40978aac6e0f6576a5ac768996e6c70e48b9f7fd
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2 * Performance counter x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 *
10 * For licencing details see kernel-base/COPYING
11 */
12
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include <asm/apic.h>
24 #include <asm/stacktrace.h>
25 #include <asm/nmi.h>
26
27 static u64 perf_counter_mask __read_mostly;
28
29 struct cpu_hw_counters {
30 struct perf_counter *counters[X86_PMC_IDX_MAX];
31 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
32 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33 unsigned long interrupts;
34 int enabled;
35 };
36
37 /*
38 * struct x86_pmu - generic x86 pmu
39 */
40 struct x86_pmu {
41 const char *name;
42 int version;
43 int (*handle_irq)(struct pt_regs *);
44 void (*disable_all)(void);
45 void (*enable_all)(void);
46 void (*enable)(struct hw_perf_counter *, int);
47 void (*disable)(struct hw_perf_counter *, int);
48 unsigned eventsel;
49 unsigned perfctr;
50 u64 (*event_map)(int);
51 u64 (*raw_event)(u64);
52 int max_events;
53 int num_counters;
54 int num_counters_fixed;
55 int counter_bits;
56 u64 counter_mask;
57 u64 max_period;
58 u64 intel_ctrl;
59 };
60
61 static struct x86_pmu x86_pmu __read_mostly;
62
63 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
64 .enabled = 1,
65 };
66
67 /*
68 * Intel PerfMon v3. Used on Core2 and later.
69 */
70 static const u64 intel_perfmon_event_map[] =
71 {
72 [PERF_COUNT_CPU_CYCLES] = 0x003c,
73 [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
74 [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e,
75 [PERF_COUNT_CACHE_MISSES] = 0x412e,
76 [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
77 [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
78 [PERF_COUNT_BUS_CYCLES] = 0x013c,
79 };
80
81 static u64 intel_pmu_event_map(int event)
82 {
83 return intel_perfmon_event_map[event];
84 }
85
86 /*
87 * Generalized hw caching related event table, filled
88 * in on a per model basis. A value of 0 means
89 * 'not supported', -1 means 'event makes no sense on
90 * this CPU', any other value means the raw event
91 * ID.
92 */
93
94 #define C(x) PERF_COUNT_HW_CACHE_##x
95
96 static u64 __read_mostly hw_cache_event_ids
97 [PERF_COUNT_HW_CACHE_MAX]
98 [PERF_COUNT_HW_CACHE_OP_MAX]
99 [PERF_COUNT_HW_CACHE_RESULT_MAX];
100
101 static const u64 nehalem_hw_cache_event_ids
102 [PERF_COUNT_HW_CACHE_MAX]
103 [PERF_COUNT_HW_CACHE_OP_MAX]
104 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
105 {
106 [ C(L1D) ] = {
107 [ C(OP_READ) ] = {
108 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
109 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
110 },
111 [ C(OP_WRITE) ] = {
112 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
113 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
114 },
115 [ C(OP_PREFETCH) ] = {
116 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
117 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
118 },
119 },
120 [ C(L1I ) ] = {
121 [ C(OP_READ) ] = {
122 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
123 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
124 },
125 [ C(OP_WRITE) ] = {
126 [ C(RESULT_ACCESS) ] = -1,
127 [ C(RESULT_MISS) ] = -1,
128 },
129 [ C(OP_PREFETCH) ] = {
130 [ C(RESULT_ACCESS) ] = 0x0,
131 [ C(RESULT_MISS) ] = 0x0,
132 },
133 },
134 [ C(L2 ) ] = {
135 [ C(OP_READ) ] = {
136 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
137 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
138 },
139 [ C(OP_WRITE) ] = {
140 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
141 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
142 },
143 [ C(OP_PREFETCH) ] = {
144 [ C(RESULT_ACCESS) ] = 0xc024, /* L2_RQSTS.PREFETCHES */
145 [ C(RESULT_MISS) ] = 0x8024, /* L2_RQSTS.PREFETCH_MISS */
146 },
147 },
148 [ C(DTLB) ] = {
149 [ C(OP_READ) ] = {
150 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
151 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
152 },
153 [ C(OP_WRITE) ] = {
154 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
155 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
156 },
157 [ C(OP_PREFETCH) ] = {
158 [ C(RESULT_ACCESS) ] = 0x0,
159 [ C(RESULT_MISS) ] = 0x0,
160 },
161 },
162 [ C(ITLB) ] = {
163 [ C(OP_READ) ] = {
164 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
165 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
166 },
167 [ C(OP_WRITE) ] = {
168 [ C(RESULT_ACCESS) ] = -1,
169 [ C(RESULT_MISS) ] = -1,
170 },
171 [ C(OP_PREFETCH) ] = {
172 [ C(RESULT_ACCESS) ] = -1,
173 [ C(RESULT_MISS) ] = -1,
174 },
175 },
176 [ C(BPU ) ] = {
177 [ C(OP_READ) ] = {
178 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
179 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
180 },
181 [ C(OP_WRITE) ] = {
182 [ C(RESULT_ACCESS) ] = -1,
183 [ C(RESULT_MISS) ] = -1,
184 },
185 [ C(OP_PREFETCH) ] = {
186 [ C(RESULT_ACCESS) ] = -1,
187 [ C(RESULT_MISS) ] = -1,
188 },
189 },
