406074c46f1ed3e84488763927e43b630c49e2da
[deliverable/linux.git] / arch / x86 / kernel / cpu / mtrr / main.c
1 /* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/pci.h>
37 #include <linux/smp.h>
38 #include <linux/cpu.h>
39 #include <linux/mutex.h>
40 #include <linux/sort.h>
41
42 #include <asm/e820.h>
43 #include <asm/mtrr.h>
44 #include <asm/uaccess.h>
45 #include <asm/processor.h>
46 #include <asm/msr.h>
47 #include <asm/kvm_para.h>
48 #include "mtrr.h"
49
50 u32 num_var_ranges = 0;
51
52 unsigned int mtrr_usage_table[MAX_VAR_RANGES];
53 static DEFINE_MUTEX(mtrr_mutex);
54
55 u64 size_or_mask, size_and_mask;
56
57 static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
58
59 struct mtrr_ops * mtrr_if = NULL;
60
61 static void set_mtrr(unsigned int reg, unsigned long base,
62 unsigned long size, mtrr_type type);
63
64 void set_mtrr_ops(struct mtrr_ops * ops)
65 {
66 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
67 mtrr_ops[ops->vendor] = ops;
68 }
69
70 /* Returns non-zero if we have the write-combining memory type */
71 static int have_wrcomb(void)
72 {
73 struct pci_dev *dev;
74 u8 rev;
75
76 if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
77 /* ServerWorks LE chipsets < rev 6 have problems with write-combining
78 Don't allow it and leave room for other chipsets to be tagged */
79 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
80 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
81 pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
82 if (rev <= 5) {
83 printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
84 pci_dev_put(dev);
85 return 0;
86 }
87 }
88 /* Intel 450NX errata # 23. Non ascending cacheline evictions to
89 write combining memory may resulting in data corruption */
90 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
91 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
92 printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
93 pci_dev_put(dev);
94 return 0;
95 }
96 pci_dev_put(dev);
97 }
98 return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
99 }
100
101 /* This function returns the number of variable MTRRs */
102 static void __init set_num_var_ranges(void)
103 {
104 unsigned long config = 0, dummy;
105
106 if (use_intel()) {
107 rdmsr(MTRRcap_MSR, config, dummy);
108 } else if (is_cpu(AMD))
109 config = 2;
110 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
111 config = 8;
112 num_var_ranges = config & 0xff;
113 }
114
115 static void __init init_table(void)
116 {
117 int i, max;
118
119 max = num_var_ranges;
120 for (i = 0; i < max; i++)
121 mtrr_usage_table[i] = 1;
122 }
123
124 struct set_mtrr_data {
125 atomic_t count;
126 atomic_t gate;
127 unsigned long smp_base;
128 unsigned long smp_size;
129 unsigned int smp_reg;
130 mtrr_type smp_type;
131 };
132
133 static void ipi_handler(void *info)
134 /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
135 [RETURNS] Nothing.
136 */
137 {
138 #ifdef CONFIG_SMP
139 struct set_mtrr_data *data = info;
140 unsigned long flags;
141
142 local_irq_save(flags);
143
144 atomic_dec(&data->count);
145 while(!atomic_read(&data->gate))
146 cpu_relax();
147
148 /* The master has cleared me to execute */
149 if (data->smp_reg != ~0U)
150 mtrr_if->set(data->smp_reg, data->smp_base,
151 data->smp_size, data->smp_type);
152 else
153 mtrr_if->set_all();
154
155 atomic_dec(&data->count);
156 while(atomic_read(&data->gate))
157 cpu_relax();
158
159 atomic_dec(&data->count);
160 local_irq_restore(flags);
161 #endif
162 }
163
164 static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
165 return type1 == MTRR_TYPE_UNCACHABLE ||
166 type2 == MTRR_TYPE_UNCACHABLE ||
167 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
168 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
169 }
170
171 /**
172 * set_mtrr - update mtrrs on all processors
173 * @reg: mtrr in question
174 * @base: mtrr base
175 * @size: mtrr size
176 * @type: mtrr type
177 *
178 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
179 *
180 * 1. Send IPI to do the following:
181 * 2. Disable Interrupts
182 * 3. Wait for all procs to do so
183 * 4. Enter no-fill cache mode
184 * 5. Flush caches
185 * 6. Clear PGE bit
186 * 7. Flush all TLBs
187 * 8. Disable all range registers
188 * 9. Update the MTRRs
189 * 10. Enable all range registers
190 * 11. Flush all TLBs and caches again
191 * 12. Enter normal cache mode and reenable caching
192 * 13. Set PGE
193 * 14. Wait for buddies to catch up
194 * 15. Enable interrupts.
195 *
196 * What does that mean for us? Well, first we set data.count to the number
197 * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
198 * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
199 * Meanwhile, they are waiting for that flag to be set. Once it's set, each
200 * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
201 * differently, so we call mtrr_if->set() callback and let them take care of it.
202 * When they're done, they again decrement data->count and wait for data.gate to
203 * be reset.
204 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
205 * Everyone then enables interrupts and we all continue on.
206 *
207 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
208 * becomes nops.
209 */
210 static void set_mtrr(unsigned int reg, unsigned long base,
211 unsigned long size, mtrr_type type)
212 {
213 struct set_mtrr_data data;
214 unsigned long flags;
215
216 data.smp_reg = reg;
217 data.smp_base = base;
218 data.smp_size = size;
219 data.smp_type = type;
220 atomic_set(&data.count, num_booting_cpus() - 1);
221 /* make sure data.count is visible before unleashing other CPUs */
222 smp_wmb();
223 atomic_set(&data.gate,0);
224
225 /* Start the ball rolling on other CPUs */
226 if (smp_call_function(ipi_handler, &data, 0) != 0)
227 panic("mtrr: timed out waiting for other CPUs\n");
228
229 local_irq_save(flags);
230
231 while(atomic_read(&data.count))
232 cpu_relax();
233
234 /* ok, reset count and toggle gate */
235 atomic_set(&data.count, num_booting_cpus() - 1);
236 smp_wmb();
237 atomic_set(&data.gate,1);
238
239 /* do our MTRR business */
240
241 /* HACK!
242 * We use this same function to initialize the mtrrs on boot.
243 * The state of the boot cpu's mtrrs has been saved, and we want
244 * to replicate across all the APs.
245 * If we're doing that @reg is set to something special...
246 */
247 if (reg != ~0U)
248 mtrr_if->set(reg,base,size,type);
249
250 /* wait for the others */
251 while(atomic_read(&data.count))
252 cpu_relax();
253
254 atomic_set(&data.count, num_booting_cpus() - 1);
255 smp_wmb();
256 atomic_set(&data.gate,0);
257
258 /*
259 * Wait here for everyone to have seen the gate change
260 * So we're the last ones to touch 'data'
261 */
262 while(atomic_read(&data.count))
263 cpu_relax();
264
265 local_irq_restore(flags);
266 }
267
268 /**
269 * mtrr_add_page - Add a memory type region
270 * @base: Physical base address of region in pages (in units of 4 kB!)
