x86/mce: Convert static array of pointers to per-cpu variables
[deliverable/linux.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10 #include <linux/thread_info.h>
11 #include <linux/capability.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kallsyms.h>
15 #include <linux/rcupdate.h>
16 #include <linux/kobject.h>
17 #include <linux/uaccess.h>
18 #include <linux/kdebug.h>
19 #include <linux/kernel.h>
20 #include <linux/percpu.h>
21 #include <linux/string.h>
22 #include <linux/device.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/delay.h>
25 #include <linux/ctype.h>
26 #include <linux/sched.h>
27 #include <linux/sysfs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/kmod.h>
32 #include <linux/poll.h>
33 #include <linux/nmi.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/debugfs.h>
39 #include <linux/irq_work.h>
40 #include <linux/export.h>
41
42 #include <asm/processor.h>
43 #include <asm/mce.h>
44 #include <asm/msr.h>
45
46 #include "mce-internal.h"
47
48 static DEFINE_MUTEX(mce_chrdev_read_mutex);
49
50 #define rcu_dereference_check_mce(p) \
51 rcu_dereference_index_check((p), \
52 rcu_read_lock_sched_held() || \
53 lockdep_is_held(&mce_chrdev_read_mutex))
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mce.h>
57
58 int mce_disabled __read_mostly;
59
60 #define MISC_MCELOG_MINOR 227
61
62 #define SPINUNIT 100 /* 100ns */
63
64 atomic_t mce_entry;
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 /*
69 * Tolerant levels:
70 * 0: always panic on uncorrected errors, log corrected errors
71 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
72 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
73 * 3: never panic or SIGBUS, log all errors (for testing only)
74 */
75 static int tolerant __read_mostly = 1;
76 static int banks __read_mostly;
77 static int rip_msr __read_mostly;
78 static int mce_bootlog __read_mostly = -1;
79 static int monarch_timeout __read_mostly = -1;
80 static int mce_panic_timeout __read_mostly;
81 static int mce_dont_log_ce __read_mostly;
82 int mce_cmci_disabled __read_mostly;
83 int mce_ignore_ce __read_mostly;
84 int mce_ser __read_mostly;
85
86 struct mce_bank *mce_banks __read_mostly;
87
88 /* User mode helper program triggered by machine check event */
89 static unsigned long mce_need_notify;
90 static char mce_helper[128];
91 static char *mce_helper_argv[2] = { mce_helper, NULL };
92
93 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
94
95 static DEFINE_PER_CPU(struct mce, mces_seen);
96 static int cpu_missing;
97
98 /* MCA banks polled by the period polling timer for corrected events */
99 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
100 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
101 };
102
103 static DEFINE_PER_CPU(struct work_struct, mce_work);
104
105 /*
106 * CPU/chipset specific EDAC code can register a notifier call here to print
107 * MCE errors in a human-readable form.
108 */
109 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
110
111 /* Do initial initialization of a struct mce */
112 void mce_setup(struct mce *m)
113 {
114 memset(m, 0, sizeof(struct mce));
115 m->cpu = m->extcpu = smp_processor_id();
116 rdtscll(m->tsc);
117 /* We hope get_seconds stays lockless */
118 m->time = get_seconds();
119 m->cpuvendor = boot_cpu_data.x86_vendor;
120 m->cpuid = cpuid_eax(1);
121 m->socketid = cpu_data(m->extcpu).phys_proc_id;
122 m->apicid = cpu_data(m->extcpu).initial_apicid;
123 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
124 }
125
126 DEFINE_PER_CPU(struct mce, injectm);
127 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
128
129 /*
130 * Lockless MCE logging infrastructure.
131 * This avoids deadlocks on printk locks without having to break locks. Also
132 * separate MCEs from kernel messages to avoid bogus bug reports.
133 */
134
135 static struct mce_log mcelog = {
136 .signature = MCE_LOG_SIGNATURE,
137 .len = MCE_LOG_LEN,
138 .recordlen = sizeof(struct mce),
139 };
140
141 void mce_log(struct mce *mce)
142 {
143 unsigned next, entry;
144 int ret = 0;
145
146 /* Emit the trace record: */
147 trace_mce_record(mce);
148
149 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
150 if (ret == NOTIFY_STOP)
151 return;
152
153 mce->finished = 0;
154 wmb();
155 for (;;) {
156 entry = rcu_dereference_check_mce(mcelog.next);
157 for (;;) {
158
159 /*
160 * When the buffer fills up discard new entries.
161 * Assume that the earlier errors are the more
162 * interesting ones:
163 */
164 if (entry >= MCE_LOG_LEN) {
165 set_bit(MCE_OVERFLOW,
166 (unsigned long *)&mcelog.flags);
167 return;
168 }
169 /* Old left over entry. Skip: */
170 if (mcelog.entry[entry].finished) {
171 entry++;
172 continue;
173 }
174 break;
175 }
176 smp_rmb();
177 next = entry + 1;
178 if (cmpxchg(&mcelog.next, entry, next) == entry)
179 break;
180 }
181 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
182 wmb();
183 mcelog.entry[entry].finished = 1;
184 wmb();
185
186 mce->finished = 1;
187 set_bit(0, &mce_need_notify);
188 }
189
190 static void drain_mcelog_buffer(void)
191 {
192 unsigned int next, i, prev = 0;
193
194 next = rcu_dereference_check_mce(mcelog.next);
195
196 do {
197 struct mce *m;
198
199 /* drain what was logged during boot */
200 for (i = prev; i < next; i++) {
201 unsigned long start = jiffies;
202 unsigned retries = 1;
203
204 m = &mcelog.entry[i];
205
206 while (!m->finished) {
207 if (time_after_eq(jiffies, start + 2*retries))
208 retries++;
209
210 cpu_relax();
211
212 if (!m->finished && retries >= 4) {
213 pr_err("MCE: skipping error being logged currently!\n");
214 break;
215 }
216 }
217 smp_rmb();
218 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
219 }
220
221 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
222 prev = next;
223 next = cmpxchg(&mcelog.next, prev, 0);
224 } while (next != prev);
225 }
226
227
228 void mce_register_decode_chain(struct notifier_block *nb)
229 {
230 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
231 drain_mcelog_buffer();
232 }
233 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
234
235 void mce_unregister_decode_chain(struct notifier_block *nb)
236 {
237 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
238 }
239 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
240
241 static void print_mce(struct mce *m)
242 {
243 int ret = 0;
244
245 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
246 m->extcpu, m->mcgstatus, m->bank, m->status);
247
248 if (m->ip) {
249 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
250 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
251 m->cs, m->ip);
252
253 if (m->cs == __KERNEL_CS)
254 print_symbol("{%s}", m->ip);
255 pr_cont("\n");
256 }
257
258 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
259 if (m->addr)
260 pr_cont("ADDR %llx ", m->addr);
261 if (m->misc)
262 pr_cont("MISC %llx ", m->misc);
263
264 pr_cont("\n");
265 /*
266 * Note this output is parsed by external tools and old fields
267 * should not be changed.
