Merge branch 'x86/ras' into x86/core, to fix conflicts
[deliverable/linux.git] / arch / x86 / kernel / cpu / mtrr / main.c
1 /* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33
34 #define DEBUG
35
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
37
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/module.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
48 #include <linux/syscore_ops.h>
49
50 #include <asm/processor.h>
51 #include <asm/e820.h>
52 #include <asm/mtrr.h>
53 #include <asm/msr.h>
54 #include <asm/pat.h>
55
56 #include "mtrr.h"
57
58 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
59 #define MTRR_TO_PHYS_WC_OFFSET 1000
60
61 u32 num_var_ranges;
62 static bool __mtrr_enabled;
63
64 static bool mtrr_enabled(void)
65 {
66 return __mtrr_enabled;
67 }
68
69 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
70 static DEFINE_MUTEX(mtrr_mutex);
71
72 u64 size_or_mask, size_and_mask;
73 static bool mtrr_aps_delayed_init;
74
75 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
76
77 const struct mtrr_ops *mtrr_if;
78
79 static void set_mtrr(unsigned int reg, unsigned long base,
80 unsigned long size, mtrr_type type);
81
82 void set_mtrr_ops(const struct mtrr_ops *ops)
83 {
84 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
85 mtrr_ops[ops->vendor] = ops;
86 }
87
88 /* Returns non-zero if we have the write-combining memory type */
89 static int have_wrcomb(void)
90 {
91 struct pci_dev *dev;
92
93 dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
94 if (dev != NULL) {
95 /*
96 * ServerWorks LE chipsets < rev 6 have problems with
97 * write-combining. Don't allow it and leave room for other
98 * chipsets to be tagged
99 */
100 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
101 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
102 dev->revision <= 5) {
103 pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
104 pci_dev_put(dev);
105 return 0;
106 }
107 /*
108 * Intel 450NX errata # 23. Non ascending cacheline evictions to
109 * write combining memory may resulting in data corruption
110 */
111 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
112 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
113 pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
114 pci_dev_put(dev);
115 return 0;
116 }
117 pci_dev_put(dev);
118 }
119 return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
120 }
121
122 /* This function returns the number of variable MTRRs */
123 static void __init set_num_var_ranges(void)
124 {
125 unsigned long config = 0, dummy;
126
127 if (use_intel())
128 rdmsr(MSR_MTRRcap, config, dummy);
129 else if (is_cpu(AMD))
130 config = 2;
131 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
132 config = 8;
133
134 num_var_ranges = config & 0xff;
135 }
136
137 static void __init init_table(void)
138 {
139 int i, max;
140
141 max = num_var_ranges;
142 for (i = 0; i < max; i++)
143 mtrr_usage_table[i] = 1;
144 }
145
146 struct set_mtrr_data {
147 unsigned long smp_base;
148 unsigned long smp_size;
149 unsigned int smp_reg;
150 mtrr_type smp_type;
151 };
152
153 /**
154 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
155 * by all the CPUs.
156 * @info: pointer to mtrr configuration data
157 *
158 * Returns nothing.
159 */
160 static int mtrr_rendezvous_handler(void *info)
161 {
162 struct set_mtrr_data *data = info;
163
164 /*
165 * We use this same function to initialize the mtrrs during boot,
166 * resume, runtime cpu online and on an explicit request to set a
167 * specific MTRR.
168 *
169 * During boot or suspend, the state of the boot cpu's mtrrs has been
170 * saved, and we want to replicate that across all the cpus that come
171 * online (either at the end of boot or resume or during a runtime cpu
172 * online). If we're doing that, @reg is set to something special and on
173 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
174 * started the boot/resume sequence, this might be a duplicate
175 * set_all()).