271 * @size: Physical size of region in pages (4 kB)
272 * @type: Type of MTRR desired
273 * @increment: If this is true do usage counting on the region
274 *
275 * Memory type region registers control the caching on newer Intel and
276 * non Intel processors. This function allows drivers to request an
277 * MTRR is added. The details and hardware specifics of each processor's
278 * implementation are hidden from the caller, but nevertheless the
279 * caller should expect to need to provide a power of two size on an
280 * equivalent power of two boundary.
281 *
282 * If the region cannot be added either because all regions are in use
283 * or the CPU cannot support it a negative value is returned. On success
284 * the register number for this entry is returned, but should be treated
285 * as a cookie only.
286 *
287 * On a multiprocessor machine the changes are made to all processors.
288 * This is required on x86 by the Intel processors.
289 *
290 * The available types are
291 *
292 * %MTRR_TYPE_UNCACHABLE - No caching
293 *
294 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
295 *
296 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
297 *
298 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
299 *
300 * BUGS: Needs a quiet flag for the cases where drivers do not mind
301 * failures and do not wish system log messages to be sent.
302 */
303
304 int mtrr_add_page(unsigned long base, unsigned long size,
305 unsigned int type, bool increment)
306 {
307 int i, replace, error;
308 mtrr_type ltype;
309 unsigned long lbase, lsize;
310
311 if (!mtrr_if)
312 return -ENXIO;
313
314 if ((error = mtrr_if->validate_add_page(base,size,type)))
315 return error;
316
317 if (type >= MTRR_NUM_TYPES) {
318 printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
319 return -EINVAL;
320 }
321
322 /* If the type is WC, check that this processor supports it */
323 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
324 printk(KERN_WARNING
325 "mtrr: your processor doesn't support write-combining\n");
326 return -ENOSYS;
327 }
328
329 if (!size) {
330 printk(KERN_WARNING "mtrr: zero sized request\n");
331 return -EINVAL;
332 }
333
334 if (base & size_or_mask || size & size_or_mask) {
335 printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
336 return -EINVAL;
337 }
338
339 error = -EINVAL;
340 replace = -1;
341
342 /* No CPU hotplug when we change MTRR entries */
343 get_online_cpus();
344 /* Search for existing MTRR */
345 mutex_lock(&mtrr_mutex);
346 for (i = 0; i < num_var_ranges; ++i) {
347 mtrr_if->get(i, &lbase, &lsize, &ltype);
348 if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
349 continue;
350 /* At this point we know there is some kind of overlap/enclosure */
351 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
352 if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
353 /* New region encloses an existing region */
354 if (type == ltype) {
355 replace = replace == -1 ? i : -2;
356 continue;
357 }
358 else if (types_compatible(type, ltype))
359 continue;
360 }
361 printk(KERN_WARNING
362 "mtrr: 0x%lx000,0x%lx000 overlaps existing"
363 " 0x%lx000,0x%lx000\n", base, size, lbase,
364 lsize);
365 goto out;
366 }
367 /* New region is enclosed by an existing region */
368 if (ltype != type) {
369 if (types_compatible(type, ltype))
370 continue;
371 printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
372 base, size, mtrr_attrib_to_str(ltype),
373 mtrr_attrib_to_str(type));
374 goto out;
375 }
376 if (increment)
377 ++mtrr_usage_table[i];
378 error = i;
379 goto out;
380 }
381 /* Search for an empty MTRR */
382 i = mtrr_if->get_free_region(base, size, replace);
383 if (i >= 0) {
384 set_mtrr(i, base, size, type);
385 if (likely(replace < 0)) {
386 mtrr_usage_table[i] = 1;
387 } else {
388 mtrr_usage_table[i] = mtrr_usage_table[replace];
389 if (increment)
390 mtrr_usage_table[i]++;
391 if (unlikely(replace != i)) {
392 set_mtrr(replace, 0, 0, 0);
393 mtrr_usage_table[replace] = 0;
394 }
395 }
396 } else
397 printk(KERN_INFO "mtrr: no more MTRRs available\n");
398 error = i;
399 out:
400 mutex_unlock(&mtrr_mutex);
401 put_online_cpus();
402 return error;
403 }
404
405 static int mtrr_check(unsigned long base, unsigned long size)
406 {
407 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
408 printk(KERN_WARNING
409 "mtrr: size and base must be multiples of 4 kiB\n");
410 printk(KERN_DEBUG
411 "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
412 dump_stack();
413 return -1;
414 }
415 return 0;
416 }
417
418 /**
419 * mtrr_add - Add a memory type region
420 * @base: Physical base address of region
421 * @size: Physical size of region
422 * @type: Type of MTRR desired
423 * @increment: If this is true do usage counting on the region
424 *
425 * Memory type region registers control the caching on newer Intel and
426 * non Intel processors. This function allows drivers to request an
427 * MTRR is added. The details and hardware specifics of each processor's
428 * implementation are hidden from the caller, but nevertheless the
429 * caller should expect to need to provide a power of two size on an
430 * equivalent power of two boundary.
431 *
432 * If the region cannot be added either because all regions are in use
433 * or the CPU cannot support it a negative value is returned. On success
434 * the register number for this entry is returned, but should be treated
435 * as a cookie only.
436 *
437 * On a multiprocessor machine the changes are made to all processors.
438 * This is required on x86 by the Intel processors.
439 *
440 * The available types are
441 *
442 * %MTRR_TYPE_UNCACHABLE - No caching
443 *
444 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
445 *
446 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
447 *
448 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
449 *
450 * BUGS: Needs a quiet flag for the cases where drivers do not mind
451 * failures and do not wish system log messages to be sent.
452 */
453
454 int
455 mtrr_add(unsigned long base, unsigned long size, unsigned int type,
456 bool increment)
457 {
458 if (mtrr_check(base, size))
459 return -EINVAL;
460 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
461 increment);
462 }
463
464 /**
465 * mtrr_del_page - delete a memory type region
466 * @reg: Register returned by mtrr_add
467 * @base: Physical base address
468 * @size: Size of region
469 *
470 * If register is supplied then base and size are ignored. This is
471 * how drivers should call it.
472 *
473 * Releases an MTRR region. If the usage count drops to zero the
474 * register is freed and the region returns to default state.
475 * On success the register is returned, on failure a negative error
476 * code.