190 };
191
192 static const u64 core2_hw_cache_event_ids
193 [PERF_COUNT_HW_CACHE_MAX]
194 [PERF_COUNT_HW_CACHE_OP_MAX]
195 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
196 {
197 [ C(L1D) ] = {
198 [ C(OP_READ) ] = {
199 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
200 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
201 },
202 [ C(OP_WRITE) ] = {
203 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
204 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
205 },
206 [ C(OP_PREFETCH) ] = {
207 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
208 [ C(RESULT_MISS) ] = 0,
209 },
210 },
211 [ C(L1I ) ] = {
212 [ C(OP_READ) ] = {
213 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
214 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
215 },
216 [ C(OP_WRITE) ] = {
217 [ C(RESULT_ACCESS) ] = -1,
218 [ C(RESULT_MISS) ] = -1,
219 },
220 [ C(OP_PREFETCH) ] = {
221 [ C(RESULT_ACCESS) ] = 0,
222 [ C(RESULT_MISS) ] = 0,
223 },
224 },
225 [ C(L2 ) ] = {
226 [ C(OP_READ) ] = {
227 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
228 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
229 },
230 [ C(OP_WRITE) ] = {
231 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
232 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
233 },
234 [ C(OP_PREFETCH) ] = {
235 [ C(RESULT_ACCESS) ] = 0,
236 [ C(RESULT_MISS) ] = 0,
237 },
238 },
239 [ C(DTLB) ] = {
240 [ C(OP_READ) ] = {
241 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
242 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
243 },
244 [ C(OP_WRITE) ] = {
245 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
246 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
247 },
248 [ C(OP_PREFETCH) ] = {
249 [ C(RESULT_ACCESS) ] = 0,
250 [ C(RESULT_MISS) ] = 0,
251 },
252 },
253 [ C(ITLB) ] = {
254 [ C(OP_READ) ] = {
255 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
256 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
257 },
258 [ C(OP_WRITE) ] = {
259 [ C(RESULT_ACCESS) ] = -1,
260 [ C(RESULT_MISS) ] = -1,
261 },
262 [ C(OP_PREFETCH) ] = {
263 [ C(RESULT_ACCESS) ] = -1,
264 [ C(RESULT_MISS) ] = -1,
265 },
266 },
267 [ C(BPU ) ] = {
268 [ C(OP_READ) ] = {
269 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
270 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
271 },
272 [ C(OP_WRITE) ] = {
273 [ C(RESULT_ACCESS) ] = -1,
274 [ C(RESULT_MISS) ] = -1,
275 },
276 [ C(OP_PREFETCH) ] = {
277 [ C(RESULT_ACCESS) ] = -1,
278 [ C(RESULT_MISS) ] = -1,
279 },
280 },
281 };
282
283 static const u64 atom_hw_cache_event_ids
284 [PERF_COUNT_HW_CACHE_MAX]
285 [PERF_COUNT_HW_CACHE_OP_MAX]
286 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
287 {
288 [ C(L1D) ] = {
289 [ C(OP_READ) ] = {
290 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
291 [ C(RESULT_MISS) ] = 0,
292 },
293 [ C(OP_WRITE) ] = {
294 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
295 [ C(RESULT_MISS) ] = 0,
296 },
297 [ C(OP_PREFETCH) ] = {
298 [ C(RESULT_ACCESS) ] = 0x0,
299 [ C(RESULT_MISS) ] = 0,
300 },
301 },
302 [ C(L1I ) ] = {
303 [ C(OP_READ) ] = {
304 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
305 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
306 },
307 [ C(OP_WRITE) ] = {
308 [ C(RESULT_ACCESS) ] = -1,
309 [ C(RESULT_MISS) ] = -1,
310 },
311 [ C(OP_PREFETCH) ] = {
312 [ C(RESULT_ACCESS) ] = 0,
313 [ C(RESULT_MISS) ] = 0,
314 },
315 },
316 [ C(L2 ) ] = {
317 [ C(OP_READ) ] = {
318 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
319 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
320 },
321 [ C(OP_WRITE) ] = {
322 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
323 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
324 },
325 [ C(OP_PREFETCH) ] = {
326 [ C(RESULT_ACCESS) ] = 0,
327 [ C(RESULT_MISS) ] = 0,
328 },
329 },
330 [ C(DTLB) ] = {
331 [ C(OP_READ) ] = {
332 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
333 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
334 },
335 [ C(OP_WRITE) ] = {
336 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
337 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
338 },
339 [ C(OP_PREFETCH) ] = {
340 [ C(RESULT_ACCESS) ] = 0,
341 [ C(RESULT_MISS) ] = 0,
342 },
343 },
344 [ C(ITLB) ] = {
345 [ C(OP_READ) ] = {
346 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
347 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
348 },
349 [ C(OP_WRITE) ] = {
350 [ C(RESULT_ACCESS) ] = -1,
351 [ C(RESULT_MISS) ] = -1,
352 },
353 [ C(OP_PREFETCH) ] = {
354 [ C(RESULT_ACCESS) ] = -1,
355 [ C(RESULT_MISS) ] = -1,
356 },
357 },
358 [ C(BPU ) ] = {
359 [ C(OP_READ) ] = {
360 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
361 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
362 },
363 [ C(OP_WRITE) ] = {
364 [ C(RESULT_ACCESS) ] = -1,
365 [ C(RESULT_MISS) ] = -1,
366 },
367 [ C(OP_PREFETCH) ] = {
368 [ C(RESULT_ACCESS) ] = -1,
369 [ C(RESULT_MISS) ] = -1,
370 },
371 },
372 };
373
