x86: mtrr_cleanup safe to get more spare regs now
[deliverable/linux.git] / arch / x86 / kernel / cpu / mtrr / main.c
1 /* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/pci.h>
37 #include <linux/smp.h>
38 #include <linux/cpu.h>
39 #include <linux/mutex.h>
40 #include <linux/sort.h>
41
42 #include <asm/e820.h>
43 #include <asm/mtrr.h>
44 #include <asm/uaccess.h>
45 #include <asm/processor.h>
46 #include <asm/msr.h>
47 #include <asm/kvm_para.h>
48 #include "mtrr.h"
49
50 u32 num_var_ranges = 0;
51
52 unsigned int mtrr_usage_table[MAX_VAR_RANGES];
53 static DEFINE_MUTEX(mtrr_mutex);
54
55 u64 size_or_mask, size_and_mask;
56
57 static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
58
59 struct mtrr_ops * mtrr_if = NULL;
60
61 static void set_mtrr(unsigned int reg, unsigned long base,
62 unsigned long size, mtrr_type type);
63
64 void set_mtrr_ops(struct mtrr_ops * ops)
65 {
66 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
67 mtrr_ops[ops->vendor] = ops;
68 }
69
70 /* Returns non-zero if we have the write-combining memory type */
71 static int have_wrcomb(void)
72 {
73 struct pci_dev *dev;
74 u8 rev;
75
76 if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
77 /* ServerWorks LE chipsets < rev 6 have problems with write-combining
78 Don't allow it and leave room for other chipsets to be tagged */
79 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
80 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
81 pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
82 if (rev <= 5) {
83 printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
84 pci_dev_put(dev);
85 return 0;
86 }
87 }
88 /* Intel 450NX errata # 23. Non ascending cacheline evictions to
89 write combining memory may resulting in data corruption */
90 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
91 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
92 printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
93 pci_dev_put(dev);
94 return 0;
95 }
96 pci_dev_put(dev);
97 }
98 return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
99 }
100
101 /* This function returns the number of variable MTRRs */
102 static void __init set_num_var_ranges(void)
103 {
104 unsigned long config = 0, dummy;
105
106 if (use_intel()) {
107 rdmsr(MTRRcap_MSR, config, dummy);
108 } else if (is_cpu(AMD))
109 config = 2;
110 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
111 config = 8;
112 num_var_ranges = config & 0xff;
113 }
114
115 static void __init init_table(void)
116 {
117 int i, max;
118
119 max = num_var_ranges;
120 for (i = 0; i < max; i++)
121 mtrr_usage_table[i] = 1;
122 }
123
124 struct set_mtrr_data {
125 atomic_t count;
126 atomic_t gate;
127 unsigned long smp_base;
128 unsigned long smp_size;
129 unsigned int smp_reg;
130 mtrr_type smp_type;
131 };
132
133 static void ipi_handler(void *info)
134 /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
135 [RETURNS] Nothing.
136 */
137 {
138 #ifdef CONFIG_SMP
139 struct set_mtrr_data *data = info;
140 unsigned long flags;
141
142 local_irq_save(flags);
143
144 atomic_dec(&data->count);
145 while(!atomic_read(&data->gate))
146 cpu_relax();
147
148 /* The master has cleared me to execute */
149 if (data->smp_reg != ~0U)
150 mtrr_if->set(data->smp_reg, data->smp_base,
151 data->smp_size, data->smp_type);
152 else
153 mtrr_if->set_all();
154
155 atomic_dec(&data->count);
156 while(atomic_read(&data->gate))
157 cpu_relax();
158
159 atomic_dec(&data->count);
160 local_irq_restore(flags);
161 #endif
162 }
163
164 static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
165 return type1 == MTRR_TYPE_UNCACHABLE ||
166 type2 == MTRR_TYPE_UNCACHABLE ||
167 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
168 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
169 }
170
171 /**
172 * set_mtrr - update mtrrs on all processors
173 * @reg: mtrr in question
174 * @base: mtrr base
175 * @size: mtrr size
176 * @type: mtrr type
177 *
178 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
179 *
180 * 1. Send IPI to do the following:
181 * 2. Disable Interrupts
182 * 3. Wait for all procs to do so
183 * 4. Enter no-fill cache mode
184 * 5. Flush caches
185 * 6. Clear PGE bit
186 * 7. Flush all TLBs
187 * 8. Disable all range registers
188 * 9. Update the MTRRs
189 * 10. Enable all range registers
190 * 11. Flush all TLBs and caches again
191 * 12. Enter normal cache mode and reenable caching
192 * 13. Set PGE
193 * 14. Wait for buddies to catch up
194 * 15. Enable interrupts.
195 *
196 * What does that mean for us? Well, first we set data.count to the number
197 * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
198 * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
199 * Meanwhile, they are waiting for that flag to be set. Once it's set, each
200 * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
201 * differently, so we call mtrr_if->set() callback and let them take care of it.
202 * When they're done, they again decrement data->count and wait for data.gate to
203 * be reset.
204 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
205 * Everyone then enables interrupts and we all continue on.
206 *
207 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
208 * becomes nops.
209 */
210 static void set_mtrr(unsigned int reg, unsigned long base,
211 unsigned long size, mtrr_type type)
212 {
213 struct set_mtrr_data data;
214 unsigned long flags;
215
216 data.smp_reg = reg;
217 data.smp_base = base;
218 data.smp_size = size;
219 data.smp_type = type;
220 atomic_set(&data.count, num_booting_cpus() - 1);
221 /* make sure data.count is visible before unleashing other CPUs */
222 smp_wmb();
223 atomic_set(&data.gate,0);
224
225 /* Start the ball rolling on other CPUs */
226 if (smp_call_function(ipi_handler, &data, 0) != 0)
227 panic("mtrr: timed out waiting for other CPUs\n");
228
229 local_irq_save(flags);
230
231 while(atomic_read(&data.count))
232 cpu_relax();
233
234 /* ok, reset count and toggle gate */
235 atomic_set(&data.count, num_booting_cpus() - 1);
236 smp_wmb();
237 atomic_set(&data.gate,1);
238
239 /* do our MTRR business */
240
241 /* HACK!
242 * We use this same function to initialize the mtrrs on boot.
243 * The state of the boot cpu's mtrrs has been saved, and we want
244 * to replicate across all the APs.
245 * If we're doing that @reg is set to something special...