268 */
269 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
270 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
271 cpu_data(m->extcpu).microcode);
272
273 /*
274 * Print out human-readable details about the MCE error,
275 * (if the CPU has an implementation for that)
276 */
277 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
278 if (ret == NOTIFY_STOP)
279 return;
280
281 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
282 }
283
284 #define PANIC_TIMEOUT 5 /* 5 seconds */
285
286 static atomic_t mce_paniced;
287
288 static int fake_panic;
289 static atomic_t mce_fake_paniced;
290
291 /* Panic in progress. Enable interrupts and wait for final IPI */
292 static void wait_for_panic(void)
293 {
294 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
295
296 preempt_disable();
297 local_irq_enable();
298 while (timeout-- > 0)
299 udelay(1);
300 if (panic_timeout == 0)
301 panic_timeout = mce_panic_timeout;
302 panic("Panicing machine check CPU died");
303 }
304
305 static void mce_panic(char *msg, struct mce *final, char *exp)
306 {
307 int i, apei_err = 0;
308
309 if (!fake_panic) {
310 /*
311 * Make sure only one CPU runs in machine check panic
312 */
313 if (atomic_inc_return(&mce_paniced) > 1)
314 wait_for_panic();
315 barrier();
316
317 bust_spinlocks(1);
318 console_verbose();
319 } else {
320 /* Don't log too much for fake panic */
321 if (atomic_inc_return(&mce_fake_paniced) > 1)
322 return;
323 }
324 /* First print corrected ones that are still unlogged */
325 for (i = 0; i < MCE_LOG_LEN; i++) {
326 struct mce *m = &mcelog.entry[i];
327 if (!(m->status & MCI_STATUS_VAL))
328 continue;
329 if (!(m->status & MCI_STATUS_UC)) {
330 print_mce(m);
331 if (!apei_err)
332 apei_err = apei_write_mce(m);
333 }
334 }
335 /* Now print uncorrected but with the final one last */
336 for (i = 0; i < MCE_LOG_LEN; i++) {
337 struct mce *m = &mcelog.entry[i];
338 if (!(m->status & MCI_STATUS_VAL))
339 continue;
340 if (!(m->status & MCI_STATUS_UC))
341 continue;
342 if (!final || memcmp(m, final, sizeof(struct mce))) {
343 print_mce(m);
344 if (!apei_err)
345 apei_err = apei_write_mce(m);
346 }
347 }
348 if (final) {
349 print_mce(final);
350 if (!apei_err)
351 apei_err = apei_write_mce(final);
352 }
353 if (cpu_missing)
354 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
355 if (exp)
356 pr_emerg(HW_ERR "Machine check: %s\n", exp);
357 if (!fake_panic) {
358 if (panic_timeout == 0)
359 panic_timeout = mce_panic_timeout;
360 panic(msg);
361 } else
362 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
363 }
364
365 /* Support code for software error injection */
366
367 static int msr_to_offset(u32 msr)
368 {
369 unsigned bank = __this_cpu_read(injectm.bank);
370
371 if (msr == rip_msr)
372 return offsetof(struct mce, ip);
373 if (msr == MSR_IA32_MCx_STATUS(bank))
374 return offsetof(struct mce, status);
375 if (msr == MSR_IA32_MCx_ADDR(bank))
376 return offsetof(struct mce, addr);
377 if (msr == MSR_IA32_MCx_MISC(bank))
378 return offsetof(struct mce, misc);
379 if (msr == MSR_IA32_MCG_STATUS)
380 return offsetof(struct mce, mcgstatus);
381 return -1;
382 }
383
384 /* MSR access wrappers used for error injection */
385 static u64 mce_rdmsrl(u32 msr)
386 {
387 u64 v;
388
389 if (__this_cpu_read(injectm.finished)) {
390 int offset = msr_to_offset(msr);
391
392 if (offset < 0)
393 return 0;
394 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
395 }
396
397 if (rdmsrl_safe(msr, &v)) {
398 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
399 /*
400 * Return zero in case the access faulted. This should
401 * not happen normally but can happen if the CPU does
402 * something weird, or if the code is buggy.
403 */
404 v = 0;
405 }
406
407 return v;
408 }
409
410 static void mce_wrmsrl(u32 msr, u64 v)
411 {
412 if (__this_cpu_read(injectm.finished)) {
413 int offset = msr_to_offset(msr);
414
415 if (offset >= 0)
416 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
417 return;
418 }
419 wrmsrl(msr, v);
420 }
421
422 /*
423 * Collect all global (w.r.t. this processor) status about this machine
424 * check into our "mce" struct so that we can use it later to assess
425 * the severity of the problem as we read per-bank specific details.
426 */
427 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
428 {
429 mce_setup(m);
430
431 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
432 if (regs) {
433 /*
434 * Get the address of the instruction at the time of
435 * the machine check error.
436 */
437 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
438 m->ip = regs->ip;
439 m->cs = regs->cs;
440 }
441 /* Use accurate RIP reporting if available. */
442 if (rip_msr)
443 m->ip = mce_rdmsrl(rip_msr);
444 }
445 }
446
447 /*
448 * Simple lockless ring to communicate PFNs from the exception handler with the
449 * process context work function. This is vastly simplified because there's
450 * only a single reader and a single writer.
451 */
452 #define MCE_RING_SIZE 16 /* we use one entry less */
453
454 struct mce_ring {
455 unsigned short start;
456 unsigned short end;
457 unsigned long ring[MCE_RING_SIZE];
458 };
459 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
460
461 /* Runs with CPU affinity in workqueue */
462 static int mce_ring_empty(void)
463 {
464 struct mce_ring *r = &__get_cpu_var(mce_ring);
465
466 return r->start == r->end;
467 }
468
469 static int mce_ring_get(unsigned long *pfn)
470 {
471 struct mce_ring *r;
472 int ret = 0;
473
474 *pfn = 0;
475 get_cpu();
476 r = &__get_cpu_var(mce_ring);
477 if (r->start == r->end)
478 goto out;
479 *pfn = r->ring[r->start];
480 r->start = (r->start + 1) % MCE_RING_SIZE;
481 ret = 1;
482 out:
483 put_cpu();
484 return ret;
485 }
486
487 /* Always runs in MCE context with preempt off */
488 static int mce_ring_add(unsigned long pfn)
489 {
490 struct mce_ring *r = &__get_cpu_var(mce_ring);
491 unsigned next;
492
493 next = (r->end + 1) % MCE_RING_SIZE;
494 if (next == r->start)
495 return -1;
496 r->ring[r->end] = pfn;
497 wmb();
498 r->end = next;
499 return 0;
500 }
501
502 int mce_available(struct cpuinfo_x86 *c)
503 {
504 if (mce_disabled)
505 return 0;
506 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
507 }
508
509 static void mce_schedule_work(void)
510 {
511 if (!mce_ring_empty()) {
512 struct work_struct *work = &__get_cpu_var(mce_work);
513 if (!work_pending(work))
514 schedule_work(work);
515 }
516 }
517
518 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
519
520 static void mce_irq_work_cb(struct irq_work *entry)
521 {
522 mce_notify_irq();
523 mce_schedule_work();
524 }
525
526 static void mce_report_event(struct pt_regs *regs)
527 {
528 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
529 mce_notify_irq();
530 /*
531 * Triggering the work queue here is just an insurance
532 * policy in case the syscall exit notify handler
533 * doesn't run soon enough or ends up running on the
534 * wrong CPU (can happen when audit sleeps)
535 */
536 mce_schedule_work();
537 return;
538 }
539
540 irq_work_queue(&__get_cpu_var(mce_irq_work));
541 }
542
543 DEFINE_PER_CPU(unsigned, mce_poll_count);
544
545 /*
546 * Poll for corrected events or events that happened before reset.
547 * Those are just logged through /dev/mcelog.
548 *
549 * This is executed in standard interrupt context.
550 *
551 * Note: spec recommends to panic for fatal unsignalled
552 * errors here. However this would be quite problematic --
553 * we would need to reimplement the Monarch handling and
554 * it would mess up the exclusion between exception handler
555 * and poll hander -- * so we skip this for now.
556 * These cases should not happen anyways, or only when the CPU
557 * is already totally * confused. In this case it's likely it will
558 * not fully execute the machine check handler either.
559 */
560 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
561 {
562 struct mce m;
563 int i;
564
565 percpu_inc(mce_poll_count);
566
567 mce_gather_info(&m, NULL);
568
569 for (i = 0; i < banks; i++) {
570 if (!mce_banks[i].ctl || !test_bit(i, *b))
571 continue;
572
573 m.misc = 0;
574 m.addr = 0;
575 m.bank = i;
576 m.tsc = 0;
577
578 barrier();
579 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
580 if (!(m.status & MCI_STATUS_VAL))
581 continue;
582
583 /*
584 * Uncorrected or signalled events are handled by the exception
585 * handler when it is enabled, so don't process those here.