374 static u64 intel_pmu_raw_event(u64 event)
375 {
376 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
377 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
378 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
379 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
380 #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
381
382 #define CORE_EVNTSEL_MASK \
383 (CORE_EVNTSEL_EVENT_MASK | \
384 CORE_EVNTSEL_UNIT_MASK | \
385 CORE_EVNTSEL_EDGE_MASK | \
386 CORE_EVNTSEL_INV_MASK | \
387 CORE_EVNTSEL_COUNTER_MASK)
388
389 return event & CORE_EVNTSEL_MASK;
390 }
391
392 static const u64 amd_0f_hw_cache_event_ids
393 [PERF_COUNT_HW_CACHE_MAX]
394 [PERF_COUNT_HW_CACHE_OP_MAX]
395 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
396 {
397 [ C(L1D) ] = {
398 [ C(OP_READ) ] = {
399 [ C(RESULT_ACCESS) ] = 0,
400 [ C(RESULT_MISS) ] = 0,
401 },
402 [ C(OP_WRITE) ] = {
403 [ C(RESULT_ACCESS) ] = 0,
404 [ C(RESULT_MISS) ] = 0,
405 },
406 [ C(OP_PREFETCH) ] = {
407 [ C(RESULT_ACCESS) ] = 0,
408 [ C(RESULT_MISS) ] = 0,
409 },
410 },
411 [ C(L1I ) ] = {
412 [ C(OP_READ) ] = {
413 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
414 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
415 },
416 [ C(OP_WRITE) ] = {
417 [ C(RESULT_ACCESS) ] = -1,
418 [ C(RESULT_MISS) ] = -1,
419 },
420 [ C(OP_PREFETCH) ] = {
421 [ C(RESULT_ACCESS) ] = 0,
422 [ C(RESULT_MISS) ] = 0,
423 },
424 },
425 [ C(L2 ) ] = {
426 [ C(OP_READ) ] = {
427 [ C(RESULT_ACCESS) ] = 0,
428 [ C(RESULT_MISS) ] = 0,
429 },
430 [ C(OP_WRITE) ] = {
431 [ C(RESULT_ACCESS) ] = 0,
432 [ C(RESULT_MISS) ] = 0,
433 },
434 [ C(OP_PREFETCH) ] = {
435 [ C(RESULT_ACCESS) ] = 0,
436 [ C(RESULT_MISS) ] = 0,
437 },
438 },
439 [ C(DTLB) ] = {
440 [ C(OP_READ) ] = {
441 [ C(RESULT_ACCESS) ] = 0,
442 [ C(RESULT_MISS) ] = 0,
443 },
444 [ C(OP_WRITE) ] = {
445 [ C(RESULT_ACCESS) ] = 0,
446 [ C(RESULT_MISS) ] = 0,
447 },
448 [ C(OP_PREFETCH) ] = {
449 [ C(RESULT_ACCESS) ] = 0,
450 [ C(RESULT_MISS) ] = 0,
451 },
452 },
453 [ C(ITLB) ] = {
454 [ C(OP_READ) ] = {
455 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
456 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
457 },
458 [ C(OP_WRITE) ] = {
459 [ C(RESULT_ACCESS) ] = -1,
460 [ C(RESULT_MISS) ] = -1,
461 },
462 [ C(OP_PREFETCH) ] = {
463 [ C(RESULT_ACCESS) ] = -1,
464 [ C(RESULT_MISS) ] = -1,
465 },
466 },
467 [ C(BPU ) ] = {
468 [ C(OP_READ) ] = {
469 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
470 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
471 },
472 [ C(OP_WRITE) ] = {
473 [ C(RESULT_ACCESS) ] = -1,
474 [ C(RESULT_MISS) ] = -1,
475 },
476 [ C(OP_PREFETCH) ] = {
477 [ C(RESULT_ACCESS) ] = -1,
478 [ C(RESULT_MISS) ] = -1,
479 },
480 },
481 };
482
483 /*
484 * AMD Performance Monitor K7 and later.
485 */
486 static const u64 amd_perfmon_event_map[] =
487 {
488 [PERF_COUNT_CPU_CYCLES] = 0x0076,
489 [PERF_COUNT_INSTRUCTIONS] = 0x00c0,
490 [PERF_COUNT_CACHE_REFERENCES] = 0x0080,
491 [PERF_COUNT_CACHE_MISSES] = 0x0081,
492 [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4,
493 [PERF_COUNT_BRANCH_MISSES] = 0x00c5,
494 };
495
496 static u64 amd_pmu_event_map(int event)
497 {
498 return amd_perfmon_event_map[event];
499 }
500
501 static u64 amd_pmu_raw_event(u64 event)
502 {
503 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
504 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
505 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
506 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
507 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
508
509 #define K7_EVNTSEL_MASK \
510 (K7_EVNTSEL_EVENT_MASK | \
511 K7_EVNTSEL_UNIT_MASK | \
512 K7_EVNTSEL_EDGE_MASK | \
513 K7_EVNTSEL_INV_MASK | \
514 K7_EVNTSEL_COUNTER_MASK)
515
516 return event & K7_EVNTSEL_MASK;
517 }
518
519 /*
520 * Propagate counter elapsed time into the generic counter.
521 * Can only be executed on the CPU where the counter is active.
522 * Returns the delta events processed.
523 */
524 static u64
525 x86_perf_counter_update(struct perf_counter *counter,
526 struct hw_perf_counter *hwc, int idx)
527 {
528 int shift = 64 - x86_pmu.counter_bits;
529 u64 prev_raw_count, new_raw_count;
530 s64 delta;
531
532 /*
533 * Careful: an NMI might modify the previous counter value.
534 *
535 * Our tactic to handle this is to first atomically read and
536 * exchange a new raw count - then add that new-prev delta
537 * count to the generic counter atomically:
538 */
539 again:
540 prev_raw_count = atomic64_read(&hwc->prev_count);
541 rdmsrl(hwc->counter_base + idx, new_raw_count);
542
543 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
544 new_raw_count) != prev_raw_count)
545 goto again;
546
547 /*
548 * Now we have the new raw value and have updated the prev
549 * timestamp already. We can now calculate the elapsed delta
550 * (counter-)time and add that to the generic counter.
551 *
552 * Careful, not all hw sign-extends above the physical width
553 * of the count.
