x86, perf_counter, bts: Fail if BTS is not available
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2 * Performance counter x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 *
11 * For licencing details see kernel-base/COPYING
12 */
13
14 #include <linux/perf_counter.h>
15 #include <linux/capability.h>
16 #include <linux/notifier.h>
17 #include <linux/hardirq.h>
18 #include <linux/kprobes.h>
19 #include <linux/module.h>
20 #include <linux/kdebug.h>
21 #include <linux/sched.h>
22 #include <linux/uaccess.h>
23 #include <linux/highmem.h>
24 #include <linux/cpu.h>
25
26 #include <asm/apic.h>
27 #include <asm/stacktrace.h>
28 #include <asm/nmi.h>
29
30 static u64 perf_counter_mask __read_mostly;
31
32 /* The maximal number of PEBS counters: */
33 #define MAX_PEBS_COUNTERS 4
34
35 /* The size of a BTS record in bytes: */
36 #define BTS_RECORD_SIZE 24
37
38 /* The size of a per-cpu BTS buffer in bytes: */
39 #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 1024)
40
41 /* The BTS overflow threshold in bytes from the end of the buffer: */
42 #define BTS_OVFL_TH (BTS_RECORD_SIZE * 64)
43
44
45 /*
46 * Bits in the debugctlmsr controlling branch tracing.
47 */
48 #define X86_DEBUGCTL_TR (1 << 6)
49 #define X86_DEBUGCTL_BTS (1 << 7)
50 #define X86_DEBUGCTL_BTINT (1 << 8)
51 #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
52 #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
53
54 /*
55 * A debug store configuration.
56 *
57 * We only support architectures that use 64bit fields.
58 */
59 struct debug_store {
60 u64 bts_buffer_base;
61 u64 bts_index;
62 u64 bts_absolute_maximum;
63 u64 bts_interrupt_threshold;
64 u64 pebs_buffer_base;
65 u64 pebs_index;
66 u64 pebs_absolute_maximum;
67 u64 pebs_interrupt_threshold;
68 u64 pebs_counter_reset[MAX_PEBS_COUNTERS];
69 };
70
71 struct cpu_hw_counters {
72 struct perf_counter *counters[X86_PMC_IDX_MAX];
73 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
74 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
75 unsigned long interrupts;
76 int enabled;
77 struct debug_store *ds;
78 };
79
80 /*
81 * struct x86_pmu - generic x86 pmu
82 */
83 struct x86_pmu {
84 const char *name;
85 int version;
86 int (*handle_irq)(struct pt_regs *);
87 void (*disable_all)(void);
88 void (*enable_all)(void);
89 void (*enable)(struct hw_perf_counter *, int);
90 void (*disable)(struct hw_perf_counter *, int);
91 unsigned eventsel;
92 unsigned perfctr;
93 u64 (*event_map)(int);
94 u64 (*raw_event)(u64);
95 int max_events;
96 int num_counters;
97 int num_counters_fixed;
98 int counter_bits;
99 u64 counter_mask;
100 int apic;
101 u64 max_period;
102 u64 intel_ctrl;
103 void (*enable_bts)(u64 config);
104 void (*disable_bts)(void);
105 };
106
107 static struct x86_pmu x86_pmu __read_mostly;
108
109 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
110 .enabled = 1,
111 };
112
113 /*
114 * Not sure about some of these
115 */
116 static const u64 p6_perfmon_event_map[] =
117 {
118 [PERF_COUNT_HW_CPU_CYCLES] = 0x0079,
119 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
120 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e,
121 [PERF_COUNT_HW_CACHE_MISSES] = 0x012e,
122 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
123 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
124 [PERF_COUNT_HW_BUS_CYCLES] = 0x0062,
125 };
126
127 static u64 p6_pmu_event_map(int event)
128 {
129 return p6_perfmon_event_map[event];
130 }
131
132 /*
133 * Counter setting that is specified not to count anything.
134 * We use this to effectively disable a counter.
135 *
136 * L2_RQSTS with 0 MESI unit mask.
137 */
138 #define P6_NOP_COUNTER 0x0000002EULL
139
140 static u64 p6_pmu_raw_event(u64 event)
141 {
142 #define P6_EVNTSEL_EVENT_MASK 0x000000FFULL
143 #define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL
144 #define P6_EVNTSEL_EDGE_MASK 0x00040000ULL
145 #define P6_EVNTSEL_INV_MASK 0x00800000ULL
146 #define P6_EVNTSEL_COUNTER_MASK 0xFF000000ULL
147
148 #define P6_EVNTSEL_MASK \
149 (P6_EVNTSEL_EVENT_MASK | \
150 P6_EVNTSEL_UNIT_MASK | \
151 P6_EVNTSEL_EDGE_MASK | \
152 P6_EVNTSEL_INV_MASK | \
153 P6_EVNTSEL_COUNTER_MASK)
154
155 return event & P6_EVNTSEL_MASK;
156 }
157
158
159 /*
160 * Intel PerfMon v3. Used on Core2 and later.
161 */
162 static const u64 intel_perfmon_event_map[] =
163 {
164 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
165 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
166 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
167 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
168 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
169 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
170 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
171 };
172
173 static u64 intel_pmu_event_map(int event)
174 {
175 return intel_perfmon_event_map[event];
176 }
177
178 /*
179 * Generalized hw caching related event table, filled
180 * in on a per model basis. A value of 0 means
181 * 'not supported', -1 means 'event makes no sense on
182 * this CPU', any other value means the raw event
183 * ID.