176 */
177 if (data->smp_reg != ~0U) {
178 mtrr_if->set(data->smp_reg, data->smp_base,
179 data->smp_size, data->smp_type);
180 } else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
181 mtrr_if->set_all();
182 }
183 return 0;
184 }
185
186 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
187 {
188 return type1 == MTRR_TYPE_UNCACHABLE ||
189 type2 == MTRR_TYPE_UNCACHABLE ||
190 (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
191 (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
192 }
193
194 /**
195 * set_mtrr - update mtrrs on all processors
196 * @reg: mtrr in question
197 * @base: mtrr base
198 * @size: mtrr size
199 * @type: mtrr type
200 *
201 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
202 *
203 * 1. Queue work to do the following on all processors:
204 * 2. Disable Interrupts
205 * 3. Wait for all procs to do so
206 * 4. Enter no-fill cache mode
207 * 5. Flush caches
208 * 6. Clear PGE bit
209 * 7. Flush all TLBs
210 * 8. Disable all range registers
211 * 9. Update the MTRRs
212 * 10. Enable all range registers
213 * 11. Flush all TLBs and caches again
214 * 12. Enter normal cache mode and reenable caching
215 * 13. Set PGE
216 * 14. Wait for buddies to catch up
217 * 15. Enable interrupts.
218 *
219 * What does that mean for us? Well, stop_machine() will ensure that
220 * the rendezvous handler is started on each CPU. And in lockstep they
221 * do the state transition of disabling interrupts, updating MTRR's
222 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
223 * callback and let them take care of it.) and enabling interrupts.
224 *
225 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
226 * becomes nops.
227 */
228 static void
229 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
230 {
231 struct set_mtrr_data data = { .smp_reg = reg,
232 .smp_base = base,
233 .smp_size = size,
234 .smp_type = type
235 };
236
237 stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
238 }
239
240 static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
241 unsigned long size, mtrr_type type)
242 {
243 struct set_mtrr_data data = { .smp_reg = reg,
244 .smp_base = base,
245 .smp_size = size,
246 .smp_type = type
247 };
248
249 stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
250 cpu_callout_mask);
251 }
252
253 /**
254 * mtrr_add_page - Add a memory type region
255 * @base: Physical base address of region in pages (in units of 4 kB!)
256 * @size: Physical size of region in pages (4 kB)
257 * @type: Type of MTRR desired
258 * @increment: If this is true do usage counting on the region
259 *
260 * Memory type region registers control the caching on newer Intel and
261 * non Intel processors. This function allows drivers to request an
262 * MTRR is added. The details and hardware specifics of each processor's
263 * implementation are hidden from the caller, but nevertheless the
264 * caller should expect to need to provide a power of two size on an
265 * equivalent power of two boundary.
266 *
267 * If the region cannot be added either because all regions are in use
268 * or the CPU cannot support it a negative value is returned. On success
269 * the register number for this entry is returned, but should be treated
270 * as a cookie only.
271 *
272 * On a multiprocessor machine the changes are made to all processors.
273 * This is required on x86 by the Intel processors.
274 *
275 * The available types are
276 *
277 * %MTRR_TYPE_UNCACHABLE - No caching
278 *
279 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
280 *
281 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
282 *
283 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
284 *
285 * BUGS: Needs a quiet flag for the cases where drivers do not mind
286 * failures and do not wish system log messages to be sent.