246 */
247 if (reg != ~0U)
248 mtrr_if->set(reg,base,size,type);
249
250 /* wait for the others */
251 while(atomic_read(&data.count))
252 cpu_relax();
253
254 atomic_set(&data.count, num_booting_cpus() - 1);
255 smp_wmb();
256 atomic_set(&data.gate,0);
257
258 /*
259 * Wait here for everyone to have seen the gate change
260 * So we're the last ones to touch 'data'
261 */
262 while(atomic_read(&data.count))
263 cpu_relax();
264
265 local_irq_restore(flags);
266 }
267
268 /**
269 * mtrr_add_page - Add a memory type region
270 * @base: Physical base address of region in pages (in units of 4 kB!)
271 * @size: Physical size of region in pages (4 kB)
272 * @type: Type of MTRR desired
273 * @increment: If this is true do usage counting on the region
274 *
275 * Memory type region registers control the caching on newer Intel and
276 * non Intel processors. This function allows drivers to request an
277 * MTRR is added. The details and hardware specifics of each processor's
278 * implementation are hidden from the caller, but nevertheless the
279 * caller should expect to need to provide a power of two size on an
280 * equivalent power of two boundary.
281 *
282 * If the region cannot be added either because all regions are in use
283 * or the CPU cannot support it a negative value is returned. On success
284 * the register number for this entry is returned, but should be treated
285 * as a cookie only.
286 *
287 * On a multiprocessor machine the changes are made to all processors.
288 * This is required on x86 by the Intel processors.
289 *
290 * The available types are
291 *
292 * %MTRR_TYPE_UNCACHABLE - No caching
293 *
294 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
295 *
296 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
297 *
298 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
299 *
300 * BUGS: Needs a quiet flag for the cases where drivers do not mind
301 * failures and do not wish system log messages to be sent.
302 */
303
304 int mtrr_add_page(unsigned long base, unsigned long size,
305 unsigned int type, bool increment)
306 {
307 int i, replace, error;
308 mtrr_type ltype;
309 unsigned long lbase, lsize;
310
311 if (!mtrr_if)
312 return -ENXIO;
313
314 if ((error = mtrr_if->validate_add_page(base,size,type)))
315 return error;
316
317 if (type >= MTRR_NUM_TYPES) {
318 printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
319 return -EINVAL;
320 }
321
322 /* If the type is WC, check that this processor supports it */
323 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
324 printk(KERN_WARNING
325 "mtrr: your processor doesn't support write-combining\n");
326 return -ENOSYS;
327 }
328
329 if (!size) {
330 printk(KERN_WARNING "mtrr: zero sized request\n");
331 return -EINVAL;
332 }
333
334 if (base & size_or_mask || size & size_or_mask) {
335 printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
336 return -EINVAL;
337 }
338
339 error = -EINVAL;
340 replace = -1;
341
342 /* No CPU hotplug when we change MTRR entries */
343 get_online_cpus();
344 /* Search for existing MTRR */
345 mutex_lock(&mtrr_mutex);
346 for (i = 0; i < num_var_ranges; ++i) {
347 mtrr_if->get(i, &lbase, &lsize, &ltype);
348 if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
349 continue;
350 /* At this point we know there is some kind of overlap/enclosure */
351 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
352 if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
353 /* New region encloses an existing region */
354 if (type == ltype) {
355 replace = replace == -1 ? i : -2;
356 continue;
357 }
358 else if (types_compatible(type, ltype))
359 continue;
360 }
361 printk(KERN_WARNING
362 "mtrr: 0x%lx000,0x%lx000 overlaps existing"
363 " 0x%lx000,0x%lx000\n", base, size, lbase,
364 lsize);
365 goto out;
366 }
367 /* New region is enclosed by an existing region */
368 if (ltype != type) {
369 if (types_compatible(type, ltype))
370 continue;
371 printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
372 base, size, mtrr_attrib_to_str(ltype),
373 mtrr_attrib_to_str(type));
374 goto out;
375 }
376 if (increment)
377 ++mtrr_usage_table[i];
378 error = i;
379 goto out;
380 }
381 /* Search for an empty MTRR */
382 i = mtrr_if->get_free_region(base, size, replace);
383 if (i >= 0) {
384 set_mtrr(i, base, size, type);
385 if (likely(replace < 0)) {
386 mtrr_usage_table[i] = 1;
387 } else {
388 mtrr_usage_table[i] = mtrr_usage_table[replace];
389 if (increment)
390 mtrr_usage_table[i]++;
391 if (unlikely(replace != i)) {
392 set_mtrr(replace, 0, 0, 0);
393 mtrr_usage_table[replace] = 0;
394 }
395 }
396 } else
397 printk(KERN_INFO "mtrr: no more MTRRs available\n");
398 error = i;
399 out:
400 mutex_unlock(&mtrr_mutex);
401 put_online_cpus();
402 return error;
403 }
404
405 static int mtrr_check(unsigned long base, unsigned long size)
406 {
407 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
408 printk(KERN_WARNING
409 "mtrr: size and base must be multiples of 4 kiB\n");
410 printk(KERN_DEBUG
411 "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
412 dump_stack();
413 return -1;
414 }
415 return 0;
416 }
417
418 /**
419 * mtrr_add - Add a memory type region
420 * @base: Physical base address of region
421 * @size: Physical size of region
422 * @type: Type of MTRR desired
423 * @increment: If this is true do usage counting on the region
424 *
425 * Memory type region registers control the caching on newer Intel and
426 * non Intel processors. This function allows drivers to request an
427 * MTRR is added. The details and hardware specifics of each processor's
428 * implementation are hidden from the caller, but nevertheless the
429 * caller should expect to need to provide a power of two size on an
430 * equivalent power of two boundary.
431 *
432 * If the region cannot be added either because all regions are in use
433 * or the CPU cannot support it a negative value is returned. On success
434 * the register number for this entry is returned, but should be treated
435 * as a cookie only.
436 *
437 * On a multiprocessor machine the changes are made to all processors.
438 * This is required on x86 by the Intel processors.
439 *
440 * The available types are
441 *
442 * %MTRR_TYPE_UNCACHABLE - No caching
443 *
444 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
445 *
446 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
447 *
448 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
449 *
450 * BUGS: Needs a quiet flag for the cases where drivers do not mind
451 * failures and do not wish system log messages to be sent.
452 */
453
454 int
455 mtrr_add(unsigned long base, unsigned long size, unsigned int type,
456 bool increment)
457 {
458 if (mtrr_check(base, size))
459 return -EINVAL;
460 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
461 increment);
462 }
463
464 /**
465 * mtrr_del_page - delete a memory type region
466 * @reg: Register returned by mtrr_add
467 * @base: Physical base address
468 * @size: Size of region
469 *
470 * If register is supplied then base and size are ignored. This is
471 * how drivers should call it.