184 */
185
186 #define C(x) PERF_COUNT_HW_CACHE_##x
187
188 static u64 __read_mostly hw_cache_event_ids
189 [PERF_COUNT_HW_CACHE_MAX]
190 [PERF_COUNT_HW_CACHE_OP_MAX]
191 [PERF_COUNT_HW_CACHE_RESULT_MAX];
192
193 static const u64 nehalem_hw_cache_event_ids
194 [PERF_COUNT_HW_CACHE_MAX]
195 [PERF_COUNT_HW_CACHE_OP_MAX]
196 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
197 {
198 [ C(L1D) ] = {
199 [ C(OP_READ) ] = {
200 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
201 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
202 },
203 [ C(OP_WRITE) ] = {
204 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
205 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
206 },
207 [ C(OP_PREFETCH) ] = {
208 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
209 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
210 },
211 },
212 [ C(L1I ) ] = {
213 [ C(OP_READ) ] = {
214 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
215 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
216 },
217 [ C(OP_WRITE) ] = {
218 [ C(RESULT_ACCESS) ] = -1,
219 [ C(RESULT_MISS) ] = -1,
220 },
221 [ C(OP_PREFETCH) ] = {
222 [ C(RESULT_ACCESS) ] = 0x0,
223 [ C(RESULT_MISS) ] = 0x0,
224 },
225 },
226 [ C(LL ) ] = {
227 [ C(OP_READ) ] = {
228 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
229 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
230 },
231 [ C(OP_WRITE) ] = {
232 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
233 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
234 },
235 [ C(OP_PREFETCH) ] = {
236 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
237 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
238 },
239 },
240 [ C(DTLB) ] = {
241 [ C(OP_READ) ] = {
242 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
243 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
244 },
245 [ C(OP_WRITE) ] = {
246 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
247 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
248 },
249 [ C(OP_PREFETCH) ] = {
250 [ C(RESULT_ACCESS) ] = 0x0,
251 [ C(RESULT_MISS) ] = 0x0,
252 },
253 },
254 [ C(ITLB) ] = {
255 [ C(OP_READ) ] = {
256 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
257 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
258 },
259 [ C(OP_WRITE) ] = {
260 [ C(RESULT_ACCESS) ] = -1,
261 [ C(RESULT_MISS) ] = -1,
262 },
263 [ C(OP_PREFETCH) ] = {
264 [ C(RESULT_ACCESS) ] = -1,
265 [ C(RESULT_MISS) ] = -1,
266 },
267 },
268 [ C(BPU ) ] = {
269 [ C(OP_READ) ] = {
270 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
271 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
272 },
273 [ C(OP_WRITE) ] = {
274 [ C(RESULT_ACCESS) ] = -1,
275 [ C(RESULT_MISS) ] = -1,
276 },
277 [ C(OP_PREFETCH) ] = {
278 [ C(RESULT_ACCESS) ] = -1,
279 [ C(RESULT_MISS) ] = -1,
280 },
281 },
282 };
283
284 static const u64 core2_hw_cache_event_ids
285 [PERF_COUNT_HW_CACHE_MAX]
286 [PERF_COUNT_HW_CACHE_OP_MAX]
287 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
288 {
289 [ C(L1D) ] = {
290 [ C(OP_READ) ] = {
291 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
292 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
293 },
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
296 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
297 },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
300 [ C(RESULT_MISS) ] = 0,
301 },
302 },
303 [ C(L1I ) ] = {
304 [ C(OP_READ) ] = {
305 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
306 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
307 },
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = -1,
310 [ C(RESULT_MISS) ] = -1,
311 },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = 0,
314 [ C(RESULT_MISS) ] = 0,
315 },
316 },
317 [ C(LL ) ] = {
318 [ C(OP_READ) ] = {
319 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
320 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
321 },
322 [ C(OP_WRITE) ] = {
323 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
324 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
325 },
326 [ C(OP_PREFETCH) ] = {
327 [ C(RESULT_ACCESS) ] = 0,
328 [ C(RESULT_MISS) ] = 0,
329 },
330 },
331 [ C(DTLB) ] = {
332 [ C(OP_READ) ] = {
333 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
334 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
335 },
336 [ C(OP_WRITE) ] = {
337 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
338 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
339 },
340 [ C(OP_PREFETCH) ] = {
341 [ C(RESULT_ACCESS) ] = 0,
342 [ C(RESULT_MISS) ] = 0,
343 },
344 },
345 [ C(ITLB) ] = {
346 [ C(OP_READ) ] = {
347 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
348 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
349 },
350 [ C(OP_WRITE) ] = {
351 [ C(RESULT_ACCESS) ] = -1,
352 [ C(RESULT_MISS) ] = -1,
353 },
354 [ C(OP_PREFETCH) ] = {
355 [ C(RESULT_ACCESS) ] = -1,
356 [ C(RESULT_MISS) ] = -1,
357 },
358 },
359 [ C(BPU ) ] = {
360 [ C(OP_READ) ] = {
361 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
362 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
363 },
364 [ C(OP_WRITE) ] = {
365 [ C(RESULT_ACCESS) ] = -1,
366 [ C(RESULT_MISS) ] = -1,
367 },
368 [ C(OP_PREFETCH) ] = {
369 [ C(RESULT_ACCESS) ] = -1,
370 [ C(RESULT_MISS) ] = -1,
371 },
372 },
373 };
374
375 static const u64 atom_hw_cache_event_ids
376 [PERF_COUNT_HW_CACHE_MAX]
377 [PERF_COUNT_HW_CACHE_OP_MAX]
378 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
379 {
380 [ C(L1D) ] = {
381 [ C(OP_READ) ] = {
382 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
383 [ C(RESULT_MISS) ] = 0,
384 },
385 [ C(OP_WRITE) ] = {
386 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
387 [ C(RESULT_MISS) ] = 0,
388 },
389 [ C(OP_PREFETCH) ] = {
390 [ C(RESULT_ACCESS) ] = 0x0,
391 [ C(RESULT_MISS) ] = 0,
392 },
393 },
394 [ C(L1I ) ] = {
395 [ C(OP_READ) ] = {
396 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
397 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
398 },
399 [ C(OP_WRITE) ] = {
400 [ C(RESULT_ACCESS) ] = -1,
401 [ C(RESULT_MISS) ] = -1,
402 },
403 [ C(OP_PREFETCH) ] = {
404 [ C(RESULT_ACCESS) ] = 0,
405 [ C(RESULT_MISS) ] = 0,
406 },
407 },
408 [ C(LL ) ] = {
409 [ C(OP_READ) ] = {
410 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
411 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
412 },
413 [ C(OP_WRITE) ] = {
414 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
415 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
416 },
417 [ C(OP_PREFETCH) ] = {
418 [ C(RESULT_ACCESS) ] = 0,
419 [ C(RESULT_MISS) ] = 0,
420 },
421 },
422 [ C(DTLB) ] = {
423 [ C(OP_READ) ] = {
424 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
425 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
426 },
427 [ C(OP_WRITE) ] = {
428 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
429 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
430 },
431 [ C(OP_PREFETCH) ] = {
432 [ C(RESULT_ACCESS) ] = 0,
433 [ C(RESULT_MISS) ] = 0,
434 },
435 },
436 [ C(ITLB) ] = {
437 [ C(OP_READ) ] = {
438 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
439 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
440 },
441 [ C(OP_WRITE) ] = {
442 [ C(RESULT_ACCESS) ] = -1,
443 [ C(RESULT_MISS) ] = -1,
444 },
445 [ C(OP_PREFETCH) ] = {
446 [ C(RESULT_ACCESS) ] = -1,
447 [ C(RESULT_MISS) ] = -1,
448 },
449 },
450 [ C(BPU ) ] = {
451 [ C(OP_READ) ] = {
452 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
453 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
454 },
455 [ C(OP_WRITE) ] = {
456 [ C(RESULT_ACCESS) ] = -1,
457 [ C(RESULT_MISS) ] = -1,
458 },
459 [ C(OP_PREFETCH) ] = {
460 [ C(RESULT_ACCESS) ] = -1,
461 [ C(RESULT_MISS) ] = -1,
462 },
463 },
464 };
465
466 static u64 intel_pmu_raw_event(u64 event)
467 {
468 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
469 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
470 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
471 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
472 #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
473
474 #define CORE_EVNTSEL_MASK \
475 (CORE_EVNTSEL_EVENT_MASK | \
476 CORE_EVNTSEL_UNIT_MASK | \
477 CORE_EVNTSEL_EDGE_MASK | \
478 CORE_EVNTSEL_INV_MASK | \
479 CORE_EVNTSEL_COUNTER_MASK)
480
481 return event & CORE_EVNTSEL_MASK;
482 }
483
484 static const u64 amd_hw_cache_event_ids
485 [PERF_COUNT_HW_CACHE_MAX]
486 [PERF_COUNT_HW_CACHE_OP_MAX]
487 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
488 {
489 [ C(L1D) ] = {
490 [ C(OP_READ) ] = {
491 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
492 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
493 },
494 [ C(OP_WRITE) ] = {
495 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
496 [ C(RESULT_MISS) ] = 0,
497 },
498 [ C(OP_PREFETCH) ] = {
499 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
500 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
501 },
502 },
503 [ C(L1I ) ] = {
504 [ C(OP_READ) ] = {
505 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
506 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
507 },
508 [ C(OP_WRITE) ] = {
509 [ C(RESULT_ACCESS) ] = -1,
510 [ C(RESULT_MISS) ] = -1,
511 },
512 [ C(OP_PREFETCH) ] = {
513 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
514 [ C(RESULT_MISS) ] = 0,
515 },
516 },
517 [ C(LL ) ] = {
518 [ C(OP_READ) ] = {
519 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
520 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
521 },
522 [ C(OP_WRITE) ] = {
523 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
524 [ C(RESULT_MISS) ] = 0,
525 },
526 [ C(OP_PREFETCH) ] = {
527 [ C(RESULT_ACCESS) ] = 0,
528 [ C(RESULT_MISS) ] = 0,
529 },
530 },
531 [ C(DTLB) ] = {
532 [ C(OP_READ) ] = {
533 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
534 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
535 },
536 [ C(OP_WRITE) ] = {
537 [ C(RESULT_ACCESS) ] = 0,
538 [ C(RESULT_MISS) ] = 0,
539 },
540 [ C(OP_PREFETCH) ] = {
541 [ C(RESULT_ACCESS) ] = 0,
542 [ C(RESULT_MISS) ] = 0,
543 },
544 },
545 [ C(ITLB) ] = {
546 [ C(OP_READ) ] = {
547 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
548 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
549 },
550 [ C(OP_WRITE) ] = {
551 [ C(RESULT_ACCESS) ] = -1,
552 [ C(RESULT_MISS) ] = -1,
553 },
554 [ C(OP_PREFETCH) ] = {
555 [ C(RESULT_ACCESS) ] = -1,
556 [ C(RESULT_MISS) ] = -1,
557 },
558 },
559 [ C(BPU ) ] = {
560 [ C(OP_READ) ] = {
561 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
562 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
563 },
564 [ C(OP_WRITE) ] = {
565 [ C(RESULT_ACCESS) ] = -1,
566 [ C(RESULT_MISS) ] = -1,
567 },
568 [ C(OP_PREFETCH) ] = {
569 [ C(RESULT_ACCESS) ] = -1,
570 [ C(RESULT_MISS) ] = -1,
571 },
572 },
573 };
574
575 /*
576 * AMD Performance Monitor K7 and later.