586 *
587 * TBD do the same check for MCI_STATUS_EN here?
588 */
589 if (!(flags & MCP_UC) &&
590 (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
591 continue;
592
593 if (m.status & MCI_STATUS_MISCV)
594 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
595 if (m.status & MCI_STATUS_ADDRV)
596 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
597
598 if (!(flags & MCP_TIMESTAMP))
599 m.tsc = 0;
600 /*
601 * Don't get the IP here because it's unlikely to
602 * have anything to do with the actual error location.
603 */
604 if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce)
605 mce_log(&m);
606
607 /*
608 * Clear state for this bank.
609 */
610 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
611 }
612
613 /*
614 * Don't clear MCG_STATUS here because it's only defined for
615 * exceptions.
616 */
617
618 sync_core();
619 }
620 EXPORT_SYMBOL_GPL(machine_check_poll);
621
622 /*
623 * Do a quick check if any of the events requires a panic.
624 * This decides if we keep the events around or clear them.
625 */
626 static int mce_no_way_out(struct mce *m, char **msg)
627 {
628 int i;
629
630 for (i = 0; i < banks; i++) {
631 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
632 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
633 return 1;
634 }
635 return 0;
636 }
637
638 /*
639 * Variable to establish order between CPUs while scanning.
640 * Each CPU spins initially until executing is equal its number.
641 */
642 static atomic_t mce_executing;
643
644 /*
645 * Defines order of CPUs on entry. First CPU becomes Monarch.
646 */
647 static atomic_t mce_callin;
648
649 /*
650 * Check if a timeout waiting for other CPUs happened.
651 */
652 static int mce_timed_out(u64 *t)
653 {
654 /*
655 * The others already did panic for some reason.
656 * Bail out like in a timeout.
657 * rmb() to tell the compiler that system_state
658 * might have been modified by someone else.
659 */
660 rmb();
661 if (atomic_read(&mce_paniced))
662 wait_for_panic();
663 if (!monarch_timeout)
664 goto out;
665 if ((s64)*t < SPINUNIT) {
666 /* CHECKME: Make panic default for 1 too? */
667 if (tolerant < 1)
668 mce_panic("Timeout synchronizing machine check over CPUs",
669 NULL, NULL);
670 cpu_missing = 1;
671 return 1;
672 }
673 *t -= SPINUNIT;
674 out:
675 touch_nmi_watchdog();
676 return 0;
677 }
678
679 /*
680 * The Monarch's reign. The Monarch is the CPU who entered
681 * the machine check handler first. It waits for the others to
682 * raise the exception too and then grades them. When any
683 * error is fatal panic. Only then let the others continue.
684 *
685 * The other CPUs entering the MCE handler will be controlled by the
686 * Monarch. They are called Subjects.
687 *
688 * This way we prevent any potential data corruption in a unrecoverable case
689 * and also makes sure always all CPU's errors are examined.
690 *
691 * Also this detects the case of a machine check event coming from outer
692 * space (not detected by any CPUs) In this case some external agent wants
693 * us to shut down, so panic too.
694 *
695 * The other CPUs might still decide to panic if the handler happens
696 * in a unrecoverable place, but in this case the system is in a semi-stable
697 * state and won't corrupt anything by itself. It's ok to let the others
698 * continue for a bit first.
699 *
700 * All the spin loops have timeouts; when a timeout happens a CPU
701 * typically elects itself to be Monarch.
702 */
703 static void mce_reign(void)
704 {
705 int cpu;
706 struct mce *m = NULL;
707 int global_worst = 0;
708 char *msg = NULL;
709 char *nmsg = NULL;
710
711 /*
712 * This CPU is the Monarch and the other CPUs have run
713 * through their handlers.
714 * Grade the severity of the errors of all the CPUs.
715 */
716 for_each_possible_cpu(cpu) {
717 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
718 &nmsg);
719 if (severity > global_worst) {
720 msg = nmsg;
721 global_worst = severity;
722 m = &per_cpu(mces_seen, cpu);
723 }
724 }
725
726 /*
727 * Cannot recover? Panic here then.
728 * This dumps all the mces in the log buffer and stops the
729 * other CPUs.
730 */
731 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
732 mce_panic("Fatal Machine check", m, msg);
733
734 /*
735 * For UC somewhere we let the CPU who detects it handle it.
736 * Also must let continue the others, otherwise the handling
737 * CPU could deadlock on a lock.
738 */
739
740 /*
741 * No machine check event found. Must be some external
742 * source or one CPU is hung. Panic.
743 */
744 if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
745 mce_panic("Machine check from unknown source", NULL, NULL);
746
747 /*
748 * Now clear all the mces_seen so that they don't reappear on
749 * the next mce.
750 */
751 for_each_possible_cpu(cpu)
752 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
753 }
754
755 static atomic_t global_nwo;
756
757 /*
758 * Start of Monarch synchronization. This waits until all CPUs have
759 * entered the exception handler and then determines if any of them
760 * saw a fatal event that requires panic. Then it executes them
761 * in the entry order.
762 * TBD double check parallel CPU hotunplug
763 */
764 static int mce_start(int *no_way_out)
765 {
766 int order;
767 int cpus = num_online_cpus();
768 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
769
770 if (!timeout)
771 return -1;
772
773 atomic_add(*no_way_out, &global_nwo);
774 /*
775 * global_nwo should be updated before mce_callin
776 */
777 smp_wmb();
778 order = atomic_inc_return(&mce_callin);
779
780 /*
781 * Wait for everyone.
782 */
783 while (atomic_read(&mce_callin) != cpus) {
784 if (mce_timed_out(&timeout)) {
785 atomic_set(&global_nwo, 0);
786 return -1;
787 }
788 ndelay(SPINUNIT);
789 }
790
791 /*
792 * mce_callin should be read before global_nwo
793 */
794 smp_rmb();
795
796 if (order == 1) {
797 /*
798 * Monarch: Starts executing now, the others wait.
799 */
800 atomic_set(&mce_executing, 1);
801 } else {
802 /*
803 * Subject: Now start the scanning loop one by one in
804 * the original callin order.
805 * This way when there are any shared banks it will be
806 * only seen by one CPU before cleared, avoiding duplicates.
807 */
808 while (atomic_read(&mce_executing) < order) {
809 if (mce_timed_out(&timeout)) {
810 atomic_set(&global_nwo, 0);
811 return -1;
812 }
813 ndelay(SPINUNIT);
814 }
815 }
816
817 /*
818 * Cache the global no_way_out state.
819 */
820 *no_way_out = atomic_read(&global_nwo);
821
822 return order;
823 }
824
825 /*
826 * Synchronize between CPUs after main scanning loop.
827 * This invokes the bulk of the Monarch processing.
828 */
829 static int mce_end(int order)
830 {
831 int ret = -1;
832 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
833
834 if (!timeout)
835 goto reset;
836 if (order < 0)
837 goto reset;
838
839 /*
840 * Allow others to run.
841 */
842 atomic_inc(&mce_executing);
843
844 if (order == 1) {
845 /* CHECKME: Can this race with a parallel hotplug? */
846 int cpus = num_online_cpus();
847
848 /*
849 * Monarch: Wait for everyone to go through their scanning
850 * loops.
851 */
852 while (atomic_read(&mce_executing) <= cpus) {
853 if (mce_timed_out(&timeout))
854 goto reset;
855 ndelay(SPINUNIT);
856 }
857
858 mce_reign();
859 barrier();
860 ret = 0;
861 } else {
862 /*
863 * Subject: Wait for Monarch to finish.
864 */
865 while (atomic_read(&mce_executing) != 0) {
866 if (mce_timed_out(&timeout))
867 goto reset;
868 ndelay(SPINUNIT);
869 }
870
871 /*
872 * Don't reset anything. That's done by the Monarch.
873 */
874 return 0;
875 }
876
877 /*
878 * Reset all global state.