472 *
473 * Releases an MTRR region. If the usage count drops to zero the
474 * register is freed and the region returns to default state.
475 * On success the register is returned, on failure a negative error
476 * code.
477 */
478
479 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
480 {
481 int i, max;
482 mtrr_type ltype;
483 unsigned long lbase, lsize;
484 int error = -EINVAL;
485
486 if (!mtrr_if)
487 return -ENXIO;
488
489 max = num_var_ranges;
490 /* No CPU hotplug when we change MTRR entries */
491 get_online_cpus();
492 mutex_lock(&mtrr_mutex);
493 if (reg < 0) {
494 /* Search for existing MTRR */
495 for (i = 0; i < max; ++i) {
496 mtrr_if->get(i, &lbase, &lsize, &ltype);
497 if (lbase == base && lsize == size) {
498 reg = i;
499 break;
500 }
501 }
502 if (reg < 0) {
503 printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
504 size);
505 goto out;
506 }
507 }
508 if (reg >= max) {
509 printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
510 goto out;
511 }
512 mtrr_if->get(reg, &lbase, &lsize, &ltype);
513 if (lsize < 1) {
514 printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
515 goto out;
516 }
517 if (mtrr_usage_table[reg] < 1) {
518 printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
519 goto out;
520 }
521 if (--mtrr_usage_table[reg] < 1)
522 set_mtrr(reg, 0, 0, 0);
523 error = reg;
524 out:
525 mutex_unlock(&mtrr_mutex);
526 put_online_cpus();
527 return error;
528 }
529 /**
530 * mtrr_del - delete a memory type region
531 * @reg: Register returned by mtrr_add
532 * @base: Physical base address
533 * @size: Size of region
534 *
535 * If register is supplied then base and size are ignored. This is
536 * how drivers should call it.
537 *
538 * Releases an MTRR region. If the usage count drops to zero the
539 * register is freed and the region returns to default state.
540 * On success the register is returned, on failure a negative error
541 * code.
542 */
543
544 int
545 mtrr_del(int reg, unsigned long base, unsigned long size)
546 {
547 if (mtrr_check(base, size))
548 return -EINVAL;
549 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
550 }
551
552 EXPORT_SYMBOL(mtrr_add);
553 EXPORT_SYMBOL(mtrr_del);
554
555 /* HACK ALERT!
556 * These should be called implicitly, but we can't yet until all the initcall
557 * stuff is done...
558 */
559 static void __init init_ifs(void)
560 {
561 #ifndef CONFIG_X86_64
562 amd_init_mtrr();
563 cyrix_init_mtrr();
564 centaur_init_mtrr();
565 #endif
566 }
567
568 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
569 * MTRR driver doesn't require this
570 */
571 struct mtrr_value {
572 mtrr_type ltype;
573 unsigned long lbase;
574 unsigned long lsize;
575 };
576
577 static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
578
579 static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
580 {
581 int i;
582
583 for (i = 0; i < num_var_ranges; i++) {
584 mtrr_if->get(i,
585 &mtrr_state[i].lbase,
586 &mtrr_state[i].lsize,
587 &mtrr_state[i].ltype);
588 }
589 return 0;
590 }
591
592 static int mtrr_restore(struct sys_device * sysdev)
593 {
594 int i;
595
596 for (i = 0; i < num_var_ranges; i++) {
597 if (mtrr_state[i].lsize)
598 set_mtrr(i,
599 mtrr_state[i].lbase,
600 mtrr_state[i].lsize,
601 mtrr_state[i].ltype);
602 }
603 return 0;
604 }
605
606
607
608 static struct sysdev_driver mtrr_sysdev_driver = {
609 .suspend = mtrr_save,
610 .resume = mtrr_restore,
611 };
612
613 /* should be related to MTRR_VAR_RANGES nums */
614 #define RANGE_NUM 256
615
616 struct res_range {
617 unsigned long start;
618 unsigned long end;
619 };
620
621 static int __init
622 add_range(struct res_range *range, int nr_range, unsigned long start,
623 unsigned long end)
624 {
625 /* out of slots */
626 if (nr_range >= RANGE_NUM)
627 return nr_range;
628
629 range[nr_range].start = start;
630 range[nr_range].end = end;
631
632 nr_range++;
633
634 return nr_range;
635 }
636
637 static int __init
638 add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
639 unsigned long end)
640 {
641 int i;
642
643 /* try to merge it with old one */
644 for (i = 0; i < nr_range; i++) {
645 unsigned long final_start, final_end;
646 unsigned long common_start, common_end;
647
648 if (!range[i].end)
649 continue;
650
651 common_start = max(range[i].start, start);
652 common_end = min(range[i].end, end);
653 if (common_start > common_end + 1)
654 continue;
655
656 final_start = min(range[i].start, start);
657 final_end = max(range[i].end, end);
658
659 range[i].start = final_start;
660 range[i].end = final_end;
661 return nr_range;
662 }
663
664 /* need to add that */
665 return add_range(range, nr_range, start, end);
666 }
667
668 static void __init
669 subtract_range(struct res_range *range, unsigned long start, unsigned long end)
670 {
671 int i, j;
672
673 for (j = 0; j < RANGE_NUM; j++) {
674 if (!range[j].end)
675 continue;
676
677 if (start <= range[j].start && end >= range[j].end) {
678 range[j].start = 0;
679 range[j].end = 0;
680 continue;
681 }
682
683 if (start <= range[j].start && end < range[j].end &&
684 range[j].start < end + 1) {
685 range[j].start = end + 1;
686 continue;
687 }
688
689
690 if (start > range[j].start && end >= range[j].end &&
691 range[j].end > start - 1) {
692 range[j].end = start - 1;
693 continue;
694 }
695
696 if (start > range[j].start && end < range[j].end) {
697 /* find the new spare */
698 for (i = 0; i < RANGE_NUM; i++) {
699 if (range[i].end == 0)
700 break;
701 }
702 if (i < RANGE_NUM) {
703 range[i].end = range[j].end;
704 range[i].start = end + 1;