577 */
578 static const u64 amd_perfmon_event_map[] =
579 {
580 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
581 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
582 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
583 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
584 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
585 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
586 };
587
588 static u64 amd_pmu_event_map(int event)
589 {
590 return amd_perfmon_event_map[event];
591 }
592
593 static u64 amd_pmu_raw_event(u64 event)
594 {
595 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
596 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
597 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
598 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
599 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
600
601 #define K7_EVNTSEL_MASK \
602 (K7_EVNTSEL_EVENT_MASK | \
603 K7_EVNTSEL_UNIT_MASK | \
604 K7_EVNTSEL_EDGE_MASK | \
605 K7_EVNTSEL_INV_MASK | \
606 K7_EVNTSEL_COUNTER_MASK)
607
608 return event & K7_EVNTSEL_MASK;
609 }
610
611 /*
612 * Propagate counter elapsed time into the generic counter.
613 * Can only be executed on the CPU where the counter is active.
614 * Returns the delta events processed.
615 */
616 static u64
617 x86_perf_counter_update(struct perf_counter *counter,
618 struct hw_perf_counter *hwc, int idx)
619 {
620 int shift = 64 - x86_pmu.counter_bits;
621 u64 prev_raw_count, new_raw_count;
622 s64 delta;
623
624 if (idx == X86_PMC_IDX_FIXED_BTS)
625 return 0;
626
627 /*
628 * Careful: an NMI might modify the previous counter value.
629 *
630 * Our tactic to handle this is to first atomically read and
631 * exchange a new raw count - then add that new-prev delta
632 * count to the generic counter atomically:
633 */
634 again:
635 prev_raw_count = atomic64_read(&hwc->prev_count);
636 rdmsrl(hwc->counter_base + idx, new_raw_count);
637
638 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
639 new_raw_count) != prev_raw_count)
640 goto again;
641
642 /*
643 * Now we have the new raw value and have updated the prev
644 * timestamp already. We can now calculate the elapsed delta
645 * (counter-)time and add that to the generic counter.
646 *
647 * Careful, not all hw sign-extends above the physical width
648 * of the count.
649 */
650 delta = (new_raw_count << shift) - (prev_raw_count << shift);
651 delta >>= shift;
652
653 atomic64_add(delta, &counter->count);
654 atomic64_sub(delta, &hwc->period_left);
655
656 return new_raw_count;
657 }
658
659 static atomic_t active_counters;
660 static DEFINE_MUTEX(pmc_reserve_mutex);
661
662 static bool reserve_pmc_hardware(void)
663 {
664 #ifdef CONFIG_X86_LOCAL_APIC
665 int i;
666
667 if (nmi_watchdog == NMI_LOCAL_APIC)
668 disable_lapic_nmi_watchdog();
669
670 for (i = 0; i < x86_pmu.num_counters; i++) {
671 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
672 goto perfctr_fail;
673 }
674
675 for (i = 0; i < x86_pmu.num_counters; i++) {
676 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
677 goto eventsel_fail;
678 }
679 #endif
680
681 return true;
682
683 #ifdef CONFIG_X86_LOCAL_APIC
684 eventsel_fail:
685 for (i--; i >= 0; i--)
686 release_evntsel_nmi(x86_pmu.eventsel + i);
687
688 i = x86_pmu.num_counters;
689
690 perfctr_fail:
691 for (i--; i >= 0; i--)
692 release_perfctr_nmi(x86_pmu.perfctr + i);
693
694 if (nmi_watchdog == NMI_LOCAL_APIC)
695 enable_lapic_nmi_watchdog();
696
697 return false;
698 #endif
699 }
700
701 static void release_pmc_hardware(void)
702 {
703 #ifdef CONFIG_X86_LOCAL_APIC
704 int i;
705
706 for (i = 0; i < x86_pmu.num_counters; i++) {
707 release_perfctr_nmi(x86_pmu.perfctr + i);
708 release_evntsel_nmi(x86_pmu.eventsel + i);
709 }
710
711 if (nmi_watchdog == NMI_LOCAL_APIC)
712 enable_lapic_nmi_watchdog();
713 #endif
714 }
715
716 static inline bool bts_available(void)
717 {
718 return x86_pmu.enable_bts != NULL;
719 }
720
721 static inline void init_debug_store_on_cpu(int cpu)
722 {
723 struct debug_store *ds = per_cpu(cpu_hw_counters, cpu).ds;
724
725 if (!ds)
726 return;
727
728 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
729 (u32)((u64)(long)ds), (u32)((u64)(long)ds >> 32));
730 }
731
732 static inline void fini_debug_store_on_cpu(int cpu)
733 {
734 if (!per_cpu(cpu_hw_counters, cpu).ds)
735 return;
736
737 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
738 }
739
740 static void release_bts_hardware(void)
741 {
742 int cpu;
743
744 if (!bts_available())
745 return;
746
747 get_online_cpus();
748
749 for_each_online_cpu(cpu)
750 fini_debug_store_on_cpu(cpu);
751
752 for_each_possible_cpu(cpu) {
753 struct debug_store *ds = per_cpu(cpu_hw_counters, cpu).ds;
754
755 if (!ds)
756 continue;
757
758 per_cpu(cpu_hw_counters, cpu).ds = NULL;
759
760 kfree((void *)(long)ds->bts_buffer_base);
761 kfree(ds);
762 }
763
764 put_online_cpus();
765 }
766
767 static int reserve_bts_hardware(void)
768 {
769 int cpu, err = 0;
770
771 if (!bts_available())
772 return 0;
773
774 get_online_cpus();
775
776 for_each_possible_cpu(cpu) {
777 struct debug_store *ds;
778 void *buffer;
779
780 err = -ENOMEM;
781 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
782 if (unlikely(!buffer))
783 break;
784
785 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
786 if (unlikely(!ds)) {
787 kfree(buffer);
788 break;
789 }
790
791 ds->bts_buffer_base = (u64)(long)buffer;
792 ds->bts_index = ds->bts_buffer_base;
793 ds->bts_absolute_maximum =
794 ds->bts_buffer_base + BTS_BUFFER_SIZE;
795 ds->bts_interrupt_threshold =
796 ds->bts_absolute_maximum - BTS_OVFL_TH;
797
798 per_cpu(cpu_hw_counters, cpu).ds = ds;
799 err = 0;
800 }
801
802 if (err)