477 */
478
479 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
480 {
481 int i, max;
482 mtrr_type ltype;
483 unsigned long lbase, lsize;
484 int error = -EINVAL;
485
486 if (!mtrr_if)
487 return -ENXIO;
488
489 max = num_var_ranges;
490 /* No CPU hotplug when we change MTRR entries */
491 get_online_cpus();
492 mutex_lock(&mtrr_mutex);
493 if (reg < 0) {
494 /* Search for existing MTRR */
495 for (i = 0; i < max; ++i) {
496 mtrr_if->get(i, &lbase, &lsize, &ltype);
497 if (lbase == base && lsize == size) {
498 reg = i;
499 break;
500 }
501 }
502 if (reg < 0) {
503 printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
504 size);
505 goto out;
506 }
507 }
508 if (reg >= max) {
509 printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
510 goto out;
511 }
512 mtrr_if->get(reg, &lbase, &lsize, &ltype);
513 if (lsize < 1) {
514 printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
515 goto out;
516 }
517 if (mtrr_usage_table[reg] < 1) {
518 printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
519 goto out;
520 }
521 if (--mtrr_usage_table[reg] < 1)
522 set_mtrr(reg, 0, 0, 0);
523 error = reg;
524 out:
525 mutex_unlock(&mtrr_mutex);
526 put_online_cpus();
527 return error;
528 }
529 /**
530 * mtrr_del - delete a memory type region
531 * @reg: Register returned by mtrr_add
532 * @base: Physical base address
533 * @size: Size of region
534 *
535 * If register is supplied then base and size are ignored. This is
536 * how drivers should call it.
537 *
538 * Releases an MTRR region. If the usage count drops to zero the
539 * register is freed and the region returns to default state.
540 * On success the register is returned, on failure a negative error
541 * code.
542 */
543
544 int
545 mtrr_del(int reg, unsigned long base, unsigned long size)
546 {
547 if (mtrr_check(base, size))
548 return -EINVAL;
549 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
550 }
551
552 EXPORT_SYMBOL(mtrr_add);
553 EXPORT_SYMBOL(mtrr_del);
554
555 /* HACK ALERT!
556 * These should be called implicitly, but we can't yet until all the initcall
557 * stuff is done...
558 */
559 static void __init init_ifs(void)
560 {
561 #ifndef CONFIG_X86_64
562 amd_init_mtrr();
563 cyrix_init_mtrr();
564 centaur_init_mtrr();
565 #endif
566 }
567
568 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
569 * MTRR driver doesn't require this
570 */
571 struct mtrr_value {
572 mtrr_type ltype;
573 unsigned long lbase;
574 unsigned long lsize;
575 };
576
577 static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
578
579 static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
580 {
581 int i;
582
583 for (i = 0; i < num_var_ranges; i++) {
584 mtrr_if->get(i,
585 &mtrr_state[i].lbase,
586 &mtrr_state[i].lsize,
587 &mtrr_state[i].ltype);
588 }
589 return 0;
590 }
591
592 static int mtrr_restore(struct sys_device * sysdev)
593 {
594 int i;
595
596 for (i = 0; i < num_var_ranges; i++) {
597 if (mtrr_state[i].lsize)
598 set_mtrr(i,
599 mtrr_state[i].lbase,
600 mtrr_state[i].lsize,
601 mtrr_state[i].ltype);
602 }
603 return 0;
604 }
605
606
607
608 static struct sysdev_driver mtrr_sysdev_driver = {
609 .suspend = mtrr_save,
610 .resume = mtrr_restore,
611 };
612
613 /* should be related to MTRR_VAR_RANGES nums */
614 #define RANGE_NUM 256
615
616 struct res_range {
617 unsigned long start;
618 unsigned long end;
619 };
620
621 static int __init
622 add_range(struct res_range *range, int nr_range, unsigned long start,
623 unsigned long end)
624 {
625 /* out of slots */
626 if (nr_range >= RANGE_NUM)
627 return nr_range;
628
629 range[nr_range].start = start;
630 range[nr_range].end = end;
631
632 nr_range++;
633
634 return nr_range;
635 }
636
637 static int __init
638 add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
639 unsigned long end)
640 {
641 int i;
642
643 /* try to merge it with old one */
644 for (i = 0; i < nr_range; i++) {
645 unsigned long final_start, final_end;
646 unsigned long common_start, common_end;
647
648 if (!range[i].end)
649 continue;
650
651 common_start = max(range[i].start, start);
652 common_end = min(range[i].end, end);
653 if (common_start > common_end + 1)
654 continue;
655
656 final_start = min(range[i].start, start);
657 final_end = max(range[i].end, end);
658
659 range[i].start = final_start;
660 range[i].end = final_end;
661 return nr_range;
662 }
663
664 /* need to add that */
665 return add_range(range, nr_range, start, end);
666 }
667
668 static void __init
669 subtract_range(struct res_range *range, unsigned long start, unsigned long end)
670 {
671 int i, j;
672
673 for (j = 0; j < RANGE_NUM; j++) {
674 if (!range[j].end)
675 continue;
676
677 if (start <= range[j].start && end >= range[j].end) {
678 range[j].start = 0;
679 range[j].end = 0;
680 continue;
681 }
682
683 if (start <= range[j].start && end < range[j].end &&
684 range[j].start < end + 1) {
685 range[j].start = end + 1;
686 continue;
687 }
688
689
690 if (start > range[j].start && end >= range[j].end &&
691 range[j].end > start - 1) {
692 range[j].end = start - 1;
693 continue;
694 }
695
696 if (start > range[j].start && end < range[j].end) {
697 /* find the new spare */
698 for (i = 0; i < RANGE_NUM; i++) {
699 if (range[i].end == 0)
700 break;
701 }
702 if (i < RANGE_NUM) {
703 range[i].end = range[j].end;
704 range[i].start = end + 1;
705 } else {
706 printk(KERN_ERR "run of slot in ranges\n");
707 }
708 range[j].end = start - 1;
709 continue;
710 }
711 }
712 }
713
714 static int __init cmp_range(const void *x1, const void *x2)
715 {
716 const struct res_range *r1 = x1;
717 const struct res_range *r2 = x2;
718 long start1, start2;
719
720 start1 = r1->start;
721 start2 = r2->start;
722
723 return start1 - start2;
724 }
725
726 struct var_mtrr_range_state {
727 unsigned long base_pfn;
728 unsigned long size_pfn;
729 mtrr_type type;
730 };
731
732 struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
733 static int __initdata debug_print;
734
735 static int __init
736 x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