705 } else {
706 printk(KERN_ERR "run of slot in ranges\n");
707 }
708 range[j].end = start - 1;
709 continue;
710 }
711 }
712 }
713
714 static int __init cmp_range(const void *x1, const void *x2)
715 {
716 const struct res_range *r1 = x1;
717 const struct res_range *r2 = x2;
718 long start1, start2;
719
720 start1 = r1->start;
721 start2 = r2->start;
722
723 return start1 - start2;
724 }
725
726 struct var_mtrr_range_state {
727 unsigned long base_pfn;
728 unsigned long size_pfn;
729 mtrr_type type;
730 };
731
732 struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
733 static int __initdata debug_print;
734
735 static int __init
736 x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
737 unsigned long extra_remove_base,
738 unsigned long extra_remove_size)
739 {
740 unsigned long i, base, size;
741 mtrr_type type;
742
743 for (i = 0; i < num_var_ranges; i++) {
744 type = range_state[i].type;
745 if (type != MTRR_TYPE_WRBACK)
746 continue;
747 base = range_state[i].base_pfn;
748 size = range_state[i].size_pfn;
749 nr_range = add_range_with_merge(range, nr_range, base,
750 base + size - 1);
751 }
752 if (debug_print) {
753 printk(KERN_DEBUG "After WB checking\n");
754 for (i = 0; i < nr_range; i++)
755 printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
756 range[i].start, range[i].end + 1);
757 }
758
759 /* take out UC ranges */
760 for (i = 0; i < num_var_ranges; i++) {
761 type = range_state[i].type;
762 if (type != MTRR_TYPE_UNCACHABLE)
763 continue;
764 size = range_state[i].size_pfn;
765 if (!size)
766 continue;
767 base = range_state[i].base_pfn;
768 subtract_range(range, base, base + size - 1);
769 }
770 if (extra_remove_size)
771 subtract_range(range, extra_remove_base,
772 extra_remove_base + extra_remove_size - 1);
773
774 /* get new range num */
775 nr_range = 0;
776 for (i = 0; i < RANGE_NUM; i++) {
777 if (!range[i].end)
778 continue;
779 nr_range++;
780 }
781 if (debug_print) {
782 printk(KERN_DEBUG "After UC checking\n");
783 for (i = 0; i < nr_range; i++)
784 printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
785 range[i].start, range[i].end + 1);
786 }
787
788 /* sort the ranges */
789 sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
790 if (debug_print) {
791 printk(KERN_DEBUG "After sorting\n");
792 for (i = 0; i < nr_range; i++)
793 printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
794 range[i].start, range[i].end + 1);
795 }
796
797 /* clear those is not used */
798 for (i = nr_range; i < RANGE_NUM; i++)
799 memset(&range[i], 0, sizeof(range[i]));
800
801 return nr_range;
802 }
803
804 static struct res_range __initdata range[RANGE_NUM];
805
806 #ifdef CONFIG_MTRR_SANITIZER
807
808 static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
809 {
810 unsigned long sum;
811 int i;
812
813 sum = 0;
814 for (i = 0; i < nr_range; i++)
815 sum += range[i].end + 1 - range[i].start;
816
817 return sum;
818 }
819
820 static int enable_mtrr_cleanup __initdata =
821 CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
822
823 static int __init disable_mtrr_cleanup_setup(char *str)
824 {
825 if (enable_mtrr_cleanup != -1)
826 enable_mtrr_cleanup = 0;
827 return 0;
828 }
829 early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
830
831 static int __init enable_mtrr_cleanup_setup(char *str)
832 {
833 if (enable_mtrr_cleanup != -1)
834 enable_mtrr_cleanup = 1;
835 return 0;
836 }
837 early_param("enble_mtrr_cleanup", enable_mtrr_cleanup_setup);
838
839 static int __init mtrr_cleanup_debug_setup(char *str)
840 {
841 debug_print = 1;
842 return 0;
843 }
844 early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);
845
846 struct var_mtrr_state {
847 unsigned long range_startk;
848 unsigned long range_sizek;
849 unsigned long chunk_sizek;
850 unsigned long gran_sizek;
851 unsigned int reg;
852 };
853
854 static void __init
855 set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
856 unsigned char type, unsigned int address_bits)
857 {
858 u32 base_lo, base_hi, mask_lo, mask_hi;
859 u64 base, mask;
860
861 if (!sizek) {
862 fill_mtrr_var_range(reg, 0, 0, 0, 0);
863 return;
864 }
865
866 mask = (1ULL << address_bits) - 1;
867 mask &= ~((((u64)sizek) << 10) - 1);
868
869 base = ((u64)basek) << 10;
870
871 base |= type;
872 mask |= 0x800;
873
874 base_lo = base & ((1ULL<<32) - 1);
875 base_hi = base >> 32;
876
877 mask_lo = mask & ((1ULL<<32) - 1);
878 mask_hi = mask >> 32;
879
880 fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
881 }
882
883 static void __init
884 save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
885 unsigned char type)
886 {
887 range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
888 range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
889 range_state[reg].type = type;
890 }
891
892 static void __init
893 set_var_mtrr_all(unsigned int address_bits)
894 {
895 unsigned long basek, sizek;
896 unsigned char type;
897 unsigned int reg;
898
899 for (reg = 0; reg < num_var_ranges; reg++) {
900 basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
901 sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
902 type = range_state[reg].type;
903
904 set_var_mtrr(reg, basek, sizek, type, address_bits);
905 }
906 }
907
908 static unsigned int __init
909 range_to_mtrr(unsigned int reg, unsigned long range_startk,
910 unsigned long range_sizek, unsigned char type)
911 {
912 if (!range_sizek || (reg >= num_var_ranges))
913 return reg;
914
915 while (range_sizek) {
916 unsigned long max_align, align;
917 unsigned long sizek;
918
919 /* Compute the maximum size I can make a range */