803 release_bts_hardware();
804 else {
805 for_each_online_cpu(cpu)
806 init_debug_store_on_cpu(cpu);
807 }
808
809 put_online_cpus();
810
811 return err;
812 }
813
814 static void hw_perf_counter_destroy(struct perf_counter *counter)
815 {
816 if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
817 release_pmc_hardware();
818 release_bts_hardware();
819 mutex_unlock(&pmc_reserve_mutex);
820 }
821 }
822
823 static inline int x86_pmu_initialized(void)
824 {
825 return x86_pmu.handle_irq != NULL;
826 }
827
828 static inline int
829 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
830 {
831 unsigned int cache_type, cache_op, cache_result;
832 u64 config, val;
833
834 config = attr->config;
835
836 cache_type = (config >> 0) & 0xff;
837 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
838 return -EINVAL;
839
840 cache_op = (config >> 8) & 0xff;
841 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
842 return -EINVAL;
843
844 cache_result = (config >> 16) & 0xff;
845 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
846 return -EINVAL;
847
848 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
849
850 if (val == 0)
851 return -ENOENT;
852
853 if (val == -1)
854 return -EINVAL;
855
856 hwc->config |= val;
857
858 return 0;
859 }
860
861 static void intel_pmu_enable_bts(u64 config)
862 {
863 unsigned long debugctlmsr;
864
865 debugctlmsr = get_debugctlmsr();
866
867 debugctlmsr |= X86_DEBUGCTL_TR;
868 debugctlmsr |= X86_DEBUGCTL_BTS;
869 debugctlmsr |= X86_DEBUGCTL_BTINT;
870
871 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
872 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_OS;
873
874 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
875 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_USR;
876
877 update_debugctlmsr(debugctlmsr);
878 }
879
880 static void intel_pmu_disable_bts(void)
881 {
882 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
883 unsigned long debugctlmsr;
884
885 if (!cpuc->ds)
886 return;
887
888 debugctlmsr = get_debugctlmsr();
889
890 debugctlmsr &=
891 ~(X86_DEBUGCTL_TR | X86_DEBUGCTL_BTS | X86_DEBUGCTL_BTINT |
892 X86_DEBUGCTL_BTS_OFF_OS | X86_DEBUGCTL_BTS_OFF_USR);
893
894 update_debugctlmsr(debugctlmsr);
895 }
896
897 /*
898 * Setup the hardware configuration for a given attr_type
899 */
900 static int __hw_perf_counter_init(struct perf_counter *counter)
901 {
902 struct perf_counter_attr *attr = &counter->attr;
903 struct hw_perf_counter *hwc = &counter->hw;
904 u64 config;
905 int err;
906
907 if (!x86_pmu_initialized())
908 return -ENODEV;
909
910 err = 0;
911 if (!atomic_inc_not_zero(&active_counters)) {
912 mutex_lock(&pmc_reserve_mutex);
913 if (atomic_read(&active_counters) == 0) {
914 if (!reserve_pmc_hardware())
915 err = -EBUSY;
916 else
917 err = reserve_bts_hardware();
918 }
919 if (!err)
920 atomic_inc(&active_counters);
921 mutex_unlock(&pmc_reserve_mutex);
922 }
923 if (err)
924 return err;
925
926 /*
927 * Generate PMC IRQs:
928 * (keep 'enabled' bit clear for now)
929 */
930 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
931
932 /*
933 * Count user and OS events unless requested not to.
934 */
935 if (!attr->exclude_user)
936 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
937 if (!attr->exclude_kernel)
938 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
939
940 if (!hwc->sample_period) {
941 hwc->sample_period = x86_pmu.max_period;
942 hwc->last_period = hwc->sample_period;
943 atomic64_set(&hwc->period_left, hwc->sample_period);
944 } else {
945 /*
946 * If we have a PMU initialized but no APIC
947 * interrupts, we cannot sample hardware
948 * counters (user-space has to fall back and
949 * sample via a hrtimer based software counter):
950 */
951 if (!x86_pmu.apic)
952 return -EOPNOTSUPP;
953 }
954
955 counter->destroy = hw_perf_counter_destroy;
956
957 /*
958 * Raw event type provide the config in the event structure
959 */
960 if (attr->type == PERF_TYPE_RAW) {
961 hwc->config |= x86_pmu.raw_event(attr->config);
962 return 0;
963 }
964
965 if (attr->type == PERF_TYPE_HW_CACHE)
966 return set_ext_hw_attr(hwc, attr);
967
968 if (attr->config >= x86_pmu.max_events)
969 return -EINVAL;
970
971 /*
972 * The generic map:
973 */
974 config = x86_pmu.event_map(attr->config);
975
976 if (config == 0)
977 return -ENOENT;
978
979 if (config == -1LL)
980 return -EINVAL;
981
982 /*
983 * Branch tracing:
984 */
985 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
986 (hwc->sample_period == 1) && !bts_available())
987 return -EOPNOTSUPP;
988
989 hwc->config |= config;
990
991 return 0;
992 }
993
994 static void p6_pmu_disable_all(void)
995 {
996 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
997 u64 val;
998
999 if (!cpuc->enabled)
1000 return;
1001
1002 cpuc->enabled = 0;
1003 barrier();
1004
1005 /* p6 only has one enable register */
1006 rdmsrl(MSR_P6_EVNTSEL0, val);
1007 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1008 wrmsrl(MSR_P6_EVNTSEL0, val);
1009 }
1010
1011 static void intel_pmu_disable_all(void)
1012 {
1013 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1014
1015 if (!cpuc->enabled)
1016 return;
1017
1018 cpuc->enabled = 0;
1019 barrier();
1020
1021 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1022
1023 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1024 intel_pmu_disable_bts();
1025 }
1026
1027 static void amd_pmu_disable_all(void)
1028 {
1029 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1030 int idx;
1031
1032 if (!cpuc->enabled)
1033 return;
1034
1035 cpuc->enabled = 0;
1036 /*
1037 * ensure we write the disable before we start disabling the
1038 * counters proper, so that amd_pmu_enable_counter() does the
1039 * right thing.