554 */
555 delta = (new_raw_count << shift) - (prev_raw_count << shift);
556 delta >>= shift;
557
558 atomic64_add(delta, &counter->count);
559 atomic64_sub(delta, &hwc->period_left);
560
561 return new_raw_count;
562 }
563
564 static atomic_t active_counters;
565 static DEFINE_MUTEX(pmc_reserve_mutex);
566
567 static bool reserve_pmc_hardware(void)
568 {
569 int i;
570
571 if (nmi_watchdog == NMI_LOCAL_APIC)
572 disable_lapic_nmi_watchdog();
573
574 for (i = 0; i < x86_pmu.num_counters; i++) {
575 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
576 goto perfctr_fail;
577 }
578
579 for (i = 0; i < x86_pmu.num_counters; i++) {
580 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
581 goto eventsel_fail;
582 }
583
584 return true;
585
586 eventsel_fail:
587 for (i--; i >= 0; i--)
588 release_evntsel_nmi(x86_pmu.eventsel + i);
589
590 i = x86_pmu.num_counters;
591
592 perfctr_fail:
593 for (i--; i >= 0; i--)
594 release_perfctr_nmi(x86_pmu.perfctr + i);
595
596 if (nmi_watchdog == NMI_LOCAL_APIC)
597 enable_lapic_nmi_watchdog();
598
599 return false;
600 }
601
602 static void release_pmc_hardware(void)
603 {
604 int i;
605
606 for (i = 0; i < x86_pmu.num_counters; i++) {
607 release_perfctr_nmi(x86_pmu.perfctr + i);
608 release_evntsel_nmi(x86_pmu.eventsel + i);
609 }
610
611 if (nmi_watchdog == NMI_LOCAL_APIC)
612 enable_lapic_nmi_watchdog();
613 }
614
615 static void hw_perf_counter_destroy(struct perf_counter *counter)
616 {
617 if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
618 release_pmc_hardware();
619 mutex_unlock(&pmc_reserve_mutex);
620 }
621 }
622
623 static inline int x86_pmu_initialized(void)
624 {
625 return x86_pmu.handle_irq != NULL;
626 }
627
628 static inline int
629 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
630 {
631 unsigned int cache_type, cache_op, cache_result;
632 u64 config, val;
633
634 config = attr->config;
635
636 cache_type = (config >> 0) & 0xff;
637 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
638 return -EINVAL;
639
640 cache_op = (config >> 8) & 0xff;
641 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
642 return -EINVAL;
643
644 cache_result = (config >> 16) & 0xff;
645 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
646 return -EINVAL;
647
648 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
649
650 if (val == 0)
651 return -ENOENT;
652
653 if (val == -1)
654 return -EINVAL;
655
656 hwc->config |= val;
657
658 return 0;
659 }
660
661 /*
662 * Setup the hardware configuration for a given attr_type
663 */
664 static int __hw_perf_counter_init(struct perf_counter *counter)
665 {
666 struct perf_counter_attr *attr = &counter->attr;
667 struct hw_perf_counter *hwc = &counter->hw;
668 int err;
669
670 if (!x86_pmu_initialized())
671 return -ENODEV;
672
673 err = 0;
674 if (!atomic_inc_not_zero(&active_counters)) {
675 mutex_lock(&pmc_reserve_mutex);
676 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
677 err = -EBUSY;
678 else
679 atomic_inc(&active_counters);
680 mutex_unlock(&pmc_reserve_mutex);
681 }
682 if (err)
683 return err;
684
685 /*
686 * Generate PMC IRQs:
687 * (keep 'enabled' bit clear for now)
688 */
689 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
690
691 /*
692 * Count user and OS events unless requested not to.
693 */
694 if (!attr->exclude_user)
695 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
696 if (!attr->exclude_kernel)
697 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
698
699 if (!hwc->sample_period)
700 hwc->sample_period = x86_pmu.max_period;
701
702 atomic64_set(&hwc->period_left, hwc->sample_period);
703 counter->destroy = hw_perf_counter_destroy;
704
705 /*
706 * Raw event type provide the config in the event structure
707 */
708 if (attr->type == PERF_TYPE_RAW) {
709 hwc->config |= x86_pmu.raw_event(attr->config);
710 return 0;
711 }
712
713 if (attr->type == PERF_TYPE_HW_CACHE)
714 return set_ext_hw_attr(hwc, attr);
715
716 if (attr->config >= x86_pmu.max_events)
717 return -EINVAL;
718 /*
719 * The generic map:
720 */
721 hwc->config |= x86_pmu.event_map(attr->config);
722
723 return 0;
724 }
725
726 static void intel_pmu_disable_all(void)
727 {
728 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
729 }
730
731 static void amd_pmu_disable_all(void)
732 {
733 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
734 int idx;
735
736 if (!cpuc->enabled)
737 return;
738
739 cpuc->enabled = 0;
740 /*
741 * ensure we write the disable before we start disabling the
742 * counters proper, so that amd_pmu_enable_counter() does the
743 * right thing.
744 */
745 barrier();
746
747 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
748 u64 val;
749
750 if (!test_bit(idx, cpuc->active_mask))
751 continue;
752 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
753 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
754 continue;
755 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
756 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
757 }
758 }
759
760 void hw_perf_disable(void)
761 {
762 if (!x86_pmu_initialized())
763 return;
764 return x86_pmu.disable_all();
765 }
766
767 static void intel_pmu_enable_all(void)
768 {
769 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
770 }
771
772 static void amd_pmu_enable_all(void)
773 {
774 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
775 int idx;
776
777 if (cpuc->enabled)
778 return;
779
780 cpuc->enabled = 1;
781 barrier();
782
783 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
784 u64 val;
785
786 if (!test_bit(idx, cpuc->active_mask))
787 continue;
788 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
789 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
790 continue;
791 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
792 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
793 }
794 }
795
796 void hw_perf_enable(void)
797 {
798 if (!x86_pmu_initialized())
799 return;
800 x86_pmu.enable_all();
801 }
802
803 static inline u64 intel_pmu_get_status(void)
804 {
805 u64 status;
806
807 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
808
809 return status;
810 }
811
812 static inline void intel_pmu_ack_status(u64 ack)
813 {
814 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
815 }
816
817 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
818 {
819 int err;
820 err = checking_wrmsrl(hwc->config_base + idx,
821 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
822 }
823
824 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
825 {
826 int err;
827 err = checking_wrmsrl(hwc->config_base + idx,
828 hwc->config);
829 }
830
831 static inline void
832 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
833 {
834 int idx = __idx - X86_PMC_IDX_FIXED;
835 u64 ctrl_val, mask;
836 int err;
837
838 mask = 0xfULL << (idx * 4);
839
840 rdmsrl(hwc->config_base, ctrl_val);
841 ctrl_val &= ~mask;
842 err = checking_wrmsrl(hwc->config_base, ctrl_val);
843 }
844
845 static inline void
846 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
847 {
848 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
849 intel_pmu_disable_fixed(hwc, idx);
850 return;
851 }
852
853 x86_pmu_disable_counter(hwc, idx);
854 }
855
856 static inline void
857 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
858 {
859 x86_pmu_disable_counter(hwc, idx);
860 }
861
862 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
863
864 /*
865 * Set the next IRQ period, based on the hwc->period_left value.