879 */
880 reset:
881 atomic_set(&global_nwo, 0);
882 atomic_set(&mce_callin, 0);
883 barrier();
884
885 /*
886 * Let others run again.
887 */
888 atomic_set(&mce_executing, 0);
889 return ret;
890 }
891
892 /*
893 * Check if the address reported by the CPU is in a format we can parse.
894 * It would be possible to add code for most other cases, but all would
895 * be somewhat complicated (e.g. segment offset would require an instruction
896 * parser). So only support physical addresses up to page granuality for now.
897 */
898 static int mce_usable_address(struct mce *m)
899 {
900 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
901 return 0;
902 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
903 return 0;
904 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
905 return 0;
906 return 1;
907 }
908
909 static void mce_clear_state(unsigned long *toclear)
910 {
911 int i;
912
913 for (i = 0; i < banks; i++) {
914 if (test_bit(i, toclear))
915 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
916 }
917 }
918
919 /*
920 * The actual machine check handler. This only handles real
921 * exceptions when something got corrupted coming in through int 18.
922 *
923 * This is executed in NMI context not subject to normal locking rules. This
924 * implies that most kernel services cannot be safely used. Don't even
925 * think about putting a printk in there!
926 *
927 * On Intel systems this is entered on all CPUs in parallel through
928 * MCE broadcast. However some CPUs might be broken beyond repair,
929 * so be always careful when synchronizing with others.
930 */
931 void do_machine_check(struct pt_regs *regs, long error_code)
932 {
933 struct mce m, *final;
934 int i;
935 int worst = 0;
936 int severity;
937 /*
938 * Establish sequential order between the CPUs entering the machine
939 * check handler.
940 */
941 int order;
942 /*
943 * If no_way_out gets set, there is no safe way to recover from this
944 * MCE. If tolerant is cranked up, we'll try anyway.
945 */
946 int no_way_out = 0;
947 /*
948 * If kill_it gets set, there might be a way to recover from this
949 * error.
950 */
951 int kill_it = 0;
952 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
953 char *msg = "Unknown";
954
955 atomic_inc(&mce_entry);
956
957 percpu_inc(mce_exception_count);
958
959 if (!banks)
960 goto out;
961
962 mce_gather_info(&m, regs);
963
964 final = &__get_cpu_var(mces_seen);
965 *final = m;
966
967 no_way_out = mce_no_way_out(&m, &msg);
968
969 barrier();
970
971 /*
972 * When no restart IP must always kill or panic.
973 */
974 if (!(m.mcgstatus & MCG_STATUS_RIPV))
975 kill_it = 1;
976
977 /*
978 * Go through all the banks in exclusion of the other CPUs.
979 * This way we don't report duplicated events on shared banks
980 * because the first one to see it will clear it.
981 */
982 order = mce_start(&no_way_out);
983 for (i = 0; i < banks; i++) {
984 __clear_bit(i, toclear);
985 if (!mce_banks[i].ctl)
986 continue;
987
988 m.misc = 0;
989 m.addr = 0;
990 m.bank = i;
991
992 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
993 if ((m.status & MCI_STATUS_VAL) == 0)
994 continue;
995
996 /*
997 * Non uncorrected or non signaled errors are handled by
998 * machine_check_poll. Leave them alone, unless this panics.
999 */
1000 if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1001 !no_way_out)
1002 continue;
1003
1004 /*
1005 * Set taint even when machine check was not enabled.
1006 */
1007 add_taint(TAINT_MACHINE_CHECK);
1008
1009 severity = mce_severity(&m, tolerant, NULL);
1010
1011 /*
1012 * When machine check was for corrected handler don't touch,
1013 * unless we're panicing.
1014 */
1015 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1016 continue;
1017 __set_bit(i, toclear);
1018 if (severity == MCE_NO_SEVERITY) {
1019 /*
1020 * Machine check event was not enabled. Clear, but
1021 * ignore.
1022 */
1023 continue;
1024 }
1025
1026 /*
1027 * Kill on action required.
1028 */
1029 if (severity == MCE_AR_SEVERITY)
1030 kill_it = 1;
1031
1032 if (m.status & MCI_STATUS_MISCV)
1033 m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1034 if (m.status & MCI_STATUS_ADDRV)
1035 m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1036
1037 /*
1038 * Action optional error. Queue address for later processing.
1039 * When the ring overflows we just ignore the AO error.
1040 * RED-PEN add some logging mechanism when
1041 * usable_address or mce_add_ring fails.
1042 * RED-PEN don't ignore overflow for tolerant == 0
1043 */
1044 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1045 mce_ring_add(m.addr >> PAGE_SHIFT);
1046
1047 mce_log(&m);
1048
1049 if (severity > worst) {
1050 *final = m;
1051 worst = severity;
1052 }
1053 }
1054
1055 if (!no_way_out)
1056 mce_clear_state(toclear);
1057
1058 /*
1059 * Do most of the synchronization with other CPUs.
1060 * When there's any problem use only local no_way_out state.
1061 */
1062 if (mce_end(order) < 0)
1063 no_way_out = worst >= MCE_PANIC_SEVERITY;
1064
1065 /*
1066 * If we have decided that we just CAN'T continue, and the user
1067 * has not set tolerant to an insane level, give up and die.
1068 *
1069 * This is mainly used in the case when the system doesn't
1070 * support MCE broadcasting or it has been disabled.
1071 */
1072 if (no_way_out && tolerant < 3)
1073 mce_panic("Fatal machine check on current CPU", final, msg);
1074
1075 /*
1076 * If the error seems to be unrecoverable, something should be
1077 * done. Try to kill as little as possible. If we can kill just
1078 * one task, do that. If the user has set the tolerance very
1079 * high, don't try to do anything at all.
1080 */
1081
1082 if (kill_it && tolerant < 3)
1083 force_sig(SIGBUS, current);
1084
1085 /* notify userspace ASAP */
1086 set_thread_flag(TIF_MCE_NOTIFY);
1087
1088 if (worst > 0)
1089 mce_report_event(regs);
1090 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1091 out:
1092 atomic_dec(&mce_entry);
1093 sync_core();
1094 }
1095 EXPORT_SYMBOL_GPL(do_machine_check);
1096
1097 /* dummy to break dependency. actual code is in mm/memory-failure.c */
1098 void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1099 {
1100 printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1101 }
1102
1103 /*
1104 * Called after mce notification in process context. This code
1105 * is allowed to sleep. Call the high level VM handler to process
1106 * any corrupted pages.
1107 * Assume that the work queue code only calls this one at a time
1108 * per CPU.
1109 * Note we don't disable preemption, so this code might run on the wrong
1110 * CPU. In this case the event is picked up by the scheduled work queue.
1111 * This is merely a fast path to expedite processing in some common
1112 * cases.
1113 */
1114 void mce_notify_process(void)
1115 {
1116 unsigned long pfn;
1117 mce_notify_irq();
1118 while (mce_ring_get(&pfn))
1119 memory_failure(pfn, MCE_VECTOR);
1120 }
1121
1122 static void mce_process_work(struct work_struct *dummy)
1123 {
1124 mce_notify_process();
1125 }
1126
1127 #ifdef CONFIG_X86_MCE_INTEL
1128 /***
1129 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1130 * @cpu: The CPU on which the event occurred.
1131 * @status: Event status information
1132 *
1133 * This function should be called by the thermal interrupt after the
1134 * event has been processed and the decision was made to log the event
1135 * further.
1136 *
1137 * The status parameter will be saved to the 'status' field of 'struct mce'
1138 * and historically has been the register value of the
1139 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1140 */
1141 void mce_log_therm_throt_event(__u64 status)
1142 {
1143 struct mce m;
1144
1145 mce_setup(&m);
1146 m.bank = MCE_THERMAL_BANK;
1147 m.status = status;
1148 mce_log(&m);
1149 }
1150 #endif /* CONFIG_X86_MCE_INTEL */
1151
1152 /*
1153 * Periodic polling timer for "silent" machine check errors. If the
1154 * poller finds an MCE, poll 2x faster. When the poller finds no more
1155 * errors, poll 2x slower (up to check_interval seconds).