1040 */
1041 barrier();
1042
1043 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1044 u64 val;
1045
1046 if (!test_bit(idx, cpuc->active_mask))
1047 continue;
1048 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
1049 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
1050 continue;
1051 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1052 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
1053 }
1054 }
1055
1056 void hw_perf_disable(void)
1057 {
1058 if (!x86_pmu_initialized())
1059 return;
1060 return x86_pmu.disable_all();
1061 }
1062
1063 static void p6_pmu_enable_all(void)
1064 {
1065 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1066 unsigned long val;
1067
1068 if (cpuc->enabled)
1069 return;
1070
1071 cpuc->enabled = 1;
1072 barrier();
1073
1074 /* p6 only has one enable register */
1075 rdmsrl(MSR_P6_EVNTSEL0, val);
1076 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1077 wrmsrl(MSR_P6_EVNTSEL0, val);
1078 }
1079
1080 static void intel_pmu_enable_all(void)
1081 {
1082 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1083
1084 if (cpuc->enabled)
1085 return;
1086
1087 cpuc->enabled = 1;
1088 barrier();
1089
1090 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1091
1092 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1093 struct perf_counter *counter =
1094 cpuc->counters[X86_PMC_IDX_FIXED_BTS];
1095
1096 if (WARN_ON_ONCE(!counter))
1097 return;
1098
1099 intel_pmu_enable_bts(counter->hw.config);
1100 }
1101 }
1102
1103 static void amd_pmu_enable_all(void)
1104 {
1105 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1106 int idx;
1107
1108 if (cpuc->enabled)
1109 return;
1110
1111 cpuc->enabled = 1;
1112 barrier();
1113
1114 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1115 struct perf_counter *counter = cpuc->counters[idx];
1116 u64 val;
1117
1118 if (!test_bit(idx, cpuc->active_mask))
1119 continue;
1120
1121 val = counter->hw.config;
1122 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1123 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
1124 }
1125 }
1126
1127 void hw_perf_enable(void)
1128 {
1129 if (!x86_pmu_initialized())
1130 return;
1131 x86_pmu.enable_all();
1132 }
1133
1134 static inline u64 intel_pmu_get_status(void)
1135 {
1136 u64 status;
1137
1138 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1139
1140 return status;
1141 }
1142
1143 static inline void intel_pmu_ack_status(u64 ack)
1144 {
1145 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1146 }
1147
1148 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1149 {
1150 (void)checking_wrmsrl(hwc->config_base + idx,
1151 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
1152 }
1153
1154 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
1155 {
1156 (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
1157 }
1158
1159 static inline void
1160 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
1161 {
1162 int idx = __idx - X86_PMC_IDX_FIXED;
1163 u64 ctrl_val, mask;
1164
1165 mask = 0xfULL << (idx * 4);
1166
1167 rdmsrl(hwc->config_base, ctrl_val);
1168 ctrl_val &= ~mask;
1169 (void)checking_wrmsrl(hwc->config_base, ctrl_val);
1170 }
1171
1172 static inline void
1173 p6_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
1174 {
1175 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1176 u64 val = P6_NOP_COUNTER;
1177
1178 if (cpuc->enabled)
1179 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1180
1181 (void)checking_wrmsrl(hwc->config_base + idx, val);
1182 }
1183
1184 static inline void
1185 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
1186 {
1187 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1188 intel_pmu_disable_bts();
1189 return;
1190 }
1191
1192 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1193 intel_pmu_disable_fixed(hwc, idx);
1194 return;
1195 }
1196
1197 x86_pmu_disable_counter(hwc, idx);
1198 }
1199
1200 static inline void
1201 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
1202 {
1203 x86_pmu_disable_counter(hwc, idx);
1204 }
1205
1206 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
1207
1208 /*
1209 * Set the next IRQ period, based on the hwc->period_left value.
1210 * To be called with the counter disabled in hw:
1211 */
1212 static int
1213 x86_perf_counter_set_period(struct perf_counter *counter,
1214 struct hw_perf_counter *hwc, int idx)
1215 {
1216 s64 left = atomic64_read(&hwc->period_left);
1217 s64 period = hwc->sample_period;
1218 int err, ret = 0;
1219
1220 if (idx == X86_PMC_IDX_FIXED_BTS)
1221 return 0;
1222
1223 /*
1224 * If we are way outside a reasoable range then just skip forward:
1225 */
1226 if (unlikely(left <= -period)) {
1227 left = period;
1228 atomic64_set(&hwc->period_left, left);
1229 hwc->last_period = period;
1230 ret = 1;
1231 }
1232
1233 if (unlikely(left <= 0)) {
1234 left += period;
1235 atomic64_set(&hwc->period_left, left);
1236 hwc->last_period = period;
1237 ret = 1;
1238 }
1239 /*
1240 * Quirk: certain CPUs dont like it if just 1 event is left:
1241 */
1242 if (unlikely(left < 2))
1243 left = 2;
1244
1245 if (left > x86_pmu.max_period)
1246 left = x86_pmu.max_period;
1247
1248 per_cpu(prev_left[idx], smp_processor_id()) = left;
1249
1250 /*
1251 * The hw counter starts counting from this counter offset,
1252 * mark it to be able to extra future deltas:
1253 */
1254 atomic64_set(&hwc->prev_count, (u64)-left);
1255
1256 err = checking_wrmsrl(hwc->counter_base + idx,
1257 (u64)(-left) & x86_pmu.counter_mask);
1258
1259 perf_counter_update_userpage(counter);
1260
1261 return ret;
1262 }
1263
1264 static inline void
1265 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
1266 {
1267 int idx = __idx - X86_PMC_IDX_FIXED;
1268 u64 ctrl_val, bits, mask;
1269 int err;
1270
1271 /*
1272 * Enable IRQ generation (0x8),
1273 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1274 * if requested:
1275 */
1276 bits = 0x8ULL;
1277 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1278 bits |= 0x2;
1279 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1280 bits |= 0x1;
1281 bits <<= (idx * 4);
1282 mask = 0xfULL << (idx * 4);
1283
1284 rdmsrl(hwc->config_base, ctrl_val);
1285 ctrl_val &= ~mask;
1286 ctrl_val |= bits;
1287 err = checking_wrmsrl(hwc->config_base, ctrl_val);
1288 }
1289
1290 static void p6_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1291 {
1292 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1293 u64 val;
1294
1295 val = hwc->config;
1296 if (cpuc->enabled)
1297 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1298
1299 (void)checking_wrmsrl(hwc->config_base + idx, val);
1300 }
1301
1302
1303 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1304 {
1305 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1306 if (!__get_cpu_var(cpu_hw_counters).enabled)
1307 return;
1308
1309 intel_pmu_enable_bts(hwc->config);
1310 return;
1311 }
1312
1313 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1314 intel_pmu_enable_fixed(hwc, idx);
1315 return;
1316 }
1317
1318 x86_pmu_enable_counter(hwc, idx);
1319 }
1320
1321 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1322 {
1323 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1324
1325 if (cpuc->enabled)
1326 x86_pmu_enable_counter(hwc, idx);
1327 }
1328
1329 static int
1330 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
1331 {
1332 unsigned int event;
1333
1334 event = hwc->config & ARCH_PERFMON_EVENT_MASK;
1335
1336 if (unlikely((event ==
1337 x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS)) &&
1338 (hwc->sample_period == 1)))
1339 return X86_PMC_IDX_FIXED_BTS;
1340
1341 if (!x86_pmu.num_counters_fixed)
1342 return -1;
1343
1344 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
1345 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
1346 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
1347 return X86_PMC_IDX_FIXED_CPU_CYCLES;
1348 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
1349 return X86_PMC_IDX_FIXED_BUS_CYCLES;
1350
1351 return -1;
1352 }
1353