866 * To be called with the counter disabled in hw:
867 */
868 static int
869 x86_perf_counter_set_period(struct perf_counter *counter,
870 struct hw_perf_counter *hwc, int idx)
871 {
872 s64 left = atomic64_read(&hwc->period_left);
873 s64 period = hwc->sample_period;
874 int err, ret = 0;
875
876 /*
877 * If we are way outside a reasoable range then just skip forward:
878 */
879 if (unlikely(left <= -period)) {
880 left = period;
881 atomic64_set(&hwc->period_left, left);
882 ret = 1;
883 }
884
885 if (unlikely(left <= 0)) {
886 left += period;
887 atomic64_set(&hwc->period_left, left);
888 ret = 1;
889 }
890 /*
891 * Quirk: certain CPUs dont like it if just 1 event is left:
892 */
893 if (unlikely(left < 2))
894 left = 2;
895
896 if (left > x86_pmu.max_period)
897 left = x86_pmu.max_period;
898
899 per_cpu(prev_left[idx], smp_processor_id()) = left;
900
901 /*
902 * The hw counter starts counting from this counter offset,
903 * mark it to be able to extra future deltas:
904 */
905 atomic64_set(&hwc->prev_count, (u64)-left);
906
907 err = checking_wrmsrl(hwc->counter_base + idx,
908 (u64)(-left) & x86_pmu.counter_mask);
909
910 return ret;
911 }
912
913 static inline void
914 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
915 {
916 int idx = __idx - X86_PMC_IDX_FIXED;
917 u64 ctrl_val, bits, mask;
918 int err;
919
920 /*
921 * Enable IRQ generation (0x8),
922 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
923 * if requested:
924 */
925 bits = 0x8ULL;
926 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
927 bits |= 0x2;
928 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
929 bits |= 0x1;
930 bits <<= (idx * 4);
931 mask = 0xfULL << (idx * 4);
932
933 rdmsrl(hwc->config_base, ctrl_val);
934 ctrl_val &= ~mask;
935 ctrl_val |= bits;
936 err = checking_wrmsrl(hwc->config_base, ctrl_val);
937 }
938
939 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
940 {
941 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
942 intel_pmu_enable_fixed(hwc, idx);
943 return;
944 }
945
946 x86_pmu_enable_counter(hwc, idx);
947 }
948
949 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
950 {
951 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
952
953 if (cpuc->enabled)
954 x86_pmu_enable_counter(hwc, idx);
955 else
956 x86_pmu_disable_counter(hwc, idx);
957 }
958
959 static int
960 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
961 {
962 unsigned int event;
963
964 if (!x86_pmu.num_counters_fixed)
965 return -1;
966
967 event = hwc->config & ARCH_PERFMON_EVENT_MASK;
968
969 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_INSTRUCTIONS)))
970 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
971 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_CPU_CYCLES)))
972 return X86_PMC_IDX_FIXED_CPU_CYCLES;
973 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_BUS_CYCLES)))
974 return X86_PMC_IDX_FIXED_BUS_CYCLES;
975
976 return -1;
977 }
978
979 /*
980 * Find a PMC slot for the freshly enabled / scheduled in counter:
981 */
982 static int x86_pmu_enable(struct perf_counter *counter)
983 {
984 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
985 struct hw_perf_counter *hwc = &counter->hw;
986 int idx;
987
988 idx = fixed_mode_idx(counter, hwc);
989 if (idx >= 0) {
990 /*
991 * Try to get the fixed counter, if that is already taken
992 * then try to get a generic counter:
993 */
994 if (test_and_set_bit(idx, cpuc->used_mask))
995 goto try_generic;
996
997 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
998 /*
999 * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1000 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1001 */
1002 hwc->counter_base =
1003 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1004 hwc->idx = idx;
1005 } else {
1006 idx = hwc->idx;
1007 /* Try to get the previous generic counter again */
1008 if (test_and_set_bit(idx, cpuc->used_mask)) {
1009 try_generic:
1010 idx = find_first_zero_bit(cpuc->used_mask,
1011 x86_pmu.num_counters);
1012 if (idx == x86_pmu.num_counters)
1013 return -EAGAIN;
1014
1015 set_bit(idx, cpuc->used_mask);
1016 hwc->idx = idx;
1017 }
1018 hwc->config_base = x86_pmu.eventsel;
1019 hwc->counter_base = x86_pmu.perfctr;
1020 }
1021
1022 perf_counters_lapic_init();
1023
1024 x86_pmu.disable(hwc, idx);
1025
1026 cpuc->counters[idx] = counter;
1027 set_bit(idx, cpuc->active_mask);
1028
1029 x86_perf_counter_set_period(counter, hwc, idx);
1030 x86_pmu.enable(hwc, idx);
1031
1032 return 0;
1033 }
1034
1035 static void x86_pmu_unthrottle(struct perf_counter *counter)
1036 {
1037 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1038 struct hw_perf_counter *hwc = &counter->hw;
1039
1040 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1041 cpuc->counters[hwc->idx] != counter))
1042 return;
1043
1044 x86_pmu.enable(hwc, hwc->idx);
1045 }
1046
1047 void perf_counter_print_debug(void)
1048 {
1049 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1050 struct cpu_hw_counters *cpuc;
1051 unsigned long flags;
1052 int cpu, idx;
1053
1054 if (!x86_pmu.num_counters)
1055 return;
1056
1057 local_irq_save(flags);
1058
1059 cpu = smp_processor_id();
1060 cpuc = &per_cpu(cpu_hw_counters, cpu);
1061
1062 if (x86_pmu.version >= 2) {
1063 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1064 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1065 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1066 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1067
1068 pr_info("\n");
1069 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1070 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1071 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1072 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1073 }
1074 pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1075
1076 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1077 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1078 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1079
1080 prev_left = per_cpu(prev_left[idx], cpu);