920 if (range_startk)
921 max_align = ffs(range_startk) - 1;
922 else
923 max_align = 32;
924 align = fls(range_sizek) - 1;
925 if (align > max_align)
926 align = max_align;
927
928 sizek = 1 << align;
929 if (debug_print)
930 printk(KERN_DEBUG "Setting variable MTRR %d, "
931 "base: %ldMB, range: %ldMB, type %s\n",
932 reg, range_startk >> 10, sizek >> 10,
933 (type == MTRR_TYPE_UNCACHABLE)?"UC":
934 ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
935 );
936 save_var_mtrr(reg++, range_startk, sizek, type);
937 range_startk += sizek;
938 range_sizek -= sizek;
939 if (reg >= num_var_ranges)
940 break;
941 }
942 return reg;
943 }
944
945 static unsigned __init
946 range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
947 unsigned long sizek)
948 {
949 unsigned long hole_basek, hole_sizek;
950 unsigned long second_basek, second_sizek;
951 unsigned long range0_basek, range0_sizek;
952 unsigned long range_basek, range_sizek;
953 unsigned long chunk_sizek;
954 unsigned long gran_sizek;
955
956 hole_basek = 0;
957 hole_sizek = 0;
958 second_basek = 0;
959 second_sizek = 0;
960 chunk_sizek = state->chunk_sizek;
961 gran_sizek = state->gran_sizek;
962
963 /* align with gran size, prevent small block used up MTRRs */
964 range_basek = ALIGN(state->range_startk, gran_sizek);
965 if ((range_basek > basek) && basek)
966 return second_sizek;
967 state->range_sizek -= (range_basek - state->range_startk);
968 range_sizek = ALIGN(state->range_sizek, gran_sizek);
969
970 while (range_sizek > state->range_sizek) {
971 range_sizek -= gran_sizek;
972 if (!range_sizek)
973 return 0;
974 }
975 state->range_sizek = range_sizek;
976
977 /* try to append some small hole */
978 range0_basek = state->range_startk;
979 range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
980
981 /* no increase */
982 if (range0_sizek == state->range_sizek) {
983 if (debug_print)
984 printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
985 range0_basek<<10,
986 (range0_basek + state->range_sizek)<<10);
987 state->reg = range_to_mtrr(state->reg, range0_basek,
988 state->range_sizek, MTRR_TYPE_WRBACK);
989 return 0;
990 }
991
992 /* only cut back, when it is not the last */
993 if (sizek) {
994 while (range0_basek + range0_sizek > (basek + sizek)) {
995 if (range0_sizek >= chunk_sizek)
996 range0_sizek -= chunk_sizek;
997 else
998 range0_sizek = 0;
999
1000 if (!range0_sizek)
1001 break;
1002 }
1003 }
1004
1005 second_try:
1006 range_basek = range0_basek + range0_sizek;
1007
1008 /* one hole in the middle */
1009 if (range_basek > basek && range_basek <= (basek + sizek))
1010 second_sizek = range_basek - basek;
1011
1012 if (range0_sizek > state->range_sizek) {
1013
1014 /* one hole in middle or at end */
1015 hole_sizek = range0_sizek - state->range_sizek - second_sizek;
1016
1017 /* hole size should be less than half of range0 size */
1018 if (hole_sizek > (range0_sizek >> 1) &&
1019 range0_sizek >= chunk_sizek) {
1020 range0_sizek -= chunk_sizek;
1021 second_sizek = 0;
1022 hole_sizek = 0;
1023
1024 goto second_try;
1025 }
1026 }
1027
1028 if (range0_sizek) {
1029 if (debug_print)
1030 printk(KERN_DEBUG "range0: %016lx - %016lx\n",
1031 range0_basek<<10,
1032 (range0_basek + range0_sizek)<<10);
1033 state->reg = range_to_mtrr(state->reg, range0_basek,
1034 range0_sizek, MTRR_TYPE_WRBACK);
1035 }
1036
1037 if (range0_sizek < state->range_sizek) {
1038 /* need to handle left over */
1039 range_sizek = state->range_sizek - range0_sizek;
1040
1041 if (debug_print)
1042 printk(KERN_DEBUG "range: %016lx - %016lx\n",
1043 range_basek<<10,
1044 (range_basek + range_sizek)<<10);
1045 state->reg = range_to_mtrr(state->reg, range_basek,
1046 range_sizek, MTRR_TYPE_WRBACK);
1047 }
1048
1049 if (hole_sizek) {
1050 hole_basek = range_basek - hole_sizek - second_sizek;
1051 if (debug_print)
1052 printk(KERN_DEBUG "hole: %016lx - %016lx\n",
1053 hole_basek<<10,
1054 (hole_basek + hole_sizek)<<10);
1055 state->reg = range_to_mtrr(state->reg, hole_basek,
1056 hole_sizek, MTRR_TYPE_UNCACHABLE);
1057 }
1058
1059 return second_sizek;
1060 }
1061
1062 static void __init
1063 set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
1064 unsigned long size_pfn)
1065 {
1066 unsigned long basek, sizek;
1067 unsigned long second_sizek = 0;
1068
1069 if (state->reg >= num_var_ranges)
1070 return;
1071
1072 basek = base_pfn << (PAGE_SHIFT - 10);
1073 sizek = size_pfn << (PAGE_SHIFT - 10);
1074
1075 /* See if I can merge with the last range */
1076 if ((basek <= 1024) ||
1077 (state->range_startk + state->range_sizek == basek)) {
1078 unsigned long endk = basek + sizek;
1079 state->range_sizek = endk - state->range_startk;
1080 return;
1081 }
1082 /* Write the range mtrrs */
1083 if (state->range_sizek != 0)
1084 second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
1085
1086 /* Allocate an msr */
1087 state->range_startk = basek + second_sizek;
1088 state->range_sizek = sizek - second_sizek;
1089 }
1090
1091 /* mininum size of mtrr block that can take hole */
1092 static u64 mtrr_chunk_size __initdata = (256ULL<<20);
1093
1094 static int __init parse_mtrr_chunk_size_opt(char *p)
1095 {
1096 if (!p)
1097 return -EINVAL;
1098 mtrr_chunk_size = memparse(p, &p);
1099 return 0;
1100 }
1101 early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
1102
1103 /* granity of mtrr of block */
1104 static u64 mtrr_gran_size __initdata;
1105
1106 static int __init parse_mtrr_gran_size_opt(char *p)
1107 {
1108 if (!p)
1109 return -EINVAL;
1110 mtrr_gran_size = memparse(p, &p);
1111 return 0;