737 unsigned long extra_remove_base,
738 unsigned long extra_remove_size)
739 {
740 unsigned long i, base, size;
741 mtrr_type type;
742
743 for (i = 0; i < num_var_ranges; i++) {
744 type = range_state[i].type;
745 if (type != MTRR_TYPE_WRBACK)
746 continue;
747 base = range_state[i].base_pfn;
748 size = range_state[i].size_pfn;
749 nr_range = add_range_with_merge(range, nr_range, base,
750 base + size - 1);
751 }
752 if (debug_print) {
753 printk(KERN_DEBUG "After WB checking\n");
754 for (i = 0; i < nr_range; i++)
755 printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
756 range[i].start, range[i].end + 1);
757 }
758
759 /* take out UC ranges */
760 for (i = 0; i < num_var_ranges; i++) {
761 type = range_state[i].type;
762 if (type != MTRR_TYPE_UNCACHABLE)
763 continue;
764 size = range_state[i].size_pfn;
765 if (!size)
766 continue;
767 base = range_state[i].base_pfn;
768 subtract_range(range, base, base + size - 1);
769 }
770 if (extra_remove_size)
771 subtract_range(range, extra_remove_base,
772 extra_remove_base + extra_remove_size - 1);
773
774 /* get new range num */
775 nr_range = 0;
776 for (i = 0; i < RANGE_NUM; i++) {
777 if (!range[i].end)
778 continue;
779 nr_range++;
780 }
781 if (debug_print) {
782 printk(KERN_DEBUG "After UC checking\n");
783 for (i = 0; i < nr_range; i++)
784 printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
785 range[i].start, range[i].end + 1);
786 }
787
788 /* sort the ranges */
789 sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
790 if (debug_print) {
791 printk(KERN_DEBUG "After sorting\n");
792 for (i = 0; i < nr_range; i++)
793 printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
794 range[i].start, range[i].end + 1);
795 }
796
797 /* clear those is not used */
798 for (i = nr_range; i < RANGE_NUM; i++)
799 memset(&range[i], 0, sizeof(range[i]));
800
801 return nr_range;
802 }
803
804 static struct res_range __initdata range[RANGE_NUM];
805
806 #ifdef CONFIG_MTRR_SANITIZER
807
808 static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
809 {
810 unsigned long sum;
811 int i;
812
813 sum = 0;
814 for (i = 0; i < nr_range; i++)
815 sum += range[i].end + 1 - range[i].start;
816
817 return sum;
818 }
819
820 static int enable_mtrr_cleanup __initdata =
821 CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
822
823 static int __init disable_mtrr_cleanup_setup(char *str)
824 {
825 if (enable_mtrr_cleanup != -1)
826 enable_mtrr_cleanup = 0;
827 return 0;
828 }
829 early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
830
831 static int __init enable_mtrr_cleanup_setup(char *str)
832 {
833 if (enable_mtrr_cleanup != -1)
834 enable_mtrr_cleanup = 1;
835 return 0;
836 }
837 early_param("enble_mtrr_cleanup", enable_mtrr_cleanup_setup);
838
839 static int __init mtrr_cleanup_debug_setup(char *str)
840 {
841 debug_print = 1;
842 return 0;
843 }
844 early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);
845
846 struct var_mtrr_state {
847 unsigned long range_startk;
848 unsigned long range_sizek;
849 unsigned long chunk_sizek;
850 unsigned long gran_sizek;
851 unsigned int reg;
852 };
853
854 static void __init
855 set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
856 unsigned char type, unsigned int address_bits)
857 {
858 u32 base_lo, base_hi, mask_lo, mask_hi;
859 u64 base, mask;
860
861 if (!sizek) {
862 fill_mtrr_var_range(reg, 0, 0, 0, 0);
863 return;
864 }
865
866 mask = (1ULL << address_bits) - 1;
867 mask &= ~((((u64)sizek) << 10) - 1);
868
869 base = ((u64)basek) << 10;
870
871 base |= type;
872 mask |= 0x800;
873
874 base_lo = base & ((1ULL<<32) - 1);
875 base_hi = base >> 32;
876
877 mask_lo = mask & ((1ULL<<32) - 1);
878 mask_hi = mask >> 32;
879
880 fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
881 }
882
883 static void __init
884 save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
885 unsigned char type)
886 {
887 range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
888 range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
889 range_state[reg].type = type;
890 }
891
892 static void __init
893 set_var_mtrr_all(unsigned int address_bits)
894 {
895 unsigned long basek, sizek;
896 unsigned char type;
897 unsigned int reg;
898
899 for (reg = 0; reg < num_var_ranges; reg++) {
900 basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
901 sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
902 type = range_state[reg].type;
903
904 set_var_mtrr(reg, basek, sizek, type, address_bits);
905 }
906 }
907
908 static unsigned long to_size_factor(unsigned long sizek, char *factorp)
909 {
910 char factor;
911 unsigned long base = sizek;
912
913 if (base & ((1<<10) - 1)) {
914 /* not MB alignment */
915 factor = 'K';
916 } else if (base & ((1<<20) - 1)){
917 factor = 'M';
918 base >>= 10;
919 } else {
920 factor = 'G';
921 base >>= 20;
922 }
923
924 *factorp = factor;
925
926 return base;
927 }
928
929 static unsigned int __init
930 range_to_mtrr(unsigned int reg, unsigned long range_startk,
931 unsigned long range_sizek, unsigned char type)
932 {
933 if (!range_sizek || (reg >= num_var_ranges))
934 return reg;
935
936 while (range_sizek) {
937 unsigned long max_align, align;
938 unsigned long sizek;
939
940 /* Compute the maximum size I can make a range */
941 if (range_startk)
942 max_align = ffs(range_startk) - 1;
943 else
944 max_align = 32;
945 align = fls(range_sizek) - 1;
946 if (align > max_align)
947 align = max_align;
948
949 sizek = 1 << align;
950 if (debug_print) {
951 char start_factor = 'K', size_factor = 'K';
952 unsigned long start_base, size_base;
953
954 start_base = to_size_factor(range_startk, &start_factor),
955 size_base = to_size_factor(sizek, &size_factor),
956
957 printk(KERN_DEBUG "Setting variable MTRR %d, "
958 "base: %ld%cB, range: %ld%cB, type %s\n",
959 reg, start_base, start_factor,
960 size_base, size_factor,
961 (type == MTRR_TYPE_UNCACHABLE)?"UC":
962 ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
963 );
964 }
965 save_var_mtrr(reg++, range_startk, sizek, type);
966 range_startk += sizek;