287 */
288 int mtrr_add_page(unsigned long base, unsigned long size,
289 unsigned int type, bool increment)
290 {
291 unsigned long lbase, lsize;
292 int i, replace, error;
293 mtrr_type ltype;
294
295 if (!mtrr_enabled())
296 return -ENXIO;
297
298 error = mtrr_if->validate_add_page(base, size, type);
299 if (error)
300 return error;
301
302 if (type >= MTRR_NUM_TYPES) {
303 pr_warning("mtrr: type: %u invalid\n", type);
304 return -EINVAL;
305 }
306
307 /* If the type is WC, check that this processor supports it */
308 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
309 pr_warning("mtrr: your processor doesn't support write-combining\n");
310 return -ENOSYS;
311 }
312
313 if (!size) {
314 pr_warning("mtrr: zero sized request\n");
315 return -EINVAL;
316 }
317
318 if ((base | (base + size - 1)) >>
319 (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
320 pr_warning("mtrr: base or size exceeds the MTRR width\n");
321 return -EINVAL;
322 }
323
324 error = -EINVAL;
325 replace = -1;
326
327 /* No CPU hotplug when we change MTRR entries */
328 get_online_cpus();
329
330 /* Search for existing MTRR */
331 mutex_lock(&mtrr_mutex);
332 for (i = 0; i < num_var_ranges; ++i) {
333 mtrr_if->get(i, &lbase, &lsize, &ltype);
334 if (!lsize || base > lbase + lsize - 1 ||
335 base + size - 1 < lbase)
336 continue;
337 /*
338 * At this point we know there is some kind of
339 * overlap/enclosure
340 */
341 if (base < lbase || base + size - 1 > lbase + lsize - 1) {
342 if (base <= lbase &&
343 base + size - 1 >= lbase + lsize - 1) {
344 /* New region encloses an existing region */
345 if (type == ltype) {
346 replace = replace == -1 ? i : -2;
347 continue;
348 } else if (types_compatible(type, ltype))
349 continue;
350 }
351 pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
352 " 0x%lx000,0x%lx000\n", base, size, lbase,
353 lsize);
354 goto out;
355 }
356 /* New region is enclosed by an existing region */
357 if (ltype != type) {
358 if (types_compatible(type, ltype))
359 continue;
360 pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
361 base, size, mtrr_attrib_to_str(ltype),
362 mtrr_attrib_to_str(type));
363 goto out;
364 }
365 if (increment)
366 ++mtrr_usage_table[i];
367 error = i;
368 goto out;
369 }
370 /* Search for an empty MTRR */
371 i = mtrr_if->get_free_region(base, size, replace);
372 if (i >= 0) {
373 set_mtrr(i, base, size, type);
374 if (likely(replace < 0)) {
375 mtrr_usage_table[i] = 1;
376 } else {
377 mtrr_usage_table[i] = mtrr_usage_table[replace];
378 if (increment)
379 mtrr_usage_table[i]++;
380 if (unlikely(replace != i)) {
381 set_mtrr(replace, 0, 0, 0);
382 mtrr_usage_table[replace] = 0;
383 }
384 }
385 } else {
386 pr_info("mtrr: no more MTRRs available\n");
387 }
388 error = i;
389 out:
390 mutex_unlock(&mtrr_mutex);
391 put_online_cpus();
392 return error;
393 }
394
395 static int mtrr_check(unsigned long base, unsigned long size)
396 {
397 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
398 pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
399 pr_debug("mtrr: size: 0x%lx base: 0x%lx\n", size, base);
400 dump_stack();
401 return -1;
402 }
403 return 0;
404 }
405
406 /**
407 * mtrr_add - Add a memory type region
408 * @base: Physical base address of region
409 * @size: Physical size of region
410 * @type: Type of MTRR desired
411 * @increment: If this is true do usage counting on the region
412 *
413 * Memory type region registers control the caching on newer Intel and
414 * non Intel processors. This function allows drivers to request an
415 * MTRR is added. The details and hardware specifics of each processor's
416 * implementation are hidden from the caller, but nevertheless the
417 * caller should expect to need to provide a power of two size on an
418 * equivalent power of two boundary.
419 *
420 * If the region cannot be added either because all regions are in use
421 * or the CPU cannot support it a negative value is returned. On success
422 * the register number for this entry is returned, but should be treated
423 * as a cookie only.
424 *
425 * On a multiprocessor machine the changes are made to all processors.
426 * This is required on x86 by the Intel processors.
427 *
428 * The available types are
429 *
430 * %MTRR_TYPE_UNCACHABLE - No caching
431 *
432 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
433 *
434 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
435 *
436 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
437 *
438 * BUGS: Needs a quiet flag for the cases where drivers do not mind
439 * failures and do not wish system log messages to be sent.
440 */
441 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
442 bool increment)
443 {
444 if (!mtrr_enabled())
445 return -ENODEV;
446 if (mtrr_check(base, size))
447 return -EINVAL;
448 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
449 increment);
450 }
451 EXPORT_SYMBOL(mtrr_add);
452
453 /**
454 * mtrr_del_page - delete a memory type region
455 * @reg: Register returned by mtrr_add
456 * @base: Physical base address
457 * @size: Size of region
458 *
459 * If register is supplied then base and size are ignored. This is
460 * how drivers should call it.