1112 }
1113 early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
1114
1115 static int nr_mtrr_spare_reg __initdata =
1116 CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
1117
1118 static int __init parse_mtrr_spare_reg(char *arg)
1119 {
1120 if (arg)
1121 nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
1122 return 0;
1123 }
1124
1125 early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
1126
1127 static int __init
1128 x86_setup_var_mtrrs(struct res_range *range, int nr_range,
1129 u64 chunk_size, u64 gran_size)
1130 {
1131 struct var_mtrr_state var_state;
1132 int i;
1133 int num_reg;
1134
1135 var_state.range_startk = 0;
1136 var_state.range_sizek = 0;
1137 var_state.reg = 0;
1138 var_state.chunk_sizek = chunk_size >> 10;
1139 var_state.gran_sizek = gran_size >> 10;
1140
1141 memset(range_state, 0, sizeof(range_state));
1142
1143 /* Write the range etc */
1144 for (i = 0; i < nr_range; i++)
1145 set_var_mtrr_range(&var_state, range[i].start,
1146 range[i].end - range[i].start + 1);
1147
1148 /* Write the last range */
1149 if (var_state.range_sizek != 0)
1150 range_to_mtrr_with_hole(&var_state, 0, 0);
1151
1152 num_reg = var_state.reg;
1153 /* Clear out the extra MTRR's */
1154 while (var_state.reg < num_var_ranges) {
1155 save_var_mtrr(var_state.reg, 0, 0, 0);
1156 var_state.reg++;
1157 }
1158
1159 return num_reg;
1160 }
1161
1162 struct mtrr_cleanup_result {
1163 unsigned long gran_sizek;
1164 unsigned long chunk_sizek;
1165 unsigned long lose_cover_sizek;
1166 unsigned int num_reg;
1167 int bad;
1168 };
1169
1170 /*
1171 * gran_size: 1M, 2M, ..., 2G
1172 * chunk size: gran_size, ..., 2G
1173 * so we need (1+12)*6
1174 */
1175 #define NUM_RESULT 78
1176 #define PSHIFT (PAGE_SHIFT - 10)
1177
1178 static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
1179 static struct res_range __initdata range_new[RANGE_NUM];
1180 static unsigned long __initdata min_loss_pfn[RANGE_NUM];
1181
1182 static int __init mtrr_cleanup(unsigned address_bits)
1183 {
1184 unsigned long extra_remove_base, extra_remove_size;
1185 unsigned long i, base, size, def, dummy;
1186 mtrr_type type;
1187 int nr_range, nr_range_new;
1188 u64 chunk_size, gran_size;
1189 unsigned long range_sums, range_sums_new;
1190 int index_good;
1191 int num_reg_good;
1192
1193 /* extra one for all 0 */
1194 int num[MTRR_NUM_TYPES + 1];
1195
1196 if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
1197 return 0;
1198 rdmsr(MTRRdefType_MSR, def, dummy);
1199 def &= 0xff;
1200 if (def != MTRR_TYPE_UNCACHABLE)
1201 return 0;
1202
1203 /* get it and store it aside */
1204 memset(range_state, 0, sizeof(range_state));
1205 for (i = 0; i < num_var_ranges; i++) {
1206 mtrr_if->get(i, &base, &size, &type);
1207 range_state[i].base_pfn = base;
1208 range_state[i].size_pfn = size;
1209 range_state[i].type = type;
1210 }
1211
1212 /* check entries number */
1213 memset(num, 0, sizeof(num));
1214 for (i = 0; i < num_var_ranges; i++) {
1215 type = range_state[i].type;
1216 size = range_state[i].size_pfn;
1217 if (type >= MTRR_NUM_TYPES)
1218 continue;
1219 if (!size)
1220 type = MTRR_NUM_TYPES;
1221 num[type]++;
1222 }
1223
1224 /* check if we got UC entries */
1225 if (!num[MTRR_TYPE_UNCACHABLE])
1226 return 0;
1227
1228 /* check if we only had WB and UC */
1229 if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
1230 num_var_ranges - num[MTRR_NUM_TYPES])
1231 return 0;
1232
1233 memset(range, 0, sizeof(range));
1234 extra_remove_size = 0;
1235 if (mtrr_tom2) {
1236 extra_remove_base = 1 << (32 - PAGE_SHIFT);
1237 extra_remove_size =
1238 (mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
1239 }
1240 nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
1241 extra_remove_size);
1242 range_sums = sum_ranges(range, nr_range);
1243 printk(KERN_INFO "total RAM coverred: %ldM\n",
1244 range_sums >> (20 - PAGE_SHIFT));
1245
1246 if (mtrr_chunk_size && mtrr_gran_size) {
1247 int num_reg;
1248
1249 debug_print++;
1250 /* convert ranges to var ranges state */
1251 num_reg = x86_setup_var_mtrrs(range, nr_range, mtrr_chunk_size,
1252 mtrr_gran_size);
1253
1254 /* we got new setting in range_state, check it */
1255 memset(range_new, 0, sizeof(range_new));
1256 nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
1257 extra_remove_base,
1258 extra_remove_size);
1259 range_sums_new = sum_ranges(range_new, nr_range_new);
1260
1261 i = 0;
1262 result[i].chunk_sizek = mtrr_chunk_size >> 10;
1263 result[i].gran_sizek = mtrr_gran_size >> 10;
1264 result[i].num_reg = num_reg;
1265 if (range_sums < range_sums_new) {
1266 result[i].lose_cover_sizek =
1267 (range_sums_new - range_sums) << PSHIFT;
1268 result[i].bad = 1;
1269 } else
1270 result[i].lose_cover_sizek =
1271 (range_sums - range_sums_new) << PSHIFT;
1272
1273 printk(KERN_INFO "%sgran_size: %ldM \tchunk_size: %ldM \t",
1274 result[i].bad?"*BAD*":" ", result[i].gran_sizek >> 10,
1275 result[i].chunk_sizek >> 10);
1276 printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ldM \n",
1277 result[i].num_reg, result[i].bad?"-":"",
1278 result[i].lose_cover_sizek >> 10);
1279 if (!result[i].bad) {
1280 set_var_mtrr_all(address_bits);
1281 return 1;
1282 }
1283 printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
1284 "will find optimal one\n");
1285 debug_print--;
1286 memset(result, 0, sizeof(result[0]));
1287 }
1288
1289 i = 0;
1290 memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
1291 memset(result, 0, sizeof(result));
1292 for (gran_size = (1ULL<<20); gran_size < (1ULL<<32); gran_size <<= 1) {