967 range_sizek -= sizek;
968 if (reg >= num_var_ranges)
969 break;
970 }
971 return reg;
972 }
973
974 static unsigned __init
975 range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
976 unsigned long sizek)
977 {
978 unsigned long hole_basek, hole_sizek;
979 unsigned long second_basek, second_sizek;
980 unsigned long range0_basek, range0_sizek;
981 unsigned long range_basek, range_sizek;
982 unsigned long chunk_sizek;
983 unsigned long gran_sizek;
984
985 hole_basek = 0;
986 hole_sizek = 0;
987 second_basek = 0;
988 second_sizek = 0;
989 chunk_sizek = state->chunk_sizek;
990 gran_sizek = state->gran_sizek;
991
992 /* align with gran size, prevent small block used up MTRRs */
993 range_basek = ALIGN(state->range_startk, gran_sizek);
994 if ((range_basek > basek) && basek)
995 return second_sizek;
996 state->range_sizek -= (range_basek - state->range_startk);
997 range_sizek = ALIGN(state->range_sizek, gran_sizek);
998
999 while (range_sizek > state->range_sizek) {
1000 range_sizek -= gran_sizek;
1001 if (!range_sizek)
1002 return 0;
1003 }
1004 state->range_sizek = range_sizek;
1005
1006 /* try to append some small hole */
1007 range0_basek = state->range_startk;
1008 range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
1009
1010 /* no increase */
1011 if (range0_sizek == state->range_sizek) {
1012 if (debug_print)
1013 printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
1014 range0_basek<<10,
1015 (range0_basek + state->range_sizek)<<10);
1016 state->reg = range_to_mtrr(state->reg, range0_basek,
1017 state->range_sizek, MTRR_TYPE_WRBACK);
1018 return 0;
1019 }
1020
1021 /* only cut back, when it is not the last */
1022 if (sizek) {
1023 while (range0_basek + range0_sizek > (basek + sizek)) {
1024 if (range0_sizek >= chunk_sizek)
1025 range0_sizek -= chunk_sizek;
1026 else
1027 range0_sizek = 0;
1028
1029 if (!range0_sizek)
1030 break;
1031 }
1032 }
1033
1034 second_try:
1035 range_basek = range0_basek + range0_sizek;
1036
1037 /* one hole in the middle */
1038 if (range_basek > basek && range_basek <= (basek + sizek))
1039 second_sizek = range_basek - basek;
1040
1041 if (range0_sizek > state->range_sizek) {
1042
1043 /* one hole in middle or at end */
1044 hole_sizek = range0_sizek - state->range_sizek - second_sizek;
1045
1046 /* hole size should be less than half of range0 size */
1047 if (hole_sizek >= (range0_sizek >> 1) &&
1048 range0_sizek >= chunk_sizek) {
1049 range0_sizek -= chunk_sizek;
1050 second_sizek = 0;
1051 hole_sizek = 0;
1052
1053 goto second_try;
1054 }
1055 }
1056
1057 if (range0_sizek) {
1058 if (debug_print)
1059 printk(KERN_DEBUG "range0: %016lx - %016lx\n",
1060 range0_basek<<10,
1061 (range0_basek + range0_sizek)<<10);
1062 state->reg = range_to_mtrr(state->reg, range0_basek,
1063 range0_sizek, MTRR_TYPE_WRBACK);
1064 }
1065
1066 if (range0_sizek < state->range_sizek) {
1067 /* need to handle left over */
1068 range_sizek = state->range_sizek - range0_sizek;
1069
1070 if (debug_print)
1071 printk(KERN_DEBUG "range: %016lx - %016lx\n",
1072 range_basek<<10,
1073 (range_basek + range_sizek)<<10);
1074 state->reg = range_to_mtrr(state->reg, range_basek,
1075 range_sizek, MTRR_TYPE_WRBACK);
1076 }
1077
1078 if (hole_sizek) {
1079 hole_basek = range_basek - hole_sizek - second_sizek;
1080 if (debug_print)
1081 printk(KERN_DEBUG "hole: %016lx - %016lx\n",
1082 hole_basek<<10,
1083 (hole_basek + hole_sizek)<<10);
1084 state->reg = range_to_mtrr(state->reg, hole_basek,
1085 hole_sizek, MTRR_TYPE_UNCACHABLE);
1086 }
1087
1088 return second_sizek;
1089 }
1090
1091 static void __init
1092 set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
1093 unsigned long size_pfn)
1094 {
1095 unsigned long basek, sizek;
1096 unsigned long second_sizek = 0;
1097
1098 if (state->reg >= num_var_ranges)
1099 return;
1100
1101 basek = base_pfn << (PAGE_SHIFT - 10);
1102 sizek = size_pfn << (PAGE_SHIFT - 10);
1103
1104 /* See if I can merge with the last range */
1105 if ((basek <= 1024) ||
1106 (state->range_startk + state->range_sizek == basek)) {
1107 unsigned long endk = basek + sizek;
1108 state->range_sizek = endk - state->range_startk;
1109 return;
1110 }
1111 /* Write the range mtrrs */
1112 if (state->range_sizek != 0)
1113 second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
1114
1115 /* Allocate an msr */
1116 state->range_startk = basek + second_sizek;
1117 state->range_sizek = sizek - second_sizek;
1118 }
1119
1120 /* mininum size of mtrr block that can take hole */
1121 static u64 mtrr_chunk_size __initdata = (256ULL<<20);
1122
1123 static int __init parse_mtrr_chunk_size_opt(char *p)
1124 {
1125 if (!p)
1126 return -EINVAL;
1127 mtrr_chunk_size = memparse(p, &p);
1128 return 0;
1129 }
1130 early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
1131
1132 /* granity of mtrr of block */
1133 static u64 mtrr_gran_size __initdata;
1134
1135 static int __init parse_mtrr_gran_size_opt(char *p)
1136 {
1137 if (!p)
1138 return -EINVAL;
1139 mtrr_gran_size = memparse(p, &p);
1140 return 0;
1141 }
1142 early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
1143
1144 static int nr_mtrr_spare_reg __initdata =
1145 CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
1146
1147 static int __init parse_mtrr_spare_reg(char *arg)
1148 {
1149 if (arg)
1150 nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
1151 return 0;
1152 }
1153
1154 early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
1155
1156 static int __init
1157 x86_setup_var_mtrrs(struct res_range *range, int nr_range,
1158 u64 chunk_size, u64 gran_size)
1159 {
1160 struct var_mtrr_state var_state;
1161 int i;
1162 int num_reg;
1163
1164 var_state.range_startk = 0;
1165 var_state.range_sizek = 0;
1166 var_state.reg = 0;
1167 var_state.chunk_sizek = chunk_size >> 10;
1168 var_state.gran_sizek = gran_size >> 10;
1169
1170 memset(range_state, 0, sizeof(range_state));
1171
1172 /* Write the range etc */
1173 for (i = 0; i < nr_range; i++)
1174 set_var_mtrr_range(&var_state, range[i].start,