1156 */
1157 static int check_interval = 5 * 60; /* 5 minutes */
1158
1159 static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1160 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1161
1162 static void mce_start_timer(unsigned long data)
1163 {
1164 struct timer_list *t = &per_cpu(mce_timer, data);
1165 int *n;
1166
1167 WARN_ON(smp_processor_id() != data);
1168
1169 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1170 machine_check_poll(MCP_TIMESTAMP,
1171 &__get_cpu_var(mce_poll_banks));
1172 }
1173
1174 /*
1175 * Alert userspace if needed. If we logged an MCE, reduce the
1176 * polling interval, otherwise increase the polling interval.
1177 */
1178 n = &__get_cpu_var(mce_next_interval);
1179 if (mce_notify_irq())
1180 *n = max(*n/2, HZ/100);
1181 else
1182 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1183
1184 t->expires = jiffies + *n;
1185 add_timer_on(t, smp_processor_id());
1186 }
1187
1188 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1189 static void mce_timer_delete_all(void)
1190 {
1191 int cpu;
1192
1193 for_each_online_cpu(cpu)
1194 del_timer_sync(&per_cpu(mce_timer, cpu));
1195 }
1196
1197 static void mce_do_trigger(struct work_struct *work)
1198 {
1199 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1200 }
1201
1202 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1203
1204 /*
1205 * Notify the user(s) about new machine check events.
1206 * Can be called from interrupt context, but not from machine check/NMI
1207 * context.
1208 */
1209 int mce_notify_irq(void)
1210 {
1211 /* Not more than two messages every minute */
1212 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1213
1214 clear_thread_flag(TIF_MCE_NOTIFY);
1215
1216 if (test_and_clear_bit(0, &mce_need_notify)) {
1217 /* wake processes polling /dev/mcelog */
1218 wake_up_interruptible(&mce_chrdev_wait);
1219
1220 /*
1221 * There is no risk of missing notifications because
1222 * work_pending is always cleared before the function is
1223 * executed.
1224 */
1225 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1226 schedule_work(&mce_trigger_work);
1227
1228 if (__ratelimit(&ratelimit))
1229 pr_info(HW_ERR "Machine check events logged\n");
1230
1231 return 1;
1232 }
1233 return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(mce_notify_irq);
1236
1237 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1238 {
1239 int i;
1240
1241 mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1242 if (!mce_banks)
1243 return -ENOMEM;
1244 for (i = 0; i < banks; i++) {
1245 struct mce_bank *b = &mce_banks[i];
1246
1247 b->ctl = -1ULL;
1248 b->init = 1;
1249 }
1250 return 0;
1251 }
1252
1253 /*
1254 * Initialize Machine Checks for a CPU.
1255 */
1256 static int __cpuinit __mcheck_cpu_cap_init(void)
1257 {
1258 unsigned b;
1259 u64 cap;
1260
1261 rdmsrl(MSR_IA32_MCG_CAP, cap);
1262
1263 b = cap & MCG_BANKCNT_MASK;
1264 if (!banks)
1265 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1266
1267 if (b > MAX_NR_BANKS) {
1268 printk(KERN_WARNING
1269 "MCE: Using only %u machine check banks out of %u\n",
1270 MAX_NR_BANKS, b);
1271 b = MAX_NR_BANKS;
1272 }
1273
1274 /* Don't support asymmetric configurations today */
1275 WARN_ON(banks != 0 && b != banks);
1276 banks = b;
1277 if (!mce_banks) {
1278 int err = __mcheck_cpu_mce_banks_init();
1279
1280 if (err)
1281 return err;
1282 }
1283
1284 /* Use accurate RIP reporting if available. */
1285 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1286 rip_msr = MSR_IA32_MCG_EIP;
1287
1288 if (cap & MCG_SER_P)
1289 mce_ser = 1;
1290
1291 return 0;
1292 }
1293
1294 static void __mcheck_cpu_init_generic(void)
1295 {
1296 mce_banks_t all_banks;
1297 u64 cap;
1298 int i;
1299
1300 /*
1301 * Log the machine checks left over from the previous reset.
1302 */
1303 bitmap_fill(all_banks, MAX_NR_BANKS);
1304 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1305
1306 set_in_cr4(X86_CR4_MCE);
1307
1308 rdmsrl(MSR_IA32_MCG_CAP, cap);
1309 if (cap & MCG_CTL_P)
1310 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1311
1312 for (i = 0; i < banks; i++) {
1313 struct mce_bank *b = &mce_banks[i];
1314
1315 if (!b->init)
1316 continue;
1317 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1318 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1319 }
1320 }
1321
1322 /* Add per CPU specific workarounds here */
1323 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1324 {
1325 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1326 pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1327 return -EOPNOTSUPP;
1328 }
1329
1330 /* This should be disabled by the BIOS, but isn't always */
1331 if (c->x86_vendor == X86_VENDOR_AMD) {
1332 if (c->x86 == 15 && banks > 4) {
1333 /*
1334 * disable GART TBL walk error reporting, which
1335 * trips off incorrectly with the IOMMU & 3ware
1336 * & Cerberus:
1337 */
1338 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1339 }
1340 if (c->x86 <= 17 && mce_bootlog < 0) {
1341 /*
1342 * Lots of broken BIOS around that don't clear them
1343 * by default and leave crap in there. Don't log:
1344 */
1345 mce_bootlog = 0;
1346 }
1347 /*
1348 * Various K7s with broken bank 0 around. Always disable
1349 * by default.
1350 */
1351 if (c->x86 == 6 && banks > 0)
1352 mce_banks[0].ctl = 0;
1353 }
1354
1355 if (c->x86_vendor == X86_VENDOR_INTEL) {
1356 /*
1357 * SDM documents that on family 6 bank 0 should not be written
1358 * because it aliases to another special BIOS controlled
1359 * register.
1360 * But it's not aliased anymore on model 0x1a+
1361 * Don't ignore bank 0 completely because there could be a
1362 * valid event later, merely don't write CTL0.
1363 */
1364
1365 if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1366 mce_banks[0].init = 0;
1367
1368 /*
1369 * All newer Intel systems support MCE broadcasting. Enable
1370 * synchronization with a one second timeout.
1371 */
1372 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1373 monarch_timeout < 0)
1374 monarch_timeout = USEC_PER_SEC;
1375
1376 /*
1377 * There are also broken BIOSes on some Pentium M and
1378 * earlier systems:
1379 */
1380 if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1381 mce_bootlog = 0;
1382 }
1383 if (monarch_timeout < 0)
1384 monarch_timeout = 0;
1385 if (mce_bootlog != 0)
1386 mce_panic_timeout = 30;
1387
1388 return 0;
1389 }
1390
1391 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1392 {
1393 if (c->x86 != 5)
1394 return 0;
1395
1396 switch (c->x86_vendor) {
1397 case X86_VENDOR_INTEL:
1398 intel_p5_mcheck_init(c);
1399 return 1;
1400 break;
1401 case X86_VENDOR_CENTAUR:
1402 winchip_mcheck_init(c);
1403 return 1;
1404 break;
1405 }
1406
1407 return 0;
1408 }
1409
1410 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1411 {
1412 switch (c->x86_vendor) {
1413 case X86_VENDOR_INTEL:
1414 mce_intel_feature_init(c);
1415 break;
1416 case X86_VENDOR_AMD:
1417 mce_amd_feature_init(c);
1418 break;
1419 default:
1420 break;
1421 }
1422 }
1423
1424 static void __mcheck_cpu_init_timer(void)
1425 {
1426 struct timer_list *t = &__get_cpu_var(mce_timer);
1427 int *n = &__get_cpu_var(mce_next_interval);
1428
1429 setup_timer(t, mce_start_timer, smp_processor_id());
1430
1431 if (mce_ignore_ce)
1432 return;
1433
1434 *n = check_interval * HZ;
1435 if (!*n)
1436 return;
1437 t->expires = round_jiffies(jiffies + *n);
1438 add_timer_on(t, smp_processor_id());
1439 }
1440
1441 /* Handle unconfigured int18 (should never happen) */
1442 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1443 {
1444 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1445 smp_processor_id());
1446 }
1447
1448 /* Call the installed machine check handler for this CPU setup. */
1449 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1450 unexpected_machine_check;
1451
1452 /*
1453 * Called for each booted CPU to set up machine checks.