1354 /*
1355 * Find a PMC slot for the freshly enabled / scheduled in counter:
1356 */
1357 static int x86_pmu_enable(struct perf_counter *counter)
1358 {
1359 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1360 struct hw_perf_counter *hwc = &counter->hw;
1361 int idx;
1362
1363 idx = fixed_mode_idx(counter, hwc);
1364 if (idx == X86_PMC_IDX_FIXED_BTS) {
1365 /* BTS is already occupied. */
1366 if (test_and_set_bit(idx, cpuc->used_mask))
1367 return -EAGAIN;
1368
1369 hwc->config_base = 0;
1370 hwc->counter_base = 0;
1371 hwc->idx = idx;
1372 } else if (idx >= 0) {
1373 /*
1374 * Try to get the fixed counter, if that is already taken
1375 * then try to get a generic counter:
1376 */
1377 if (test_and_set_bit(idx, cpuc->used_mask))
1378 goto try_generic;
1379
1380 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1381 /*
1382 * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1383 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1384 */
1385 hwc->counter_base =
1386 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1387 hwc->idx = idx;
1388 } else {
1389 idx = hwc->idx;
1390 /* Try to get the previous generic counter again */
1391 if (test_and_set_bit(idx, cpuc->used_mask)) {
1392 try_generic:
1393 idx = find_first_zero_bit(cpuc->used_mask,
1394 x86_pmu.num_counters);
1395 if (idx == x86_pmu.num_counters)
1396 return -EAGAIN;
1397
1398 set_bit(idx, cpuc->used_mask);
1399 hwc->idx = idx;
1400 }
1401 hwc->config_base = x86_pmu.eventsel;
1402 hwc->counter_base = x86_pmu.perfctr;
1403 }
1404
1405 perf_counters_lapic_init();
1406
1407 x86_pmu.disable(hwc, idx);
1408
1409 cpuc->counters[idx] = counter;
1410 set_bit(idx, cpuc->active_mask);
1411
1412 x86_perf_counter_set_period(counter, hwc, idx);
1413 x86_pmu.enable(hwc, idx);
1414
1415 perf_counter_update_userpage(counter);
1416
1417 return 0;
1418 }
1419
1420 static void x86_pmu_unthrottle(struct perf_counter *counter)
1421 {
1422 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1423 struct hw_perf_counter *hwc = &counter->hw;
1424
1425 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1426 cpuc->counters[hwc->idx] != counter))
1427 return;
1428
1429 x86_pmu.enable(hwc, hwc->idx);
1430 }
1431
1432 void perf_counter_print_debug(void)
1433 {
1434 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1435 struct cpu_hw_counters *cpuc;
1436 unsigned long flags;
1437 int cpu, idx;
1438
1439 if (!x86_pmu.num_counters)
1440 return;
1441
1442 local_irq_save(flags);
1443
1444 cpu = smp_processor_id();
1445 cpuc = &per_cpu(cpu_hw_counters, cpu);
1446
1447 if (x86_pmu.version >= 2) {
1448 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1449 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1450 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1451 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1452
1453 pr_info("\n");
1454 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1455 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1456 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1457 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1458 }
1459 pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1460
1461 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1462 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1463 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1464
1465 prev_left = per_cpu(prev_left[idx], cpu);
1466
1467 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1468 cpu, idx, pmc_ctrl);
1469 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1470 cpu, idx, pmc_count);
1471 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1472 cpu, idx, prev_left);
1473 }
1474 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1475 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1476
1477 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1478 cpu, idx, pmc_count);
1479 }
1480 local_irq_restore(flags);
1481 }
1482
1483 static void intel_pmu_drain_bts_buffer(struct cpu_hw_counters *cpuc,
1484 struct perf_sample_data *data)
1485 {
1486 struct debug_store *ds = cpuc->ds;
1487 struct bts_record {
1488 u64 from;
1489 u64 to;
1490 u64 flags;
1491 };
1492 struct perf_counter *counter = cpuc->counters[X86_PMC_IDX_FIXED_BTS];
1493 unsigned long orig_ip = data->regs->ip;
1494 u64 at;
1495
1496 if (!counter)
1497 return;
1498
1499 if (!ds)
1500 return;
1501
1502 for (at = ds->bts_buffer_base;
1503 at < ds->bts_index;
1504 at += sizeof(struct bts_record)) {
1505 struct bts_record *rec = (struct bts_record *)(long)at;
1506
1507 data->regs->ip = rec->from;
1508 data->addr = rec->to;
1509
1510 perf_counter_output(counter, 1, data);
1511 }
1512
1513 ds->bts_index = ds->bts_buffer_base;
1514
1515 data->regs->ip = orig_ip;
1516 data->addr = 0;
1517
1518 /* There's new data available. */
1519 counter->pending_kill = POLL_IN;
1520 }
1521
1522 static void x86_pmu_disable(struct perf_counter *counter)
1523 {
1524 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1525 struct hw_perf_counter *hwc = &counter->hw;
1526 int idx = hwc->idx;
1527
1528 /*
1529 * Must be done before we disable, otherwise the nmi handler
1530 * could reenable again:
1531 */
1532 clear_bit(idx, cpuc->active_mask);
1533 x86_pmu.disable(hwc, idx);
1534
1535 /*
1536 * Make sure the cleared pointer becomes visible before we
1537 * (potentially) free the counter:
1538 */
1539 barrier();
1540
1541 /*
1542 * Drain the remaining delta count out of a counter
1543 * that we are disabling:
1544 */
1545 x86_perf_counter_update(counter, hwc, idx);
1546
1547 /* Drain the remaining BTS records. */
1548 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1549 struct perf_sample_data data;
1550 struct pt_regs regs;
1551
1552 data.regs = &regs;
1553 intel_pmu_drain_bts_buffer(cpuc, &data);
1554 }
1555 cpuc->counters[idx] = NULL;
1556 clear_bit(idx, cpuc->used_mask);
1557
1558 perf_counter_update_userpage(counter);
1559 }
1560
1561 /*
1562 * Save and restart an expired counter. Called by NMI contexts,
1563 * so it has to be careful about preempting normal counter ops:
1564 */
1565 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1566 {
1567 struct hw_perf_counter *hwc = &counter->hw;
1568 int idx = hwc->idx;
1569 int ret;
1570
1571 x86_perf_counter_update(counter, hwc, idx);
1572 ret = x86_perf_counter_set_period(counter, hwc, idx);
1573
1574 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1575 intel_pmu_enable_counter(hwc, idx);
1576
1577 return ret;
1578 }
1579
1580 static void intel_pmu_reset(void)
1581 {
1582 struct debug_store *ds = __get_cpu_var(cpu_hw_counters).ds;
1583 unsigned long flags;
1584 int idx;
1585
1586 if (!x86_pmu.num_counters)
1587 return;
1588
1589 local_irq_save(flags);
1590
1591 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1592
1593 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1594 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1595 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1596 }
1597 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1598 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1599 }
1600 if (ds)
1601 ds->bts_index = ds->bts_buffer_base;
1602
1603 local_irq_restore(flags);
1604 }
1605
1606 static int p6_pmu_handle_irq(struct pt_regs *regs)
1607 {
1608 struct perf_sample_data data;
1609 struct cpu_hw_counters *cpuc;
1610 struct perf_counter *counter;
1611 struct hw_perf_counter *hwc;
1612 int idx, handled = 0;
1613 u64 val;
1614
1615 data.regs = regs;
1616 data.addr = 0;
1617
1618 cpuc = &__get_cpu_var(cpu_hw_counters);
1619
1620 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1621 if (!test_bit(idx, cpuc->active_mask))
1622 continue;
1623
1624 counter = cpuc->counters[idx];
1625 hwc = &counter->hw;
1626
1627 val = x86_perf_counter_update(counter, hwc, idx);
1628 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1629 continue;
1630
1631 /*
1632 * counter overflow
1633 */
1634 handled = 1;
1635 data.period = counter->hw.last_period;
1636
1637 if (!x86_perf_counter_set_period(counter, hwc, idx))