1293 for (chunk_size = gran_size; chunk_size < (1ULL<<32);
1294 chunk_size <<= 1) {
1295 int num_reg;
1296
1297 if (debug_print)
1298 printk(KERN_INFO
1299 "\ngran_size: %lldM chunk_size_size: %lldM\n",
1300 gran_size >> 20, chunk_size >> 20);
1301 if (i >= NUM_RESULT)
1302 continue;
1303
1304 /* convert ranges to var ranges state */
1305 num_reg = x86_setup_var_mtrrs(range, nr_range,
1306 chunk_size, gran_size);
1307
1308 /* we got new setting in range_state, check it */
1309 memset(range_new, 0, sizeof(range_new));
1310 nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
1311 extra_remove_base, extra_remove_size);
1312 range_sums_new = sum_ranges(range_new, nr_range_new);
1313
1314 result[i].chunk_sizek = chunk_size >> 10;
1315 result[i].gran_sizek = gran_size >> 10;
1316 result[i].num_reg = num_reg;
1317 if (range_sums < range_sums_new) {
1318 result[i].lose_cover_sizek =
1319 (range_sums_new - range_sums) << PSHIFT;
1320 result[i].bad = 1;
1321 } else
1322 result[i].lose_cover_sizek =
1323 (range_sums - range_sums_new) << PSHIFT;
1324
1325 /* double check it */
1326 if (!result[i].bad && !result[i].lose_cover_sizek) {
1327 if (nr_range_new != nr_range ||
1328 memcmp(range, range_new, sizeof(range)))
1329 result[i].bad = 1;
1330 }
1331
1332 if (!result[i].bad && (range_sums - range_sums_new <
1333 min_loss_pfn[num_reg])) {
1334 min_loss_pfn[num_reg] =
1335 range_sums - range_sums_new;
1336 }
1337 i++;
1338 }
1339 }
1340
1341 /* print out all */
1342 for (i = 0; i < NUM_RESULT; i++) {
1343 printk(KERN_INFO "%sgran_size: %ldM \tchunk_size: %ldM \t",
1344 result[i].bad?"*BAD* ":" ", result[i].gran_sizek >> 10,
1345 result[i].chunk_sizek >> 10);
1346 printk(KERN_CONT "num_reg: %d \tlose RAM: %s%ldM\n",
1347 result[i].num_reg, result[i].bad?"-":"",
1348 result[i].lose_cover_sizek >> 10);
1349 }
1350
1351 /* try to find the optimal index */
1352 if (nr_mtrr_spare_reg >= num_var_ranges)
1353 nr_mtrr_spare_reg = num_var_ranges - 1;
1354 num_reg_good = -1;
1355 for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
1356 if (!min_loss_pfn[i])
1357 num_reg_good = i;
1358 }
1359
1360 index_good = -1;
1361 if (num_reg_good != -1) {
1362 for (i = 0; i < NUM_RESULT; i++) {
1363 if (!result[i].bad &&
1364 result[i].num_reg == num_reg_good &&
1365 !result[i].lose_cover_sizek) {
1366 index_good = i;
1367 break;
1368 }
1369 }
1370 }
1371
1372 if (index_good != -1) {
1373 printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
1374 i = index_good;
1375 printk(KERN_INFO "gran_size: %ldM \tchunk_size: %ldM \t",
1376 result[i].gran_sizek >> 10,
1377 result[i].chunk_sizek >> 10);
1378 printk(KERN_CONT "num_reg: %d \tlose RAM: %ldM\n",
1379 result[i].num_reg,
1380 result[i].lose_cover_sizek >> 10);
1381 /* convert ranges to var ranges state */
1382 chunk_size = result[i].chunk_sizek;
1383 chunk_size <<= 10;
1384 gran_size = result[i].gran_sizek;
1385 gran_size <<= 10;
1386 debug_print++;
1387 x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
1388 debug_print--;
1389 set_var_mtrr_all(address_bits);
1390 return 1;
1391 }
1392
1393 printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
1394 printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
1395
1396 return 0;
1397 }
1398 #else
1399 static int __init mtrr_cleanup(unsigned address_bits)
1400 {
1401 return 0;
1402 }
1403 #endif
1404
1405 static int __initdata changed_by_mtrr_cleanup;
1406
1407 static int disable_mtrr_trim;
1408
1409 static int __init disable_mtrr_trim_setup(char *str)
1410 {
1411 disable_mtrr_trim = 1;
1412 return 0;
1413 }
1414 early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
1415
1416 /*
1417 * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
1418 * for memory >4GB. Check for that here.
1419 * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
1420 * apply to are wrong, but so far we don't know of any such case in the wild.
1421 */
1422 #define Tom2Enabled (1U << 21)
1423 #define Tom2ForceMemTypeWB (1U << 22)
1424
1425 int __init amd_special_default_mtrr(void)
1426 {
1427 u32 l, h;
1428
1429 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
1430 return 0;
1431 if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
1432 return 0;
1433 /* In case some hypervisor doesn't pass SYSCFG through */
1434 if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
1435 return 0;
1436 /*
1437 * Memory between 4GB and top of mem is forced WB by this magic bit.
1438 * Reserved before K8RevF, but should be zero there.
1439 */
1440 if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
1441 (Tom2Enabled | Tom2ForceMemTypeWB))
1442 return 1;
1443 return 0;
1444 }
1445
1446 static u64 __init real_trim_memory(unsigned long start_pfn,
1447 unsigned long limit_pfn)
1448 {
1449 u64 trim_start, trim_size;
1450 trim_start = start_pfn;
1451 trim_start <<= PAGE_SHIFT;
1452 trim_size = limit_pfn;
1453 trim_size <<= PAGE_SHIFT;
1454 trim_size -= trim_start;
1455
1456 return e820_update_range(trim_start, trim_size, E820_RAM,
1457 E820_RESERVED);
1458 }
1459 /**
1460 * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
1461 * @end_pfn: ending page frame number
1462 *
1463 * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
1464 * memory configurations. This routine checks that the highest MTRR matches
1465 * the end of memory, to make sure the MTRRs having a write back type cover
1466 * all of the memory the kernel is intending to use. If not, it'll trim any
1467 * memory off the end by adjusting end_pfn, removing it from the kernel's
1468 * allocation pools, warning the user with an obnoxious message.