461 *
462 * Releases an MTRR region. If the usage count drops to zero the
463 * register is freed and the region returns to default state.
464 * On success the register is returned, on failure a negative error
465 * code.
466 */
467 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
468 {
469 int i, max;
470 mtrr_type ltype;
471 unsigned long lbase, lsize;
472 int error = -EINVAL;
473
474 if (!mtrr_enabled())
475 return -ENODEV;
476
477 max = num_var_ranges;
478 /* No CPU hotplug when we change MTRR entries */
479 get_online_cpus();
480 mutex_lock(&mtrr_mutex);
481 if (reg < 0) {
482 /* Search for existing MTRR */
483 for (i = 0; i < max; ++i) {
484 mtrr_if->get(i, &lbase, &lsize, &ltype);
485 if (lbase == base && lsize == size) {
486 reg = i;
487 break;
488 }
489 }
490 if (reg < 0) {
491 pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
492 base, size);
493 goto out;
494 }
495 }
496 if (reg >= max) {
497 pr_warning("mtrr: register: %d too big\n", reg);
498 goto out;
499 }
500 mtrr_if->get(reg, &lbase, &lsize, &ltype);
501 if (lsize < 1) {
502 pr_warning("mtrr: MTRR %d not used\n", reg);
503 goto out;
504 }
505 if (mtrr_usage_table[reg] < 1) {
506 pr_warning("mtrr: reg: %d has count=0\n", reg);
507 goto out;
508 }
509 if (--mtrr_usage_table[reg] < 1)
510 set_mtrr(reg, 0, 0, 0);
511 error = reg;
512 out:
513 mutex_unlock(&mtrr_mutex);
514 put_online_cpus();
515 return error;
516 }
517
518 /**
519 * mtrr_del - delete a memory type region
520 * @reg: Register returned by mtrr_add
521 * @base: Physical base address
522 * @size: Size of region
523 *
524 * If register is supplied then base and size are ignored. This is
525 * how drivers should call it.
526 *
527 * Releases an MTRR region. If the usage count drops to zero the
528 * register is freed and the region returns to default state.
529 * On success the register is returned, on failure a negative error
530 * code.
531 */
532 int mtrr_del(int reg, unsigned long base, unsigned long size)
533 {
534 if (!mtrr_enabled())
535 return -ENODEV;
536 if (mtrr_check(base, size))
537 return -EINVAL;
538 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
539 }
540 EXPORT_SYMBOL(mtrr_del);
541
542 /**
543 * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
544 * @base: Physical base address
545 * @size: Size of region
546 *
547 * If PAT is available, this does nothing. If PAT is unavailable, it
548 * attempts to add a WC MTRR covering size bytes starting at base and
549 * logs an error if this fails.
550 *
551 * The called should provide a power of two size on an equivalent
552 * power of two boundary.
553 *
554 * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
555 * but drivers should not try to interpret that return value.
556 */
557 int arch_phys_wc_add(unsigned long base, unsigned long size)
558 {
559 int ret;
560
561 if (pat_enabled() || !mtrr_enabled())
562 return 0; /* Success! (We don't need to do anything.) */
563
564 ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
565 if (ret < 0) {
566 pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
567 (void *)base, (void *)(base + size - 1));
568 return ret;
569 }
570 return ret + MTRR_TO_PHYS_WC_OFFSET;
571 }
572 EXPORT_SYMBOL(arch_phys_wc_add);
573
574 /*
575 * arch_phys_wc_del - undoes arch_phys_wc_add
576 * @handle: Return value from arch_phys_wc_add
577 *
578 * This cleans up after mtrr_add_wc_if_needed.
579 *
580 * The API guarantees that mtrr_del_wc_if_needed(error code) and
581 * mtrr_del_wc_if_needed(0) do nothing.