1638 continue;
1639
1640 if (perf_counter_overflow(counter, 1, &data))
1641 p6_pmu_disable_counter(hwc, idx);
1642 }
1643
1644 if (handled)
1645 inc_irq_stat(apic_perf_irqs);
1646
1647 return handled;
1648 }
1649
1650 /*
1651 * This handler is triggered by the local APIC, so the APIC IRQ handling
1652 * rules apply:
1653 */
1654 static int intel_pmu_handle_irq(struct pt_regs *regs)
1655 {
1656 struct perf_sample_data data;
1657 struct cpu_hw_counters *cpuc;
1658 int bit, loops;
1659 u64 ack, status;
1660
1661 data.regs = regs;
1662 data.addr = 0;
1663
1664 cpuc = &__get_cpu_var(cpu_hw_counters);
1665
1666 perf_disable();
1667 intel_pmu_drain_bts_buffer(cpuc, &data);
1668 status = intel_pmu_get_status();
1669 if (!status) {
1670 perf_enable();
1671 return 0;
1672 }
1673
1674 loops = 0;
1675 again:
1676 if (++loops > 100) {
1677 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1678 perf_counter_print_debug();
1679 intel_pmu_reset();
1680 perf_enable();
1681 return 1;
1682 }
1683
1684 inc_irq_stat(apic_perf_irqs);
1685 ack = status;
1686 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1687 struct perf_counter *counter = cpuc->counters[bit];
1688
1689 clear_bit(bit, (unsigned long *) &status);
1690 if (!test_bit(bit, cpuc->active_mask))
1691 continue;
1692
1693 if (!intel_pmu_save_and_restart(counter))
1694 continue;
1695
1696 data.period = counter->hw.last_period;
1697
1698 if (perf_counter_overflow(counter, 1, &data))
1699 intel_pmu_disable_counter(&counter->hw, bit);
1700 }
1701
1702 intel_pmu_ack_status(ack);
1703
1704 /*
1705 * Repeat if there is more work to be done:
1706 */
1707 status = intel_pmu_get_status();
1708 if (status)
1709 goto again;
1710
1711 perf_enable();
1712
1713 return 1;
1714 }
1715
1716 static int amd_pmu_handle_irq(struct pt_regs *regs)
1717 {
1718 struct perf_sample_data data;
1719 struct cpu_hw_counters *cpuc;
1720 struct perf_counter *counter;
1721 struct hw_perf_counter *hwc;
1722 int idx, handled = 0;
1723 u64 val;
1724
1725 data.regs = regs;
1726 data.addr = 0;
1727
1728 cpuc = &__get_cpu_var(cpu_hw_counters);
1729
1730 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1731 if (!test_bit(idx, cpuc->active_mask))
1732 continue;
1733
1734 counter = cpuc->counters[idx];
1735 hwc = &counter->hw;
1736
1737 val = x86_perf_counter_update(counter, hwc, idx);
1738 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1739 continue;
1740
1741 /*
1742 * counter overflow
1743 */
1744 handled = 1;
1745 data.period = counter->hw.last_period;
1746
1747 if (!x86_perf_counter_set_period(counter, hwc, idx))
1748 continue;
1749
1750 if (perf_counter_overflow(counter, 1, &data))
1751 amd_pmu_disable_counter(hwc, idx);
1752 }
1753
1754 if (handled)
1755 inc_irq_stat(apic_perf_irqs);
1756
1757 return handled;
1758 }
1759
1760 void smp_perf_pending_interrupt(struct pt_regs *regs)
1761 {
1762 irq_enter();
1763 ack_APIC_irq();
1764 inc_irq_stat(apic_pending_irqs);
1765 perf_counter_do_pending();
1766 irq_exit();
1767 }
1768
1769 void set_perf_counter_pending(void)
1770 {
1771 #ifdef CONFIG_X86_LOCAL_APIC
1772 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1773 #endif
1774 }
1775
1776 void perf_counters_lapic_init(void)
1777 {
1778 #ifdef CONFIG_X86_LOCAL_APIC
1779 if (!x86_pmu.apic || !x86_pmu_initialized())
1780 return;
1781
1782 /*
1783 * Always use NMI for PMU
1784 */
1785 apic_write(APIC_LVTPC, APIC_DM_NMI);
1786 #endif
1787 }
1788
1789 static int __kprobes
1790 perf_counter_nmi_handler(struct notifier_block *self,
1791 unsigned long cmd, void *__args)
1792 {
1793 struct die_args *args = __args;
1794 struct pt_regs *regs;
1795
1796 if (!atomic_read(&active_counters))
1797 return NOTIFY_DONE;
1798
1799 switch (cmd) {
1800 case DIE_NMI:
1801 case DIE_NMI_IPI:
1802 break;
1803
1804 default:
1805 return NOTIFY_DONE;
1806 }
1807
1808 regs = args->regs;
1809
1810 #ifdef CONFIG_X86_LOCAL_APIC
1811 apic_write(APIC_LVTPC, APIC_DM_NMI);
1812 #endif
1813 /*
1814 * Can't rely on the handled return value to say it was our NMI, two
1815 * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1816 *
1817 * If the first NMI handles both, the latter will be empty and daze
1818 * the CPU.
1819 */
1820 x86_pmu.handle_irq(regs);
1821
1822 return NOTIFY_STOP;
1823 }
1824
1825 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1826 .notifier_call = perf_counter_nmi_handler,
1827 .next = NULL,
1828 .priority = 1
1829 };
1830
1831 static struct x86_pmu p6_pmu = {
1832 .name = "p6",
1833 .handle_irq = p6_pmu_handle_irq,
1834 .disable_all = p6_pmu_disable_all,
1835 .enable_all = p6_pmu_enable_all,
1836 .enable = p6_pmu_enable_counter,
1837 .disable = p6_pmu_disable_counter,
1838 .eventsel = MSR_P6_EVNTSEL0,
1839 .perfctr = MSR_P6_PERFCTR0,
1840 .event_map = p6_pmu_event_map,
1841 .raw_event = p6_pmu_raw_event,
1842 .max_events = ARRAY_SIZE(p6_perfmon_event_map),
1843 .apic = 1,
1844 .max_period = (1ULL << 31) - 1,
1845 .version = 0,
1846 .num_counters = 2,
1847 /*
1848 * Counters have 40 bits implemented. However they are designed such
1849 * that bits [32-39] are sign extensions of bit 31. As such the
1850 * effective width of a counter for P6-like PMU is 32 bits only.
1851 *
1852 * See IA-32 Intel Architecture Software developer manual Vol 3B
1853 */
1854 .counter_bits = 32,
1855 .counter_mask = (1ULL << 32) - 1,
1856 };
1857
1858 static struct x86_pmu intel_pmu = {
1859 .name = "Intel",
1860 .handle_irq = intel_pmu_handle_irq,
1861 .disable_all = intel_pmu_disable_all,
1862 .enable_all = intel_pmu_enable_all,
1863 .enable = intel_pmu_enable_counter,
1864 .disable = intel_pmu_disable_counter,
1865 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1866 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1867 .event_map = intel_pmu_event_map,
1868 .raw_event = intel_pmu_raw_event,
1869 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1870 .apic = 1,
1871 /*
1872 * Intel PMCs cannot be accessed sanely above 32 bit width,
1873 * so we install an artificial 1<<31 period regardless of
1874 * the generic counter period:
1875 */
1876 .max_period = (1ULL << 31) - 1,
1877 .enable_bts = intel_pmu_enable_bts,
1878 .disable_bts = intel_pmu_disable_bts,
1879 };
1880
1881 static struct x86_pmu amd_pmu = {
1882 .name = "AMD",
1883 .handle_irq = amd_pmu_handle_irq,
1884 .disable_all = amd_pmu_disable_all,
1885 .enable_all = amd_pmu_enable_all,
1886 .enable = amd_pmu_enable_counter,
1887 .disable = amd_pmu_disable_counter,
1888 .eventsel = MSR_K7_EVNTSEL0,
1889 .perfctr = MSR_K7_PERFCTR0,
1890 .event_map = amd_pmu_event_map,
1891 .raw_event = amd_pmu_raw_event,
1892 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
1893 .num_counters = 4,
1894 .counter_bits = 48,
1895 .counter_mask = (1ULL << 48) - 1,
1896 .apic = 1,
1897 /* use highest bit to detect overflow */
1898 .max_period = (1ULL << 47) - 1,
1899 };
1900
1901 static int p6_pmu_init(void)
1902 {
1903 switch (boot_cpu_data.x86_model) {
1904 case 1:
1905 case 3: /* Pentium Pro */
1906 case 5:
1907 case 6: /* Pentium II */
1908 case 7:
1909 case 8:
1910 case 11: /* Pentium III */
1911 break;
1912 case 9:
1913 case 13:
1914 /* Pentium M */
1915 break;
1916 default:
1917 pr_cont("unsupported p6 CPU model %d ",
1918 boot_cpu_data.x86_model);
1919 return -ENODEV;
1920 }
1921
1922 x86_pmu = p6_pmu;
1923
1924 if (!cpu_has_apic) {
1925 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1926 pr_info("no hardware sampling interrupt available.\n");
1927 x86_pmu.apic = 0;
1928 }
1929
1930 return 0;
1931 }
1932
1933 static int intel_pmu_init(void)
1934 {
1935 union cpuid10_edx edx;
1936 union cpuid10_eax eax;
1937 unsigned int unused;
1938 unsigned int ebx;
1939 int version;
1940
1941 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1942 /* check for P6 processor family */
1943 if (boot_cpu_data.x86 == 6) {
1944 return p6_pmu_init();
1945 } else {
1946 return -ENODEV;
1947 }
1948 }
1949
1950 /*
1951 * Check whether the Architectural PerfMon supports
1952 * Branch Misses Retired Event or not.