1454 * Must be called with preempt off:
1455 */
1456 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1457 {
1458 if (mce_disabled)
1459 return;
1460
1461 if (__mcheck_cpu_ancient_init(c))
1462 return;
1463
1464 if (!mce_available(c))
1465 return;
1466
1467 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1468 mce_disabled = 1;
1469 return;
1470 }
1471
1472 machine_check_vector = do_machine_check;
1473
1474 __mcheck_cpu_init_generic();
1475 __mcheck_cpu_init_vendor(c);
1476 __mcheck_cpu_init_timer();
1477 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1478 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1479 }
1480
1481 /*
1482 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1483 */
1484
1485 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1486 static int mce_chrdev_open_count; /* #times opened */
1487 static int mce_chrdev_open_exclu; /* already open exclusive? */
1488
1489 static int mce_chrdev_open(struct inode *inode, struct file *file)
1490 {
1491 spin_lock(&mce_chrdev_state_lock);
1492
1493 if (mce_chrdev_open_exclu ||
1494 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1495 spin_unlock(&mce_chrdev_state_lock);
1496
1497 return -EBUSY;
1498 }
1499
1500 if (file->f_flags & O_EXCL)
1501 mce_chrdev_open_exclu = 1;
1502 mce_chrdev_open_count++;
1503
1504 spin_unlock(&mce_chrdev_state_lock);
1505
1506 return nonseekable_open(inode, file);
1507 }
1508
1509 static int mce_chrdev_release(struct inode *inode, struct file *file)
1510 {
1511 spin_lock(&mce_chrdev_state_lock);
1512
1513 mce_chrdev_open_count--;
1514 mce_chrdev_open_exclu = 0;
1515
1516 spin_unlock(&mce_chrdev_state_lock);
1517
1518 return 0;
1519 }
1520
1521 static void collect_tscs(void *data)
1522 {
1523 unsigned long *cpu_tsc = (unsigned long *)data;
1524
1525 rdtscll(cpu_tsc[smp_processor_id()]);
1526 }
1527
1528 static int mce_apei_read_done;
1529
1530 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1531 static int __mce_read_apei(char __user **ubuf, size_t usize)
1532 {
1533 int rc;
1534 u64 record_id;
1535 struct mce m;
1536
1537 if (usize < sizeof(struct mce))
1538 return -EINVAL;
1539
1540 rc = apei_read_mce(&m, &record_id);
1541 /* Error or no more MCE record */
1542 if (rc <= 0) {
1543 mce_apei_read_done = 1;
1544 return rc;
1545 }
1546 rc = -EFAULT;
1547 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1548 return rc;
1549 /*
1550 * In fact, we should have cleared the record after that has
1551 * been flushed to the disk or sent to network in
1552 * /sbin/mcelog, but we have no interface to support that now,
1553 * so just clear it to avoid duplication.
1554 */
1555 rc = apei_clear_mce(record_id);
1556 if (rc) {
1557 mce_apei_read_done = 1;
1558 return rc;
1559 }
1560 *ubuf += sizeof(struct mce);
1561
1562 return 0;
1563 }
1564
1565 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1566 size_t usize, loff_t *off)
1567 {
1568 char __user *buf = ubuf;
1569 unsigned long *cpu_tsc;
1570 unsigned prev, next;
1571 int i, err;
1572
1573 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1574 if (!cpu_tsc)
1575 return -ENOMEM;
1576
1577 mutex_lock(&mce_chrdev_read_mutex);
1578
1579 if (!mce_apei_read_done) {
1580 err = __mce_read_apei(&buf, usize);
1581 if (err || buf != ubuf)
1582 goto out;
1583 }
1584
1585 next = rcu_dereference_check_mce(mcelog.next);
1586
1587 /* Only supports full reads right now */
1588 err = -EINVAL;
1589 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1590 goto out;
1591
1592 err = 0;
1593 prev = 0;
1594 do {
1595 for (i = prev; i < next; i++) {
1596 unsigned long start = jiffies;
1597 struct mce *m = &mcelog.entry[i];
1598
1599 while (!m->finished) {
1600 if (time_after_eq(jiffies, start + 2)) {
1601 memset(m, 0, sizeof(*m));
1602 goto timeout;
1603 }
1604 cpu_relax();
1605 }
1606 smp_rmb();
1607 err |= copy_to_user(buf, m, sizeof(*m));
1608 buf += sizeof(*m);
1609 timeout:
1610 ;
1611 }
1612
1613 memset(mcelog.entry + prev, 0,
1614 (next - prev) * sizeof(struct mce));
1615 prev = next;
1616 next = cmpxchg(&mcelog.next, prev, 0);
1617 } while (next != prev);
1618
1619 synchronize_sched();
1620
1621 /*
1622 * Collect entries that were still getting written before the
1623 * synchronize.
1624 */
1625 on_each_cpu(collect_tscs, cpu_tsc, 1);
1626
1627 for (i = next; i < MCE_LOG_LEN; i++) {
1628 struct mce *m = &mcelog.entry[i];
1629
1630 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1631 err |= copy_to_user(buf, m, sizeof(*m));
1632 smp_rmb();
1633 buf += sizeof(*m);
1634 memset(m, 0, sizeof(*m));
1635 }
1636 }
1637
1638 if (err)
1639 err = -EFAULT;
1640
1641 out:
1642 mutex_unlock(&mce_chrdev_read_mutex);
1643 kfree(cpu_tsc);
1644
1645 return err ? err : buf - ubuf;
1646 }
1647
1648 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1649 {
1650 poll_wait(file, &mce_chrdev_wait, wait);
1651 if (rcu_access_index(mcelog.next))
1652 return POLLIN | POLLRDNORM;
1653 if (!mce_apei_read_done && apei_check_mce())
1654 return POLLIN | POLLRDNORM;
1655 return 0;
1656 }
1657
1658 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1659 unsigned long arg)
1660 {
1661 int __user *p = (int __user *)arg;
1662
1663 if (!capable(CAP_SYS_ADMIN))
1664 return -EPERM;
1665
1666 switch (cmd) {
1667 case MCE_GET_RECORD_LEN:
1668 return put_user(sizeof(struct mce), p);
1669 case MCE_GET_LOG_LEN:
1670 return put_user(MCE_LOG_LEN, p);
1671 case MCE_GETCLEAR_FLAGS: {
1672 unsigned flags;
1673
1674 do {
1675 flags = mcelog.flags;
1676 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1677
1678 return put_user(flags, p);
1679 }
1680 default:
1681 return -ENOTTY;
1682 }
1683 }
1684
1685 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1686 size_t usize, loff_t *off);
1687
1688 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1689 const char __user *ubuf,
1690 size_t usize, loff_t *off))
1691 {
1692 mce_write = fn;
1693 }
1694 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1695
1696 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1697 size_t usize, loff_t *off)
1698 {
1699 if (mce_write)
1700 return mce_write(filp, ubuf, usize, off);
1701 else
1702 return -EINVAL;
1703 }
1704
1705 static const struct file_operations mce_chrdev_ops = {
1706 .open = mce_chrdev_open,
1707 .release = mce_chrdev_release,
1708 .read = mce_chrdev_read,
1709 .write = mce_chrdev_write,
1710 .poll = mce_chrdev_poll,
1711 .unlocked_ioctl = mce_chrdev_ioctl,
1712 .llseek = no_llseek,
1713 };
1714
1715 static struct miscdevice mce_chrdev_device = {
1716 MISC_MCELOG_MINOR,
1717 "mcelog",
1718 &mce_chrdev_ops,
1719 };
1720
1721 /*
1722 * mce=off Disables machine check
1723 * mce=no_cmci Disables CMCI
1724 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1725 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1726 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1727 * monarchtimeout is how long to wait for other CPUs on machine
1728 * check, or 0 to not wait
1729 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1730 * mce=nobootlog Don't log MCEs from before booting.