1175 range[i].end - range[i].start + 1);
1176
1177 /* Write the last range */
1178 if (var_state.range_sizek != 0)
1179 range_to_mtrr_with_hole(&var_state, 0, 0);
1180
1181 num_reg = var_state.reg;
1182 /* Clear out the extra MTRR's */
1183 while (var_state.reg < num_var_ranges) {
1184 save_var_mtrr(var_state.reg, 0, 0, 0);
1185 var_state.reg++;
1186 }
1187
1188 return num_reg;
1189 }
1190
1191 struct mtrr_cleanup_result {
1192 unsigned long gran_sizek;
1193 unsigned long chunk_sizek;
1194 unsigned long lose_cover_sizek;
1195 unsigned int num_reg;
1196 int bad;
1197 };
1198
1199 /*
1200 * gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G
1201 * chunk size: gran_size, ..., 2G
1202 * so we need (1+16)*8
1203 */
1204 #define NUM_RESULT 136
1205 #define PSHIFT (PAGE_SHIFT - 10)
1206
1207 static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
1208 static struct res_range __initdata range_new[RANGE_NUM];
1209 static unsigned long __initdata min_loss_pfn[RANGE_NUM];
1210
1211 static int __init mtrr_cleanup(unsigned address_bits)
1212 {
1213 unsigned long extra_remove_base, extra_remove_size;
1214 unsigned long base, size, def, dummy;
1215 mtrr_type type;
1216 int nr_range, nr_range_new;
1217 u64 chunk_size, gran_size;
1218 unsigned long range_sums, range_sums_new;
1219 int index_good;
1220 int num_reg_good;
1221 int i;
1222
1223 /* extra one for all 0 */
1224 int num[MTRR_NUM_TYPES + 1];
1225
1226 if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
1227 return 0;
1228 rdmsr(MTRRdefType_MSR, def, dummy);
1229 def &= 0xff;
1230 if (def != MTRR_TYPE_UNCACHABLE)
1231 return 0;
1232
1233 /* get it and store it aside */
1234 memset(range_state, 0, sizeof(range_state));
1235 for (i = 0; i < num_var_ranges; i++) {
1236 mtrr_if->get(i, &base, &size, &type);
1237 range_state[i].base_pfn = base;
1238 range_state[i].size_pfn = size;
1239 range_state[i].type = type;
1240 }
1241
1242 /* check entries number */
1243 memset(num, 0, sizeof(num));
1244 for (i = 0; i < num_var_ranges; i++) {
1245 type = range_state[i].type;
1246 size = range_state[i].size_pfn;
1247 if (type >= MTRR_NUM_TYPES)
1248 continue;
1249 if (!size)
1250 type = MTRR_NUM_TYPES;
1251 num[type]++;
1252 }
1253
1254 /* check if we got UC entries */
1255 if (!num[MTRR_TYPE_UNCACHABLE])
1256 return 0;
1257
1258 /* check if we only had WB and UC */
1259 if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
1260 num_var_ranges - num[MTRR_NUM_TYPES])
1261 return 0;
1262
1263 /* print original var MTRRs at first, for debugging: */
1264 printk(KERN_DEBUG "original variable MTRRs\n");
1265 for (i = 0; i < num_var_ranges; i++) {
1266 char start_factor = 'K', size_factor = 'K';
1267 unsigned long start_base, size_base;
1268
1269 size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10);
1270 if (!size_base)
1271 continue;
1272
1273 size_base = to_size_factor(size_base, &size_factor),
1274 start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10);
1275 start_base = to_size_factor(start_base, &start_factor),
1276
1277 printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n",
1278 i, start_base, start_factor,
1279 size_base, size_factor,
1280 (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
1281 ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other")
1282 );
1283 }
1284
1285 memset(range, 0, sizeof(range));
1286 extra_remove_size = 0;
1287 if (mtrr_tom2) {
1288 extra_remove_base = 1 << (32 - PAGE_SHIFT);
1289 extra_remove_size =
1290 (mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
1291 }
1292 nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
1293 extra_remove_size);
1294 range_sums = sum_ranges(range, nr_range);
1295 printk(KERN_INFO "total RAM coverred: %ldM\n",
1296 range_sums >> (20 - PAGE_SHIFT));
1297
1298 if (mtrr_chunk_size && mtrr_gran_size) {
1299 int num_reg;
1300 char gran_factor, chunk_factor, lose_factor;
1301 unsigned long gran_base, chunk_base, lose_base;
1302
1303 debug_print++;
1304 /* convert ranges to var ranges state */
1305 num_reg = x86_setup_var_mtrrs(range, nr_range, mtrr_chunk_size,
1306 mtrr_gran_size);
1307
1308 /* we got new setting in range_state, check it */
1309 memset(range_new, 0, sizeof(range_new));
1310 nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
1311 extra_remove_base,
1312 extra_remove_size);
1313 range_sums_new = sum_ranges(range_new, nr_range_new);
1314
1315 i = 0;
1316 result[i].chunk_sizek = mtrr_chunk_size >> 10;
1317 result[i].gran_sizek = mtrr_gran_size >> 10;
1318 result[i].num_reg = num_reg;
1319 if (range_sums < range_sums_new) {
1320 result[i].lose_cover_sizek =
1321 (range_sums_new - range_sums) << PSHIFT;
1322 result[i].bad = 1;
1323 } else
1324 result[i].lose_cover_sizek =
1325 (range_sums - range_sums_new) << PSHIFT;
1326
1327 gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
1328 chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
1329 lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
1330 printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
1331 result[i].bad?"*BAD*":" ",
1332 gran_base, gran_factor, chunk_base, chunk_factor);
1333 printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
1334 result[i].num_reg, result[i].bad?"-":"",
1335 lose_base, lose_factor);
1336 if (!result[i].bad) {
1337 set_var_mtrr_all(address_bits);
1338 return 1;
1339 }
1340 printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
1341 "will find optimal one\n");
1342 debug_print--;
1343 memset(result, 0, sizeof(result[0]));
1344 }
1345
1346 i = 0;
1347 memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
1348 memset(result, 0, sizeof(result));
1349 for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) {
1350 char gran_factor;
1351 unsigned long gran_base;
1352
1353 if (debug_print)
1354 gran_base = to_size_factor(gran_size >> 10, &gran_factor);
1355
1356 for (chunk_size = gran_size; chunk_size < (1ULL<<32);
1357 chunk_size <<= 1) {
1358 int num_reg;
1359
1360 if (debug_print) {
1361 char chunk_factor;
1362 unsigned long chunk_base;
1363
1364 chunk_base = to_size_factor(chunk_size>>10, &chunk_factor),