582 */
583 void arch_phys_wc_del(int handle)
584 {
585 if (handle >= 1) {
586 WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
587 mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
588 }
589 }
590 EXPORT_SYMBOL(arch_phys_wc_del);
591
592 /*
593 * arch_phys_wc_index - translates arch_phys_wc_add's return value
594 * @handle: Return value from arch_phys_wc_add
595 *
596 * This will turn the return value from arch_phys_wc_add into an mtrr
597 * index suitable for debugging.
598 *
599 * Note: There is no legitimate use for this function, except possibly
600 * in printk line. Alas there is an illegitimate use in some ancient
601 * drm ioctls.
602 */
603 int arch_phys_wc_index(int handle)
604 {
605 if (handle < MTRR_TO_PHYS_WC_OFFSET)
606 return -1;
607 else
608 return handle - MTRR_TO_PHYS_WC_OFFSET;
609 }
610 EXPORT_SYMBOL_GPL(arch_phys_wc_index);
611
612 /*
613 * HACK ALERT!
614 * These should be called implicitly, but we can't yet until all the initcall
615 * stuff is done...
616 */
617 static void __init init_ifs(void)
618 {
619 #ifndef CONFIG_X86_64
620 amd_init_mtrr();
621 cyrix_init_mtrr();
622 centaur_init_mtrr();
623 #endif
624 }
625
626 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
627 * MTRR driver doesn't require this
628 */
629 struct mtrr_value {
630 mtrr_type ltype;
631 unsigned long lbase;
632 unsigned long lsize;
633 };
634
635 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
636
637 static int mtrr_save(void)
638 {
639 int i;
640
641 for (i = 0; i < num_var_ranges; i++) {
642 mtrr_if->get(i, &mtrr_value[i].lbase,
643 &mtrr_value[i].lsize,
644 &mtrr_value[i].ltype);
645 }
646 return 0;
647 }
648
649 static void mtrr_restore(void)
650 {
651 int i;
652
653 for (i = 0; i < num_var_ranges; i++) {
654 if (mtrr_value[i].lsize) {
655 set_mtrr(i, mtrr_value[i].lbase,
656 mtrr_value[i].lsize,
657 mtrr_value[i].ltype);
658 }
659 }
660 }
661
662
663
664 static struct syscore_ops mtrr_syscore_ops = {
665 .suspend = mtrr_save,
666 .resume = mtrr_restore,
667 };
668
669 int __initdata changed_by_mtrr_cleanup;
670
671 #define SIZE_OR_MASK_BITS(n) (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
672 /**
673 * mtrr_bp_init - initialize mtrrs on the boot CPU
674 *
675 * This needs to be called early; before any of the other CPUs are
676 * initialized (i.e. before smp_init()).
677 *
678 */
679 void __init mtrr_bp_init(void)
680 {
681 u32 phys_addr;
682
683 init_ifs();
684
685 phys_addr = 32;
686
687 if (cpu_has_mtrr) {
688 mtrr_if = &generic_mtrr_ops;
689 size_or_mask = SIZE_OR_MASK_BITS(36);
690 size_and_mask = 0x00f00000;
691 phys_addr = 36;
692
693 /*
694 * This is an AMD specific MSR, but we assume(hope?) that
695 * Intel will implement it too when they extend the address
696 * bus of the Xeon.