1469 */
1470 int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
1471 {
1472 unsigned long i, base, size, highest_pfn = 0, def, dummy;
1473 mtrr_type type;
1474 int nr_range;
1475 u64 total_trim_size;
1476
1477 /* extra one for all 0 */
1478 int num[MTRR_NUM_TYPES + 1];
1479 /*
1480 * Make sure we only trim uncachable memory on machines that
1481 * support the Intel MTRR architecture:
1482 */
1483 if (!is_cpu(INTEL) || disable_mtrr_trim)
1484 return 0;
1485 rdmsr(MTRRdefType_MSR, def, dummy);
1486 def &= 0xff;
1487 if (def != MTRR_TYPE_UNCACHABLE)
1488 return 0;
1489
1490 /* get it and store it aside */
1491 memset(range_state, 0, sizeof(range_state));
1492 for (i = 0; i < num_var_ranges; i++) {
1493 mtrr_if->get(i, &base, &size, &type);
1494 range_state[i].base_pfn = base;
1495 range_state[i].size_pfn = size;
1496 range_state[i].type = type;
1497 }
1498
1499 /* Find highest cached pfn */
1500 for (i = 0; i < num_var_ranges; i++) {
1501 type = range_state[i].type;
1502 if (type != MTRR_TYPE_WRBACK)
1503 continue;
1504 base = range_state[i].base_pfn;
1505 size = range_state[i].size_pfn;
1506 if (highest_pfn < base + size)
1507 highest_pfn = base + size;
1508 }
1509
1510 /* kvm/qemu doesn't have mtrr set right, don't trim them all */
1511 if (!highest_pfn) {
1512 WARN(!kvm_para_available(), KERN_WARNING
1513 "WARNING: strange, CPU MTRRs all blank?\n");
1514 return 0;
1515 }
1516
1517 /* check entries number */
1518 memset(num, 0, sizeof(num));
1519 for (i = 0; i < num_var_ranges; i++) {
1520 type = range_state[i].type;
1521 if (type >= MTRR_NUM_TYPES)
1522 continue;
1523 size = range_state[i].size_pfn;
1524 if (!size)
1525 type = MTRR_NUM_TYPES;
1526 num[type]++;
1527 }
1528
1529 /* no entry for WB? */
1530 if (!num[MTRR_TYPE_WRBACK])
1531 return 0;
1532
1533 /* check if we only had WB and UC */
1534 if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
1535 num_var_ranges - num[MTRR_NUM_TYPES])
1536 return 0;
1537
1538 memset(range, 0, sizeof(range));
1539 nr_range = 0;
1540 if (mtrr_tom2) {
1541 range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
1542 range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
1543 if (highest_pfn < range[nr_range].end + 1)
1544 highest_pfn = range[nr_range].end + 1;
1545 nr_range++;
1546 }
1547 nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
1548
1549 total_trim_size = 0;
1550 /* check the head */
1551 if (range[0].start)
1552 total_trim_size += real_trim_memory(0, range[0].start);
1553 /* check the holes */
1554 for (i = 0; i < nr_range - 1; i++) {
1555 if (range[i].end + 1 < range[i+1].start)
1556 total_trim_size += real_trim_memory(range[i].end + 1,
1557 range[i+1].start);
1558 }
1559 /* check the top */
1560 i = nr_range - 1;
1561 if (range[i].end + 1 < end_pfn)
1562 total_trim_size += real_trim_memory(range[i].end + 1,
1563 end_pfn);
1564
1565 if (total_trim_size) {
1566 printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
1567 " all of memory, losing %lluMB of RAM.\n",
1568 total_trim_size >> 20);
1569
1570 if (!changed_by_mtrr_cleanup)
1571 WARN_ON(1);
1572
1573 printk(KERN_INFO "update e820 for mtrr\n");
1574 update_e820();
1575
1576 return 1;
1577 }
1578
1579 return 0;
1580 }
1581
1582 /**
1583 * mtrr_bp_init - initialize mtrrs on the boot CPU
1584 *
1585 * This needs to be called early; before any of the other CPUs are
1586 * initialized (i.e. before smp_init()).
1587 *
1588 */
1589 void __init mtrr_bp_init(void)
1590 {
1591 u32 phys_addr;
1592 init_ifs();
1593
1594 phys_addr = 32;
1595
1596 if (cpu_has_mtrr) {
1597 mtrr_if = &generic_mtrr_ops;
1598 size_or_mask = 0xff000000; /* 36 bits */
1599 size_and_mask = 0x00f00000;
1600 phys_addr = 36;
1601
1602 /* This is an AMD specific MSR, but we assume(hope?) that
1603 Intel will implement it to when they extend the address
1604 bus of the Xeon. */
1605 if (cpuid_eax(0x80000000) >= 0x80000008) {
1606 phys_addr = cpuid_eax(0x80000008) & 0xff;
1607 /* CPUID workaround for Intel 0F33/0F34 CPU */
1608 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
1609 boot_cpu_data.x86 == 0xF &&
1610 boot_cpu_data.x86_model == 0x3 &&
1611 (boot_cpu_data.x86_mask == 0x3 ||
1612 boot_cpu_data.x86_mask == 0x4))
1613 phys_addr = 36;
1614
1615 size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
1616 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
1617 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
1618 boot_cpu_data.x86 == 6) {
1619 /* VIA C* family have Intel style MTRRs, but
1620 don't support PAE */
1621 size_or_mask = 0xfff00000; /* 32 bits */
1622 size_and_mask = 0;
1623 phys_addr = 32;
1624 }
1625 } else {
1626 switch (boot_cpu_data.x86_vendor) {
1627 case X86_VENDOR_AMD:
1628 if (cpu_has_k6_mtrr) {
1629 /* Pre-Athlon (K6) AMD CPU MTRRs */
1630 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
1631 size_or_mask = 0xfff00000; /* 32 bits */
1632 size_and_mask = 0;
1633 }
1634 break;
1635 case X86_VENDOR_CENTAUR:
1636 if (cpu_has_centaur_mcr) {
1637 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
1638 size_or_mask = 0xfff00000; /* 32 bits */
1639 size_and_mask = 0;
1640 }
1641 break;
1642 case X86_VENDOR_CYRIX:
1643 if (cpu_has_cyrix_arr) {
1644 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
1645 size_or_mask = 0xfff00000; /* 32 bits */
1646 size_and_mask = 0;
1647 }
1648 break;
1649 default:
1650 break;
1651 }
1652 }
1653
1654 if (mtrr_if) {
1655 set_num_var_ranges();
1656 init_table();
1657 if (use_intel()) {
1658 get_mtrr_state();
1659
1660 if (mtrr_cleanup(phys_addr)) {
1661 changed_by_mtrr_cleanup = 1;
1662 mtrr_if->set_all();
1663 }
1664
1665 }
1666 }
1667 }
1668
1669 void mtrr_ap_init(void)
1670 {
1671 unsigned long flags;
1672
1673 if (!mtrr_if || !use_intel())
1674 return;
1675 /*
1676 * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
1677 * but this routine will be called in cpu boot time, holding the lock
1678 * breaks it. This routine is called in two cases: 1.very earily time
1679 * of software resume, when there absolutely isn't mtrr entry changes;
1680 * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
1681 * prevent mtrr entry changes
1682 */
1683 local_irq_save(flags);
1684
1685 mtrr_if->set_all();
1686
1687 local_irq_restore(flags);
1688 }
1689
1690 /**
1691 * Save current fixed-range MTRR state of the BSP
1692 */
1693 void mtrr_save_state(void)
1694 {
1695 smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
1696 }
1697
1698 static int __init mtrr_init_finialize(void)
1699 {
1700 if (!mtrr_if)
1701 return 0;
1702 if (use_intel()) {
1703 if (!changed_by_mtrr_cleanup)
1704 mtrr_state_warn();
1705 } else {
1706 /* The CPUs haven't MTRR and seem to not support SMP. They have
1707 * specific drivers, we use a tricky method to support
1708 * suspend/resume for them.
1709 * TBD: is there any system with such CPU which supports
1710 * suspend/resume? if no, we should remove the code.
1711 */
1712 sysdev_driver_register(&cpu_sysdev_class,
1713 &mtrr_sysdev_driver);
1714 }
1715 return 0;
1716 }
1717 subsys_initcall(mtrr_init_finialize);
This page took 0.158041 seconds and 5 git commands to generate.