1365 printk(KERN_INFO "\n");
1366 printk(KERN_INFO "gran_size: %ld%c chunk_size: %ld%c \n",
1367 gran_base, gran_factor, chunk_base, chunk_factor);
1368 }
1369 if (i >= NUM_RESULT)
1370 continue;
1371
1372 /* convert ranges to var ranges state */
1373 num_reg = x86_setup_var_mtrrs(range, nr_range,
1374 chunk_size, gran_size);
1375
1376 /* we got new setting in range_state, check it */
1377 memset(range_new, 0, sizeof(range_new));
1378 nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
1379 extra_remove_base, extra_remove_size);
1380 range_sums_new = sum_ranges(range_new, nr_range_new);
1381
1382 result[i].chunk_sizek = chunk_size >> 10;
1383 result[i].gran_sizek = gran_size >> 10;
1384 result[i].num_reg = num_reg;
1385 if (range_sums < range_sums_new) {
1386 result[i].lose_cover_sizek =
1387 (range_sums_new - range_sums) << PSHIFT;
1388 result[i].bad = 1;
1389 } else
1390 result[i].lose_cover_sizek =
1391 (range_sums - range_sums_new) << PSHIFT;
1392
1393 /* double check it */
1394 if (!result[i].bad && !result[i].lose_cover_sizek) {
1395 if (nr_range_new != nr_range ||
1396 memcmp(range, range_new, sizeof(range)))
1397 result[i].bad = 1;
1398 }
1399
1400 if (!result[i].bad && (range_sums - range_sums_new <
1401 min_loss_pfn[num_reg])) {
1402 min_loss_pfn[num_reg] =
1403 range_sums - range_sums_new;
1404 }
1405 i++;
1406 }
1407 }
1408
1409 /* print out all */
1410 for (i = 0; i < NUM_RESULT; i++) {
1411 char gran_factor, chunk_factor, lose_factor;
1412 unsigned long gran_base, chunk_base, lose_base;
1413
1414 gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
1415 chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
1416 lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
1417 printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
1418 result[i].bad?"*BAD*":" ",
1419 gran_base, gran_factor, chunk_base, chunk_factor);
1420 printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
1421 result[i].num_reg, result[i].bad?"-":"",
1422 lose_base, lose_factor);
1423 }
1424
1425 /* try to find the optimal index */
1426 if (nr_mtrr_spare_reg >= num_var_ranges)
1427 nr_mtrr_spare_reg = num_var_ranges - 1;
1428 num_reg_good = -1;
1429 for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
1430 if (!min_loss_pfn[i])
1431 num_reg_good = i;
1432 }
1433
1434 index_good = -1;
1435 if (num_reg_good != -1) {
1436 for (i = 0; i < NUM_RESULT; i++) {
1437 if (!result[i].bad &&
1438 result[i].num_reg == num_reg_good &&
1439 !result[i].lose_cover_sizek) {
1440 index_good = i;
1441 break;
1442 }
1443 }
1444 }
1445
1446 if (index_good != -1) {
1447 char gran_factor, chunk_factor, lose_factor;
1448 unsigned long gran_base, chunk_base, lose_base;
1449
1450 printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
1451 i = index_good;
1452 gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
1453 chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
1454 lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
1455 printk(KERN_INFO "gran_size: %ld%c \tchunk_size: %ld%c \t",
1456 gran_base, gran_factor, chunk_base, chunk_factor);
1457 printk(KERN_CONT "num_reg: %d \tlose RAM: %ld%c\n",
1458 result[i].num_reg, lose_base, lose_factor);
1459 /* convert ranges to var ranges state */
1460 chunk_size = result[i].chunk_sizek;
1461 chunk_size <<= 10;
1462 gran_size = result[i].gran_sizek;
1463 gran_size <<= 10;
1464 debug_print++;
1465 x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
1466 debug_print--;
1467 set_var_mtrr_all(address_bits);
1468 return 1;
1469 }
1470
1471 printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
1472 printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
1473
1474 return 0;
1475 }
1476 #else
1477 static int __init mtrr_cleanup(unsigned address_bits)
1478 {
1479 return 0;
1480 }
1481 #endif
1482
1483 static int __initdata changed_by_mtrr_cleanup;
1484
1485 static int disable_mtrr_trim;
1486
1487 static int __init disable_mtrr_trim_setup(char *str)
1488 {
1489 disable_mtrr_trim = 1;
1490 return 0;
1491 }
1492 early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
1493
1494 /*
1495 * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
1496 * for memory >4GB. Check for that here.
1497 * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
1498 * apply to are wrong, but so far we don't know of any such case in the wild.
1499 */
1500 #define Tom2Enabled (1U << 21)
1501 #define Tom2ForceMemTypeWB (1U << 22)
1502
1503 int __init amd_special_default_mtrr(void)
1504 {
1505 u32 l, h;
1506
1507 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1508 return 0;
1509 if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
1510 return 0;
1511 /* In case some hypervisor doesn't pass SYSCFG through */
1512 if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
1513 return 0;
1514 /*
1515 * Memory between 4GB and top of mem is forced WB by this magic bit.
1516 * Reserved before K8RevF, but should be zero there.
1517 */
1518 if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
1519 (Tom2Enabled | Tom2ForceMemTypeWB))
1520 return 1;
1521 return 0;
1522 }
1523
1524 static u64 __init real_trim_memory(unsigned long start_pfn,
1525 unsigned long limit_pfn)
1526 {
1527 u64 trim_start, trim_size;
1528 trim_start = start_pfn;
1529 trim_start <<= PAGE_SHIFT;
1530 trim_size = limit_pfn;
1531 trim_size <<= PAGE_SHIFT;
1532 trim_size -= trim_start;
1533
1534 return e820_update_range(trim_start, trim_size, E820_RAM,
1535 E820_RESERVED);
1536 }
1537 /**
1538 * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
1539 * @end_pfn: ending page frame number
1540 *
1541 * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
1542 * memory configurations. This routine checks that the highest MTRR matches
1543 * the end of memory, to make sure the MTRRs having a write back type cover
1544 * all of the memory the kernel is intending to use. If not, it'll trim any
1545 * memory off the end by adjusting end_pfn, removing it from the kernel's
1546 * allocation pools, warning the user with an obnoxious message.