697 */
698 if (cpuid_eax(0x80000000) >= 0x80000008) {
699 phys_addr = cpuid_eax(0x80000008) & 0xff;
700 /* CPUID workaround for Intel 0F33/0F34 CPU */
701 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
702 boot_cpu_data.x86 == 0xF &&
703 boot_cpu_data.x86_model == 0x3 &&
704 (boot_cpu_data.x86_mask == 0x3 ||
705 boot_cpu_data.x86_mask == 0x4))
706 phys_addr = 36;
707
708 size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
709 size_and_mask = ~size_or_mask & 0xfffff00000ULL;
710 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
711 boot_cpu_data.x86 == 6) {
712 /*
713 * VIA C* family have Intel style MTRRs,
714 * but don't support PAE
715 */
716 size_or_mask = SIZE_OR_MASK_BITS(32);
717 size_and_mask = 0;
718 phys_addr = 32;
719 }
720 } else {
721 switch (boot_cpu_data.x86_vendor) {
722 case X86_VENDOR_AMD:
723 if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
724 /* Pre-Athlon (K6) AMD CPU MTRRs */
725 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
726 size_or_mask = SIZE_OR_MASK_BITS(32);
727 size_and_mask = 0;
728 }
729 break;
730 case X86_VENDOR_CENTAUR:
731 if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
732 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
733 size_or_mask = SIZE_OR_MASK_BITS(32);
734 size_and_mask = 0;
735 }
736 break;
737 case X86_VENDOR_CYRIX:
738 if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
739 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
740 size_or_mask = SIZE_OR_MASK_BITS(32);
741 size_and_mask = 0;
742 }
743 break;
744 default:
745 break;
746 }
747 }
748
749 if (mtrr_if) {
750 __mtrr_enabled = true;
751 set_num_var_ranges();
752 init_table();
753 if (use_intel()) {
754 /* BIOS may override */
755 __mtrr_enabled = get_mtrr_state();
756
757 if (mtrr_cleanup(phys_addr)) {
758 changed_by_mtrr_cleanup = 1;
759 mtrr_if->set_all();
760 }
761 }
762 }
763
764 if (!mtrr_enabled())
765 pr_info("MTRR: Disabled\n");
766 }
767
768 void mtrr_ap_init(void)
769 {
770 if (!mtrr_enabled())
771 return;
772
773 if (!use_intel() || mtrr_aps_delayed_init)
774 return;
775 /*
776 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
777 * changed, but this routine will be called in cpu boot time,
778 * holding the lock breaks it.
779 *
780 * This routine is called in two cases:
781 *
782 * 1. very earily time of software resume, when there absolutely
783 * isn't mtrr entry changes;
784 *
785 * 2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
786 * lock to prevent mtrr entry changes
787 */
788 set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
789 }
790
791 /**
792 * Save current fixed-range MTRR state of the first cpu in cpu_online_mask.
793 */
794 void mtrr_save_state(void)
795 {
796 int first_cpu;
797
798 if (!mtrr_enabled())
799 return;
800
801 get_online_cpus();
802 first_cpu = cpumask_first(cpu_online_mask);
803 smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
804 put_online_cpus();
805 }
806
807 void set_mtrr_aps_delayed_init(void)
808 {
809 if (!mtrr_enabled())
810 return;
811 if (!use_intel())
812 return;
813
814 mtrr_aps_delayed_init = true;
815 }
816
817 /*
818 * Delayed MTRR initialization for all AP's
819 */
820 void mtrr_aps_init(void)
821 {
822 if (!use_intel() || !mtrr_enabled())
823 return;
824
825 /*
826 * Check if someone has requested the delay of AP MTRR initialization,
827 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
828 * then we are done.
829 */
830 if (!mtrr_aps_delayed_init)
831 return;
832
833 set_mtrr(~0U, 0, 0, 0);
834 mtrr_aps_delayed_init = false;
835 }
836
837 void mtrr_bp_restore(void)
838 {
839 if (!use_intel() || !mtrr_enabled())
840 return;
841
842 mtrr_if->set_all();
843 }
844
845 static int __init mtrr_init_finialize(void)
846 {
847 if (!mtrr_enabled())
848 return 0;
849
850 if (use_intel()) {
851 if (!changed_by_mtrr_cleanup)
852 mtrr_state_warn();
853 return 0;
854 }
855
856 /*
857 * The CPU has no MTRR and seems to not support SMP. They have
858 * specific drivers, we use a tricky method to support
859 * suspend/resume for them.
860 *
861 * TBD: is there any system with such CPU which supports
862 * suspend/resume? If no, we should remove the code.
863 */
864 register_syscore_ops(&mtrr_syscore_ops);
865
866 return 0;
867 }
868 subsys_initcall(mtrr_init_finialize);
This page took 0.07771 seconds and 5 git commands to generate.