1081
1082 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1083 cpu, idx, pmc_ctrl);
1084 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1085 cpu, idx, pmc_count);
1086 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1087 cpu, idx, prev_left);
1088 }
1089 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1090 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1091
1092 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1093 cpu, idx, pmc_count);
1094 }
1095 local_irq_restore(flags);
1096 }
1097
1098 static void x86_pmu_disable(struct perf_counter *counter)
1099 {
1100 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1101 struct hw_perf_counter *hwc = &counter->hw;
1102 int idx = hwc->idx;
1103
1104 /*
1105 * Must be done before we disable, otherwise the nmi handler
1106 * could reenable again:
1107 */
1108 clear_bit(idx, cpuc->active_mask);
1109 x86_pmu.disable(hwc, idx);
1110
1111 /*
1112 * Make sure the cleared pointer becomes visible before we
1113 * (potentially) free the counter:
1114 */
1115 barrier();
1116
1117 /*
1118 * Drain the remaining delta count out of a counter
1119 * that we are disabling:
1120 */
1121 x86_perf_counter_update(counter, hwc, idx);
1122 cpuc->counters[idx] = NULL;
1123 clear_bit(idx, cpuc->used_mask);
1124 }
1125
1126 /*
1127 * Save and restart an expired counter. Called by NMI contexts,
1128 * so it has to be careful about preempting normal counter ops:
1129 */
1130 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1131 {
1132 struct hw_perf_counter *hwc = &counter->hw;
1133 int idx = hwc->idx;
1134 int ret;
1135
1136 x86_perf_counter_update(counter, hwc, idx);
1137 ret = x86_perf_counter_set_period(counter, hwc, idx);
1138
1139 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1140 intel_pmu_enable_counter(hwc, idx);
1141
1142 return ret;
1143 }
1144
1145 static void intel_pmu_reset(void)
1146 {
1147 unsigned long flags;
1148 int idx;
1149
1150 if (!x86_pmu.num_counters)
1151 return;
1152
1153 local_irq_save(flags);
1154
1155 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1156
1157 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1158 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1159 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1160 }
1161 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1162 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1163 }
1164
1165 local_irq_restore(flags);
1166 }
1167
1168
1169 /*
1170 * This handler is triggered by the local APIC, so the APIC IRQ handling
1171 * rules apply:
1172 */
1173 static int intel_pmu_handle_irq(struct pt_regs *regs)
1174 {
1175 struct cpu_hw_counters *cpuc;
1176 struct cpu_hw_counters;
1177 int bit, cpu, loops;
1178 u64 ack, status;
1179
1180 cpu = smp_processor_id();
1181 cpuc = &per_cpu(cpu_hw_counters, cpu);
1182
1183 perf_disable();
1184 status = intel_pmu_get_status();
1185 if (!status) {
1186 perf_enable();
1187 return 0;
1188 }
1189
1190 loops = 0;
1191 again:
1192 if (++loops > 100) {
1193 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1194 perf_counter_print_debug();
1195 intel_pmu_reset();
1196 perf_enable();
1197 return 1;
1198 }
1199
1200 inc_irq_stat(apic_perf_irqs);
1201 ack = status;
1202 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1203 struct perf_counter *counter = cpuc->counters[bit];
1204
1205 clear_bit(bit, (unsigned long *) &status);
1206 if (!test_bit(bit, cpuc->active_mask))
1207 continue;
1208
1209 if (!intel_pmu_save_and_restart(counter))
1210 continue;
1211
1212 if (perf_counter_overflow(counter, 1, regs, 0))
1213 intel_pmu_disable_counter(&counter->hw, bit);
1214 }
1215
1216 intel_pmu_ack_status(ack);
1217
1218 /*
1219 * Repeat if there is more work to be done:
1220 */
1221 status = intel_pmu_get_status();
1222 if (status)
1223 goto again;
1224
1225 perf_enable();
1226
1227 return 1;
1228 }
1229
1230 static int amd_pmu_handle_irq(struct pt_regs *regs)
1231 {
1232 int cpu, idx, handled = 0;
1233 struct cpu_hw_counters *cpuc;
1234 struct perf_counter *counter;
1235 struct hw_perf_counter *hwc;
1236 u64 val;
1237
1238 cpu = smp_processor_id();
1239 cpuc = &per_cpu(cpu_hw_counters, cpu);
1240
1241 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1242 if (!test_bit(idx, cpuc->active_mask))
1243 continue;
1244
1245 counter = cpuc->counters[idx];
1246 hwc = &counter->hw;
1247
1248 val = x86_perf_counter_update(counter, hwc, idx);
1249 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1250 continue;
1251
1252 /* counter overflow */
1253 handled = 1;
1254 inc_irq_stat(apic_perf_irqs);
1255 if (!x86_perf_counter_set_period(counter, hwc, idx))
1256 continue;
1257
1258 if (perf_counter_overflow(counter, 1, regs, 0))
1259 amd_pmu_disable_counter(hwc, idx);
1260 }
1261
1262 return handled;
1263 }
1264
1265 void smp_perf_pending_interrupt(struct pt_regs *regs)
1266 {
1267 irq_enter();
1268 ack_APIC_irq();
1269 inc_irq_stat(apic_pending_irqs);
1270 perf_counter_do_pending();
1271 irq_exit();
1272 }
1273
1274 void set_perf_counter_pending(void)
1275 {
1276 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1277 }
1278
1279 void perf_counters_lapic_init(void)
1280 {
1281 if (!x86_pmu_initialized())
1282 return;
1283
1284 /*
1285 * Always use NMI for PMU
1286 */
1287 apic_write(APIC_LVTPC, APIC_DM_NMI);
1288 }
1289
1290 static int __kprobes
1291 perf_counter_nmi_handler(struct notifier_block *self,
1292 unsigned long cmd, void *__args)
1293 {
1294 struct die_args *args = __args;
1295 struct pt_regs *regs;
1296
1297 if (!atomic_read(&active_counters))
1298 return NOTIFY_DONE;
1299
1300 switch (cmd) {
1301 case DIE_NMI:
1302 case DIE_NMI_IPI:
1303 break;
1304
1305 default:
1306 return NOTIFY_DONE;
1307 }
1308
1309 regs = args->regs;
1310
1311 apic_write(APIC_LVTPC, APIC_DM_NMI);
1312 /*
1313 * Can't rely on the handled return value to say it was our NMI, two
1314 * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1315 *
1316 * If the first NMI handles both, the latter will be empty and daze
1317 * the CPU.