1731 */
1732 static int __init mcheck_enable(char *str)
1733 {
1734 if (*str == 0) {
1735 enable_p5_mce();
1736 return 1;
1737 }
1738 if (*str == '=')
1739 str++;
1740 if (!strcmp(str, "off"))
1741 mce_disabled = 1;
1742 else if (!strcmp(str, "no_cmci"))
1743 mce_cmci_disabled = 1;
1744 else if (!strcmp(str, "dont_log_ce"))
1745 mce_dont_log_ce = 1;
1746 else if (!strcmp(str, "ignore_ce"))
1747 mce_ignore_ce = 1;
1748 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1749 mce_bootlog = (str[0] == 'b');
1750 else if (isdigit(str[0])) {
1751 get_option(&str, &tolerant);
1752 if (*str == ',') {
1753 ++str;
1754 get_option(&str, &monarch_timeout);
1755 }
1756 } else {
1757 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1758 str);
1759 return 0;
1760 }
1761 return 1;
1762 }
1763 __setup("mce", mcheck_enable);
1764
1765 int __init mcheck_init(void)
1766 {
1767 mcheck_intel_therm_init();
1768
1769 return 0;
1770 }
1771
1772 /*
1773 * mce_syscore: PM support
1774 */
1775
1776 /*
1777 * Disable machine checks on suspend and shutdown. We can't really handle
1778 * them later.
1779 */
1780 static int mce_disable_error_reporting(void)
1781 {
1782 int i;
1783
1784 for (i = 0; i < banks; i++) {
1785 struct mce_bank *b = &mce_banks[i];
1786
1787 if (b->init)
1788 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1789 }
1790 return 0;
1791 }
1792
1793 static int mce_syscore_suspend(void)
1794 {
1795 return mce_disable_error_reporting();
1796 }
1797
1798 static void mce_syscore_shutdown(void)
1799 {
1800 mce_disable_error_reporting();
1801 }
1802
1803 /*
1804 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1805 * Only one CPU is active at this time, the others get re-added later using
1806 * CPU hotplug:
1807 */
1808 static void mce_syscore_resume(void)
1809 {
1810 __mcheck_cpu_init_generic();
1811 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1812 }
1813
1814 static struct syscore_ops mce_syscore_ops = {
1815 .suspend = mce_syscore_suspend,
1816 .shutdown = mce_syscore_shutdown,
1817 .resume = mce_syscore_resume,
1818 };
1819
1820 /*
1821 * mce_device: Sysfs support
1822 */
1823
1824 static void mce_cpu_restart(void *data)
1825 {
1826 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1827 return;
1828 __mcheck_cpu_init_generic();
1829 __mcheck_cpu_init_timer();
1830 }
1831
1832 /* Reinit MCEs after user configuration changes */
1833 static void mce_restart(void)
1834 {
1835 mce_timer_delete_all();
1836 on_each_cpu(mce_cpu_restart, NULL, 1);
1837 }
1838
1839 /* Toggle features for corrected errors */
1840 static void mce_disable_cmci(void *data)
1841 {
1842 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1843 return;
1844 cmci_clear();
1845 }
1846
1847 static void mce_enable_ce(void *all)
1848 {
1849 if (!mce_available(__this_cpu_ptr(&cpu_info)))
1850 return;
1851 cmci_reenable();
1852 cmci_recheck();
1853 if (all)
1854 __mcheck_cpu_init_timer();
1855 }
1856
1857 static struct bus_type mce_subsys = {
1858 .name = "machinecheck",
1859 .dev_name = "machinecheck",
1860 };
1861
1862 DEFINE_PER_CPU(struct device *, mce_device);
1863
1864 __cpuinitdata
1865 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1866
1867 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
1868 {
1869 return container_of(attr, struct mce_bank, attr);
1870 }
1871
1872 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
1873 char *buf)
1874 {
1875 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1876 }
1877
1878 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
1879 const char *buf, size_t size)
1880 {
1881 u64 new;
1882
1883 if (strict_strtoull(buf, 0, &new) < 0)
1884 return -EINVAL;
1885
1886 attr_to_bank(attr)->ctl = new;
1887 mce_restart();
1888
1889 return size;
1890 }
1891
1892 static ssize_t
1893 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
1894 {
1895 strcpy(buf, mce_helper);
1896 strcat(buf, "\n");
1897 return strlen(mce_helper) + 1;
1898 }
1899
1900 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
1901 const char *buf, size_t siz)
1902 {
1903 char *p;
1904
1905 strncpy(mce_helper, buf, sizeof(mce_helper));
1906 mce_helper[sizeof(mce_helper)-1] = 0;
1907 p = strchr(mce_helper, '\n');
1908
1909 if (p)
1910 *p = 0;
1911
1912 return strlen(mce_helper) + !!p;
1913 }
1914
1915 static ssize_t set_ignore_ce(struct device *s,
1916 struct device_attribute *attr,
1917 const char *buf, size_t size)
1918 {
1919 u64 new;
1920
1921 if (strict_strtoull(buf, 0, &new) < 0)
1922 return -EINVAL;
1923
1924 if (mce_ignore_ce ^ !!new) {
1925 if (new) {
1926 /* disable ce features */
1927 mce_timer_delete_all();
1928 on_each_cpu(mce_disable_cmci, NULL, 1);
1929 mce_ignore_ce = 1;
1930 } else {
1931 /* enable ce features */
1932 mce_ignore_ce = 0;
1933 on_each_cpu(mce_enable_ce, (void *)1, 1);
1934 }
1935 }
1936 return size;
1937 }
1938
1939 static ssize_t set_cmci_disabled(struct device *s,
1940 struct device_attribute *attr,
1941 const char *buf, size_t size)
1942 {
1943 u64 new;
1944
1945 if (strict_strtoull(buf, 0, &new) < 0)
1946 return -EINVAL;
1947
1948 if (mce_cmci_disabled ^ !!new) {
1949 if (new) {
1950 /* disable cmci */
1951 on_each_cpu(mce_disable_cmci, NULL, 1);
1952 mce_cmci_disabled = 1;
1953 } else {
1954 /* enable cmci */
1955 mce_cmci_disabled = 0;
1956 on_each_cpu(mce_enable_ce, NULL, 1);
1957 }
1958 }
1959 return size;
1960 }
1961
1962 static ssize_t store_int_with_restart(struct device *s,
1963 struct device_attribute *attr,
1964 const char *buf, size_t size)
1965 {
1966 ssize_t ret = device_store_int(s, attr, buf, size);
1967 mce_restart();
1968 return ret;
1969 }
1970
1971 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
1972 static DEVICE_INT_ATTR(tolerant, 0644, tolerant);
1973 static DEVICE_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1974 static DEVICE_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1975
1976 static struct dev_ext_attribute dev_attr_check_interval = {
1977 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
1978 &check_interval
1979 };
1980
1981 static struct dev_ext_attribute dev_attr_ignore_ce = {
1982 __ATTR(ignore_ce, 0644, device_show_int, set_ignore_ce),
1983 &mce_ignore_ce
1984 };
1985
1986 static struct dev_ext_attribute dev_attr_cmci_disabled = {
1987 __ATTR(cmci_disabled, 0644, device_show_int, set_cmci_disabled),
1988 &mce_cmci_disabled
1989 };
1990
1991 static struct device_attribute *mce_device_attrs[] = {
1992 &dev_attr_tolerant.attr,
1993 &dev_attr_check_interval.attr,
1994 &dev_attr_trigger,
1995 &dev_attr_monarch_timeout.attr,
1996 &dev_attr_dont_log_ce.attr,
1997 &dev_attr_ignore_ce.attr,
1998 &dev_attr_cmci_disabled.attr,
1999 NULL
