->show = show_bank;
2472 a->store = set_bank;
2473 }
2474 }
2475
2476 static __init int mcheck_init_device(void)
2477 {
2478 int err;
2479 int i = 0;
2480
2481 if (!mce_available(&boot_cpu_data)) {
2482 err = -EIO;
2483 goto err_out;
2484 }
2485
2486 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2487 err = -ENOMEM;
2488 goto err_out;
2489 }
2490
2491 mce_init_banks();
2492
2493 err = subsys_system_register(&mce_subsys, NULL);
2494 if (err)
2495 goto err_out_mem;
2496
2497 cpu_notifier_register_begin();
2498 for_each_online_cpu(i) {
2499 err = mce_device_create(i);
2500 if (err) {
2501 /*
2502 * Register notifier anyway (and do not unreg it) so
2503 * that we don't leave undeleted timers, see notifier
2504 * callback above.
2505 */
2506 __register_hotcpu_notifier(&mce_cpu_notifier);
2507 cpu_notifier_register_done();
2508 goto err_device_create;
2509 }
2510 }
2511
2512 __register_hotcpu_notifier(&mce_cpu_notifier);
2513 cpu_notifier_register_done();
2514
2515 register_syscore_ops(&mce_syscore_ops);
2516
2517 /* register character device /dev/mcelog */
2518 err = misc_register(&mce_chrdev_device);
2519 if (err)
2520 goto err_register;
2521
2522 return 0;
2523
2524 err_register:
2525 unregister_syscore_ops(&mce_syscore_ops);
2526
2527 err_device_create:
2528 /*
2529 * We didn't keep track of which devices were created above, but
2530 * even if we had, the set of online cpus might have changed.
2531 * Play safe and remove for every possible cpu, since
2532 * mce_device_remove() will do the right thing.
2533 */
2534 for_each_possible_cpu(i)
2535 mce_device_remove(i);
2536
2537 err_out_mem:
2538 free_cpumask_var(mce_device_initialized);
2539
2540 err_out:
2541 pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
2542
2543 return err;
2544 }
2545 device_initcall_sync(mcheck_init_device);
2546
2547 /*
2548 * Old style boot options parsing. Only for compatibility.
2549 */
2550 static int __init mcheck_disable(char *str)
2551 {
2552 mca_cfg.disabled = true;
2553 return 1;
2554 }
2555 __setup("nomce", mcheck_disable);
2556
2557 #ifdef CONFIG_DEBUG_FS
2558 struct dentry *mce_get_debugfs_dir(void)
2559 {
2560 static struct dentry *dmce;
2561
2562 if (!dmce)
2563 dmce = debugfs_create_dir("mce", NULL);
2564
2565 return dmce;
2566 }
2567
2568 static void mce_reset(void)
2569 {
2570 cpu_missing = 0;
2571 atomic_set(&mce_fake_panicked, 0);
2572 atomic_set(&mce_executing, 0);
2573 atomic_set(&mce_callin, 0);
2574 atomic_set(&global_nwo, 0);
2575 }
2576
2577 static int fake_panic_get(void *data, u64 *val)
2578 {
2579 *val = fake_panic;
2580 return 0;
2581 }
2582
2583 static int fake_panic_set(void *data, u64 val)
2584 {
2585 mce_reset();
2586 fake_panic = val;
2587 return 0;
2588 }
2589
2590 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2591 fake_panic_set, "%llu\n");
2592
2593 static int __init mcheck_debugfs_init(void)
2594 {
2595 struct dentry *dmce, *ffake_panic;
2596
2597 dmce = mce_get_debugfs_dir();
2598 if (!dmce)
2599 return -ENOMEM;
2600 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2601 &fake_panic_fops);
2602 if (!ffake_panic)
2603 return -ENOMEM;
2604
2605 return 0;
2606 }
2607 late_initcall(mcheck_debugfs_init);
2608 #endif
This page took 0.119115 seconds and 6 git commands to generate.