1318 */
1319 x86_pmu.handle_irq(regs);
1320
1321 return NOTIFY_STOP;
1322 }
1323
1324 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1325 .notifier_call = perf_counter_nmi_handler,
1326 .next = NULL,
1327 .priority = 1
1328 };
1329
1330 static struct x86_pmu intel_pmu = {
1331 .name = "Intel",
1332 .handle_irq = intel_pmu_handle_irq,
1333 .disable_all = intel_pmu_disable_all,
1334 .enable_all = intel_pmu_enable_all,
1335 .enable = intel_pmu_enable_counter,
1336 .disable = intel_pmu_disable_counter,
1337 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1338 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1339 .event_map = intel_pmu_event_map,
1340 .raw_event = intel_pmu_raw_event,
1341 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1342 /*
1343 * Intel PMCs cannot be accessed sanely above 32 bit width,
1344 * so we install an artificial 1<<31 period regardless of
1345 * the generic counter period:
1346 */
1347 .max_period = (1ULL << 31) - 1,
1348 };
1349
1350 static struct x86_pmu amd_pmu = {
1351 .name = "AMD",
1352 .handle_irq = amd_pmu_handle_irq,
1353 .disable_all = amd_pmu_disable_all,
1354 .enable_all = amd_pmu_enable_all,
1355 .enable = amd_pmu_enable_counter,
1356 .disable = amd_pmu_disable_counter,
1357 .eventsel = MSR_K7_EVNTSEL0,
1358 .perfctr = MSR_K7_PERFCTR0,
1359 .event_map = amd_pmu_event_map,
1360 .raw_event = amd_pmu_raw_event,
1361 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
1362 .num_counters = 4,
1363 .counter_bits = 48,
1364 .counter_mask = (1ULL << 48) - 1,
1365 /* use highest bit to detect overflow */
1366 .max_period = (1ULL << 47) - 1,
1367 };
1368
1369 static int intel_pmu_init(void)
1370 {
1371 union cpuid10_edx edx;
1372 union cpuid10_eax eax;
1373 unsigned int unused;
1374 unsigned int ebx;
1375 int version;
1376
1377 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
1378 return -ENODEV;
1379
1380 /*
1381 * Check whether the Architectural PerfMon supports
1382 * Branch Misses Retired Event or not.
1383 */
1384 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1385 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1386 return -ENODEV;
1387
1388 version = eax.split.version_id;
1389 if (version < 2)
1390 return -ENODEV;
1391
1392 x86_pmu = intel_pmu;
1393 x86_pmu.version = version;
1394 x86_pmu.num_counters = eax.split.num_counters;
1395 x86_pmu.counter_bits = eax.split.bit_width;
1396 x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
1397
1398 /*
1399 * Quirk: v2 perfmon does not report fixed-purpose counters, so
1400 * assume at least 3 counters:
1401 */
1402 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1403
1404 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1405
1406 /*
1407 * Install the hw-cache-events table:
1408 */
1409 switch (boot_cpu_data.x86_model) {
1410 case 17:
1411 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1412 sizeof(hw_cache_event_ids));
1413
1414 pr_cont("Core2 events, ");
1415 break;
1416 default:
1417 case 26:
1418 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1419 sizeof(hw_cache_event_ids));
1420
1421 pr_cont("Nehalem/Corei7 events, ");
1422 break;
1423 case 28:
1424 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1425 sizeof(hw_cache_event_ids));
1426
1427 pr_cont("Atom events, ");
1428 break;
1429 }
1430 return 0;
1431 }
1432
1433 static int amd_pmu_init(void)
1434 {
1435 x86_pmu = amd_pmu;
1436
1437 switch (boot_cpu_data.x86) {
1438 case 0x0f:
1439 case 0x10:
1440 case 0x11:
1441 memcpy(hw_cache_event_ids, amd_0f_hw_cache_event_ids,
1442 sizeof(hw_cache_event_ids));
1443
1444 pr_cont("AMD Family 0f/10/11 events, ");
1445 break;
1446 }
1447 return 0;
1448 }
1449
1450 void __init init_hw_perf_counters(void)
1451 {
1452 int err;
1453
1454 pr_info("Performance Counters: ");
1455
1456 switch (boot_cpu_data.x86_vendor) {
1457 case X86_VENDOR_INTEL:
1458 err = intel_pmu_init();
1459 break;
1460 case X86_VENDOR_AMD:
1461 err = amd_pmu_init();
1462 break;
1463 default:
1464 return;
1465 }
1466 if (err != 0) {
1467 pr_cont("no PMU driver, software counters only.\n");
1468 return;
1469 }
1470
1471 pr_cont("%s PMU driver.\n", x86_pmu.name);
1472
1473 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1474 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1475 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1476 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1477 }
1478 perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1479 perf_max_counters = x86_pmu.num_counters;
1480
1481 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1482 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1483 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1484 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1485 }
1486
1487 perf_counter_mask |=