2000 };
2001
2002 static cpumask_var_t mce_device_initialized;
2003
2004 static void mce_device_release(struct device *dev)
2005 {
2006 kfree(dev);
2007 }
2008
2009 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2010 static __cpuinit int mce_device_create(unsigned int cpu)
2011 {
2012 struct device *dev;
2013 int err;
2014 int i, j;
2015
2016 if (!mce_available(&boot_cpu_data))
2017 return -EIO;
2018
2019 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2020 if (!dev)
2021 return -ENOMEM;
2022 dev->id = cpu;
2023 dev->bus = &mce_subsys;
2024 dev->release = &mce_device_release;
2025
2026 err = device_register(dev);
2027 if (err)
2028 return err;
2029
2030 for (i = 0; mce_device_attrs[i]; i++) {
2031 err = device_create_file(dev, mce_device_attrs[i]);
2032 if (err)
2033 goto error;
2034 }
2035 for (j = 0; j < banks; j++) {
2036 err = device_create_file(dev, &mce_banks[j].attr);
2037 if (err)
2038 goto error2;
2039 }
2040 cpumask_set_cpu(cpu, mce_device_initialized);
2041 per_cpu(mce_device, cpu) = dev;
2042
2043 return 0;
2044 error2:
2045 while (--j >= 0)
2046 device_remove_file(dev, &mce_banks[j].attr);
2047 error:
2048 while (--i >= 0)
2049 device_remove_file(dev, mce_device_attrs[i]);
2050
2051 device_unregister(dev);
2052
2053 return err;
2054 }
2055
2056 static __cpuinit void mce_device_remove(unsigned int cpu)
2057 {
2058 struct device *dev = per_cpu(mce_device, cpu);
2059 int i;
2060
2061 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2062 return;
2063
2064 for (i = 0; mce_device_attrs[i]; i++)
2065 device_remove_file(dev, mce_device_attrs[i]);
2066
2067 for (i = 0; i < banks; i++)
2068 device_remove_file(dev, &mce_banks[i].attr);
2069
2070 device_unregister(dev);
2071 cpumask_clear_cpu(cpu, mce_device_initialized);
2072 per_cpu(mce_device, cpu) = NULL;
2073 }
2074
2075 /* Make sure there are no machine checks on offlined CPUs. */
2076 static void __cpuinit mce_disable_cpu(void *h)
2077 {
2078 unsigned long action = *(unsigned long *)h;
2079 int i;
2080
2081 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2082 return;
2083
2084 if (!(action & CPU_TASKS_FROZEN))
2085 cmci_clear();
2086 for (i = 0; i < banks; i++) {
2087 struct mce_bank *b = &mce_banks[i];
2088
2089 if (b->init)
2090 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2091 }
2092 }
2093
2094 static void __cpuinit mce_reenable_cpu(void *h)
2095 {
2096 unsigned long action = *(unsigned long *)h;
2097 int i;
2098
2099 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2100 return;
2101
2102 if (!(action & CPU_TASKS_FROZEN))
2103 cmci_reenable();
2104 for (i = 0; i < banks; i++) {
2105 struct mce_bank *b = &mce_banks[i];
2106
2107 if (b->init)
2108 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2109 }
2110 }
2111
2112 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2113 static int __cpuinit
2114 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2115 {
2116 unsigned int cpu = (unsigned long)hcpu;
2117 struct timer_list *t = &per_cpu(mce_timer, cpu);
2118
2119 switch (action) {
2120 case CPU_ONLINE:
2121 case CPU_ONLINE_FROZEN:
2122 mce_device_create(cpu);
2123 if (threshold_cpu_callback)
2124 threshold_cpu_callback(action, cpu);
2125 break;
2126 case CPU_DEAD:
2127 case CPU_DEAD_FROZEN:
2128 if (threshold_cpu_callback)
2129 threshold_cpu_callback(action, cpu);
2130 mce_device_remove(cpu);
2131 break;
2132 case CPU_DOWN_PREPARE:
2133 case CPU_DOWN_PREPARE_FROZEN:
2134 del_timer_sync(t);
2135 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2136 break;
2137 case CPU_DOWN_FAILED:
2138 case CPU_DOWN_FAILED_FROZEN:
2139 if (!mce_ignore_ce && check_interval) {
2140 t->expires = round_jiffies(jiffies +
2141 __get_cpu_var(mce_next_interval));
2142 add_timer_on(t, cpu);
2143 }
2144 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2145 break;
2146 case CPU_POST_DEAD:
2147 /* intentionally ignoring frozen here */
2148 cmci_rediscover(cpu);
2149 break;
2150 }
2151 return NOTIFY_OK;
2152 }
2153
2154 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2155 .notifier_call = mce_cpu_callback,
2156 };
2157
2158 static __init void mce_init_banks(void)
2159 {
2160 int i;
2161
2162 for (i = 0; i < banks; i++) {
2163 struct mce_bank *b = &mce_banks[i];
2164 struct device_attribute *a = &b->attr;
2165
2166 sysfs_attr_init(&a->attr);
2167 a->attr.name = b->attrname;
2168 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2169
2170 a->attr.mode = 0644;
2171 a->show = show_bank;
2172 a->store = set_bank;
2173 }
2174 }
2175
2176 static __init int mcheck_init_device(void)
2177 {
2178 int err;
2179 int i = 0;
2180
2181 if (!mce_available(&boot_cpu_data))
2182 return -EIO;
2183
2184 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2185
2186 mce_init_banks();
2187
2188 err = subsys_system_register(&mce_subsys, NULL);
2189 if (err)
2190 return err;
2191
2192 for_each_online_cpu(i) {
2193 err = mce_device_create(i);
2194 if (err)
2195 return err;
2196 }
2197
2198 register_syscore_ops(&mce_syscore_ops);
2199 register_hotcpu_notifier(&mce_cpu_notifier);
2200
2201 /* register character device /dev/mcelog */
2202 misc_register(&mce_chrdev_device);
2203
2204 return err;
2205 }
2206 device_initcall(mcheck_init_device);
2207
2208 /*
2209 * Old style boot options parsing. Only for compatibility.
2210 */
2211 static int __init mcheck_disable(char *str)
2212 {
2213 mce_disabled = 1;
2214 return 1;
2215 }
2216 __setup("nomce", mcheck_disable);
2217
2218 #ifdef CONFIG_DEBUG_FS
2219 struct dentry *mce_get_debugfs_dir(void)
2220 {
2221 static struct dentry *dmce;
2222
2223 if (!dmce)
2224 dmce = debugfs_create_dir("mce", NULL);
2225
2226 return dmce;
2227 }
2228
2229 static void mce_reset(void)
2230 {
2231 cpu_missing = 0;
2232 atomic_set(&mce_fake_paniced, 0);
2233 atomic_set(&mce_executing, 0);
2234 atomic_set(&mce_callin, 0);
2235 atomic_set(&global_nwo, 0);
2236 }
2237
2238 static int fake_panic_get(void *data, u64 *val)
2239 {
2240 *val = fake_panic;
2241 return 0;
2242 }
2243
2244 static int fake_panic_set(void *data, u64 val)
2245 {
2246 mce_reset();
2247 fake_panic = val;
2248 return 0;
2249 }
2250
2251 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2252 fake_panic_set, "%llu\n");
2253
2254 static int __init mcheck_debugfs_init(void)
2255 {
2256 struct dentry *dmce, *ffake_panic;
2257
2258 dmce = mce_get_debugfs_dir();
2259 if (!dmce)
2260 return -ENOMEM;
2261 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2262 &fake_panic_fops);
2263 if (!ffake_panic)
2264 return -ENOMEM;
2265
2266 return 0;
2267 }
2268 late_initcall(mcheck_debugfs_init);
2269 #endif
This page took 0.080212 seconds and 6 git commands to generate.