1547 */
1548 int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
1549 {
1550 unsigned long i, base, size, highest_pfn = 0, def, dummy;
1551 mtrr_type type;
1552 int nr_range;
1553 u64 total_trim_size;
1554
1555 /* extra one for all 0 */
1556 int num[MTRR_NUM_TYPES + 1];
1557 /*
1558 * Make sure we only trim uncachable memory on machines that
1559 * support the Intel MTRR architecture:
1560 */
1561 if (!is_cpu(INTEL) || disable_mtrr_trim)
1562 return 0;
1563 rdmsr(MTRRdefType_MSR, def, dummy);
1564 def &= 0xff;
1565 if (def != MTRR_TYPE_UNCACHABLE)
1566 return 0;
1567
1568 /* get it and store it aside */
1569 memset(range_state, 0, sizeof(range_state));
1570 for (i = 0; i < num_var_ranges; i++) {
1571 mtrr_if->get(i, &base, &size, &type);
1572 range_state[i].base_pfn = base;
1573 range_state[i].size_pfn = size;
1574 range_state[i].type = type;
1575 }
1576
1577 /* Find highest cached pfn */
1578 for (i = 0; i < num_var_ranges; i++) {
1579 type = range_state[i].type;
1580 if (type != MTRR_TYPE_WRBACK)
1581 continue;
1582 base = range_state[i].base_pfn;
1583 size = range_state[i].size_pfn;
1584 if (highest_pfn < base + size)
1585 highest_pfn = base + size;
1586 }
1587
1588 /* kvm/qemu doesn't have mtrr set right, don't trim them all */
1589 if (!highest_pfn) {
1590 WARN(!kvm_para_available(), KERN_WARNING
1591 "WARNING: strange, CPU MTRRs all blank?\n");
1592 return 0;
1593 }
1594
1595 /* check entries number */
1596 memset(num, 0, sizeof(num));
1597 for (i = 0; i < num_var_ranges; i++) {
1598 type = range_state[i].type;
1599 if (type >= MTRR_NUM_TYPES)
1600 continue;
1601 size = range_state[i].size_pfn;
1602 if (!size)
1603 type = MTRR_NUM_TYPES;
1604 num[type]++;
1605 }
1606
1607 /* no entry for WB? */
1608 if (!num[MTRR_TYPE_WRBACK])
1609 return 0;
1610
1611 /* check if we only had WB and UC */
1612 if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
1613 num_var_ranges - num[MTRR_NUM_TYPES])
1614 return 0;
1615
1616 memset(range, 0, sizeof(range));
1617 nr_range = 0;
1618 if (mtrr_tom2) {
1619 range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
1620 range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
1621 if (highest_pfn < range[nr_range].end + 1)
1622 highest_pfn = range[nr_range].end + 1;
1623 nr_range++;
1624 }
1625 nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
1626
1627 total_trim_size = 0;
1628 /* check the head */
1629 if (range[0].start)
1630 total_trim_size += real_trim_memory(0, range[0].start);
1631 /* check the holes */
1632 for (i = 0; i < nr_range - 1; i++) {
1633 if (range[i].end + 1 < range[i+1].start)
1634 total_trim_size += real_trim_memory(range[i].end + 1,
1635 range[i+1].start);
1636 }
1637 /* check the top */
1638 i = nr_range - 1;
1639 if (range[i].end + 1 < end_pfn)
1640 total_trim_size += real_trim_memory(range[i].end + 1,
1641 end_pfn);
1642
1643 if (total_trim_size) {
1644 printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
1645 " all of memory, losing %lluMB of RAM.\n",
1646 total_trim_size >> 20);
1647
1648 if (!changed_by_mtrr_cleanup)
1649 WARN_ON(1);
1650
1651 printk(KERN_INFO "update e820 for mtrr\n");
1652 update_e820();
1653
1654 return 1;
1655 }
1656
1657 return 0;
1658 }
1659
1660 /**
1661 * mtrr_bp_init - initialize mtrrs on the boot CPU
1662 *
1663 * This needs to be called early; before any of the other CPUs are
1664 * initialized (i.e. before smp_init()).
1665 *
1666 */
1667 void __init mtrr_bp_init(void)
1668 {
1669 u32 phys_addr;
1670 init_ifs();
1671
1672 phys_addr = 32;
1673
1674 if (cpu_has_mtrr) {
1675 mtrr_if = &generic_mtrr_ops;
1676 size_or_mask = 0xff000000; /* 36 bits */
1677 size_and_mask = 0x00f00000;
1678 phys_addr = 36;
1679
1680 /* This is an AMD specific MSR, but we assume(hope?) that
1681 Intel will implement it to when they extend the address
1682 bus of the Xeon. */
1683 if (cpuid_eax(0x80000000) >= 0x80000008) {
1684 phys_addr = cpuid_eax(0x80000008) & 0xff;
1685 /* CPUID workaround for Intel 0F33/0F34 CPU */
1686 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
1687 boot_cpu_data.x86 == 0xF &&
1688 boot_cpu_data.x86_model == 0x3 &&
1689 (boot_cpu_data.x86_mask == 0x3 ||
1690 boot_cpu_data.x86_mask == 0x4))
1691 phys_addr = 36;
1692
1693 size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
1694 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
1695 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
1696 boot_cpu_data.x86 == 6) {
1697 /* VIA C* family have Intel style MTRRs, but
1698 don't support PAE */
1699 size_or_mask = 0xfff00000; /* 32 bits */
1700 size_and_mask = 0;
1701 phys_addr = 32;
1702 }
1703 } else {
1704 switch (boot_cpu_data.x86_vendor) {
1705 case X86_VENDOR_AMD:
1706 if (cpu_has_k6_mtrr) {
1707 /* Pre-Athlon (K6) AMD CPU MTRRs */
1708 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
1709 size_or_mask = 0xfff00000; /* 32 bits */
1710 size_and_mask = 0;
1711 }
1712 break;
1713 case X86_VENDOR_CENTAUR:
1714 if (cpu_has_centaur_mcr) {
1715 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
1716 size_or_mask = 0xfff00000; /* 32 bits */
1717 size_and_mask = 0;
1718 }
1719 break;
1720 case X86_VENDOR_CYRIX:
1721 if (cpu_has_cyrix_arr) {
1722 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
1723 size_or_mask = 0xfff00000; /* 32 bits */
1724 size_and_mask = 0;
1725 }
1726 break;
1727 default:
1728 break;
1729 }
1730 }
1731
1732 if (mtrr_if) {
1733 set_num_var_ranges();
1734 init_table();
1735 if (use_intel()) {
1736 get_mtrr_state();
1737
1738 if (mtrr_cleanup(phys_addr)) {
1739 changed_by_mtrr_cleanup = 1;
1740 mtrr_if->set_all();
1741 }
1742
1743 }
1744 }
1745 }
1746
1747 void mtrr_ap_init(void)
1748 {
1749 unsigned long flags;
1750
1751 if (!mtrr_if || !use_intel())
1752 return;
1753 /*
1754 * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
1755 * but this routine will be called in cpu boot time, holding the lock
1756 * breaks it. This routine is called in two cases: 1.very earily time
1757 * of software resume, when there absolutely isn't mtrr entry changes;
1758 * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
1759 * prevent mtrr entry changes
1760 */
1761 local_irq_save(flags);
1762
1763 mtrr_if->set_all();
1764
1765 local_irq_restore(flags);
1766 }
1767
1768 /**
1769 * Save current fixed-range MTRR state of the BSP
1770 */
1771 void mtrr_save_state(void)
1772 {
1773 smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
1774 }
1775
1776 static int __init mtrr_init_finialize(void)
1777 {
1778 if (!mtrr_if)
1779 return 0;
1780 if (use_intel()) {
1781 if (!changed_by_mtrr_cleanup)
1782 mtrr_state_warn();
1783 } else {
1784 /* The CPUs haven't MTRR and seem to not support SMP. They have
1785 * specific drivers, we use a tricky method to support
1786 * suspend/resume for them.
1787 * TBD: is there any system with such CPU which supports
1788 * suspend/resume? if no, we should remove the code.
1789 */
1790 sysdev_driver_register(&cpu_sysdev_class,
1791 &mtrr_sysdev_driver);
1792 }
1793 return 0;
1794 }
1795 subsys_initcall(mtrr_init_finialize);
This page took 0.09469 seconds and 4 git commands to generate.