1488 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1489
1490 perf_counters_lapic_init();
1491 register_die_notifier(&perf_counter_nmi_notifier);
1492
1493 pr_info("... version: %d\n", x86_pmu.version);
1494 pr_info("... bit width: %d\n", x86_pmu.counter_bits);
1495 pr_info("... generic counters: %d\n", x86_pmu.num_counters);
1496 pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
1497 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1498 pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
1499 pr_info("... counter mask: %016Lx\n", perf_counter_mask);
1500 }
1501
1502 static inline void x86_pmu_read(struct perf_counter *counter)
1503 {
1504 x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1505 }
1506
1507 static const struct pmu pmu = {
1508 .enable = x86_pmu_enable,
1509 .disable = x86_pmu_disable,
1510 .read = x86_pmu_read,
1511 .unthrottle = x86_pmu_unthrottle,
1512 };
1513
1514 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1515 {
1516 int err;
1517
1518 err = __hw_perf_counter_init(counter);
1519 if (err)
1520 return ERR_PTR(err);
1521
1522 return &pmu;
1523 }
1524
1525 /*
1526 * callchain support
1527 */
1528
1529 static inline
1530 void callchain_store(struct perf_callchain_entry *entry, unsigned long ip)
1531 {
1532 if (entry->nr < MAX_STACK_DEPTH)
1533 entry->ip[entry->nr++] = ip;
1534 }
1535
1536 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1537 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1538
1539
1540 static void
1541 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1542 {
1543 /* Ignore warnings */
1544 }
1545
1546 static void backtrace_warning(void *data, char *msg)
1547 {
1548 /* Ignore warnings */
1549 }
1550
1551 static int backtrace_stack(void *data, char *name)
1552 {
1553 /* Don't bother with IRQ stacks for now */
1554 return -1;
1555 }
1556
1557 static void backtrace_address(void *data, unsigned long addr, int reliable)
1558 {
1559 struct perf_callchain_entry *entry = data;
1560
1561 if (reliable)
1562 callchain_store(entry, addr);
1563 }
1564
1565 static const struct stacktrace_ops backtrace_ops = {
1566 .warning = backtrace_warning,
1567 .warning_symbol = backtrace_warning_symbol,
1568 .stack = backtrace_stack,
1569 .address = backtrace_address,
1570 };
1571
1572 static void
1573 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1574 {
1575 unsigned long bp;
1576 char *stack;
1577 int nr = entry->nr;
1578
1579 callchain_store(entry, instruction_pointer(regs));
1580
1581 stack = ((char *)regs + sizeof(struct pt_regs));
1582 #ifdef CONFIG_FRAME_POINTER
1583 bp = frame_pointer(regs);
1584 #else
1585 bp = 0;
1586 #endif
1587
1588 dump_trace(NULL, regs, (void *)stack, bp, &backtrace_ops, entry);
1589
1590 entry->kernel = entry->nr - nr;
1591 }
1592
1593
1594 struct stack_frame {
1595 const void __user *next_fp;
1596 unsigned long return_address;
1597 };
1598
1599 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1600 {
1601 int ret;
1602
1603 if (!access_ok(VERIFY_READ, fp, sizeof(*frame)))
1604 return 0;
1605
1606 ret = 1;
1607 pagefault_disable();
1608 if (__copy_from_user_inatomic(frame, fp, sizeof(*frame)))
1609 ret = 0;
1610 pagefault_enable();
1611
1612 return ret;
1613 }
1614
1615 static void
1616 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1617 {
1618 struct stack_frame frame;
1619 const void __user *fp;
1620 int nr = entry->nr;
1621
1622 regs = (struct pt_regs *)current->thread.sp0 - 1;
1623 fp = (void __user *)regs->bp;
1624
1625 callchain_store(entry, regs->ip);
1626
1627 while (entry->nr < MAX_STACK_DEPTH) {
1628 frame.next_fp = NULL;
1629 frame.return_address = 0;
1630
1631 if (!copy_stack_frame(fp, &frame))
1632 break;
1633
1634 if ((unsigned long)fp < user_stack_pointer(regs))
1635 break;
1636
1637 callchain_store(entry, frame.return_address);
1638 fp = frame.next_fp;
1639 }
1640
1641 entry->user = entry->nr - nr;
1642 }
1643
1644 static void
1645 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1646 {
1647 int is_user;
1648
1649 if (!regs)
1650 return;
1651
1652 is_user = user_mode(regs);
1653
1654 if (!current || current->pid == 0)
1655 return;
1656
1657 if (is_user && current->state != TASK_RUNNING)
1658 return;
1659
1660 if (!is_user)
1661 perf_callchain_kernel(regs, entry);
1662
1663 if (current->mm)
1664 perf_callchain_user(regs, entry);
1665 }
1666
1667 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1668 {
1669 struct perf_callchain_entry *entry;
1670
1671 if (in_nmi())
1672 entry = &__get_cpu_var(nmi_entry);
1673 else
1674 entry = &__get_cpu_var(irq_entry);
1675
1676 entry->nr = 0;
1677 entry->hv = 0;
1678 entry->kernel = 0;
1679 entry->user = 0;
1680
1681 perf_do_callchain(regs, entry);
1682
1683 return entry;
1684 }
This page took 0.100261 seconds and 5 git commands to generate.