1953 */
1954 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1955 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1956 return -ENODEV;
1957
1958 version = eax.split.version_id;
1959 if (version < 2)
1960 return -ENODEV;
1961
1962 x86_pmu = intel_pmu;
1963 x86_pmu.version = version;
1964 x86_pmu.num_counters = eax.split.num_counters;
1965 x86_pmu.counter_bits = eax.split.bit_width;
1966 x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
1967
1968 /*
1969 * Quirk: v2 perfmon does not report fixed-purpose counters, so
1970 * assume at least 3 counters:
1971 */
1972 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1973
1974 /*
1975 * Install the hw-cache-events table:
1976 */
1977 switch (boot_cpu_data.x86_model) {
1978 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1979 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1980 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1981 case 29: /* six-core 45 nm xeon "Dunnington" */
1982 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1983 sizeof(hw_cache_event_ids));
1984
1985 pr_cont("Core2 events, ");
1986 break;
1987 default:
1988 case 26:
1989 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1990 sizeof(hw_cache_event_ids));
1991
1992 pr_cont("Nehalem/Corei7 events, ");
1993 break;
1994 case 28:
1995 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1996 sizeof(hw_cache_event_ids));
1997
1998 pr_cont("Atom events, ");
1999 break;
2000 }
2001 return 0;
2002 }
2003
2004 static int amd_pmu_init(void)
2005 {
2006 /* Performance-monitoring supported from K7 and later: */
2007 if (boot_cpu_data.x86 < 6)
2008 return -ENODEV;
2009
2010 x86_pmu = amd_pmu;
2011
2012 /* Events are common for all AMDs */
2013 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
2014 sizeof(hw_cache_event_ids));
2015
2016 return 0;
2017 }
2018
2019 void __init init_hw_perf_counters(void)
2020 {
2021 int err;
2022
2023 pr_info("Performance Counters: ");
2024
2025 switch (boot_cpu_data.x86_vendor) {
2026 case X86_VENDOR_INTEL:
2027 err = intel_pmu_init();
2028 break;
2029 case X86_VENDOR_AMD:
2030 err = amd_pmu_init();
2031 break;
2032 default:
2033 return;
2034 }
2035 if (err != 0) {
2036 pr_cont("no PMU driver, software counters only.\n");
2037 return;
2038 }
2039
2040 pr_cont("%s PMU driver.\n", x86_pmu.name);
2041
2042 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
2043 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
2044 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
2045 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
2046 }
2047 perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
2048 perf_max_counters = x86_pmu.num_counters;
2049
2050 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
2051 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
2052 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
2053 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
2054 }
2055
2056 perf_counter_mask |=
2057 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
2058 x86_pmu.intel_ctrl = perf_counter_mask;
2059
2060 perf_counters_lapic_init();
2061 register_die_notifier(&perf_counter_nmi_notifier);
2062
2063 pr_info("... version: %d\n", x86_pmu.version);
2064 pr_info("... bit width: %d\n", x86_pmu.counter_bits);
2065 pr_info("... generic counters: %d\n", x86_pmu.num_counters);
2066 pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
2067 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2068 pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
2069 pr_info("... counter mask: %016Lx\n", perf_counter_mask);
2070 }
2071
2072 static inline void x86_pmu_read(struct perf_counter *counter)
2073 {
2074 x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
2075 }
2076
2077 static const struct pmu pmu = {
2078 .enable = x86_pmu_enable,
2079 .disable = x86_pmu_disable,
2080 .read = x86_pmu_read,
2081 .unthrottle = x86_pmu_unthrottle,
2082 };
2083
2084 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
2085 {
2086 int err;
2087
2088 err = __hw_perf_counter_init(counter);
2089 if (err)
2090 return ERR_PTR(err);
2091
2092 return &pmu;
2093 }
2094
2095 /*
2096 * callchain support
2097 */
2098
2099 static inline
2100 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
2101 {
2102 if (entry->nr < PERF_MAX_STACK_DEPTH)
2103 entry->ip[entry->nr++] = ip;
2104 }
2105
2106 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
2107 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
2108 static DEFINE_PER_CPU(int, in_nmi_frame);
2109
2110
2111 static void
2112 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
2113 {
2114 /* Ignore warnings */
2115 }
2116
2117 static void backtrace_warning(void *data, char *msg)
2118 {
2119 /* Ignore warnings */
2120 }
2121
2122 static int backtrace_stack(void *data, char *name)
2123 {
2124 per_cpu(in_nmi_frame, smp_processor_id()) =
2125 x86_is_stack_id(NMI_STACK, name);
2126
2127 return 0;
2128 }
2129
2130 static void backtrace_address(void *data, unsigned long addr, int reliable)
2131 {
2132 struct perf_callchain_entry *entry = data;
2133
2134 if (per_cpu(in_nmi_frame, smp_processor_id()))
2135 return;
2136
2137 if (reliable)
2138 callchain_store(entry, addr);
2139 }
2140
2141 static const struct stacktrace_ops backtrace_ops = {
2142 .warning = backtrace_warning,
2143 .warning_symbol = backtrace_warning_symbol,
2144 .stack = backtrace_stack,
2145 .address = backtrace_address,
2146 };
2147
2148 #include "../dumpstack.h"
2149
2150 static void
2151 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
2152 {
2153 callchain_store(entry, PERF_CONTEXT_KERNEL);
2154 callchain_store(entry, regs->ip);
2155
2156 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2157 }
2158
2159 /*
2160 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
2161 */
2162 static unsigned long
2163 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
2164 {
2165 unsigned long offset, addr = (unsigned long)from;
2166 int type = in_nmi() ? KM_NMI : KM_IRQ0;
2167 unsigned long size, len = 0;
2168 struct page *page;
2169 void *map;
2170 int ret;
2171
2172 do {
2173 ret = __get_user_pages_fast(addr, 1, 0, &page);
2174 if (!ret)
2175 break;
2176
2177 offset = addr & (PAGE_SIZE - 1);
2178 size = min(PAGE_SIZE - offset, n - len);
2179
2180 map = kmap_atomic(page, type);
2181 memcpy(to, map+offset, size);
2182 kunmap_atomic(map, type);
2183 put_page(page);
2184
2185 len += size;
2186 to += size;
2187 addr += size;
2188
2189 } while (len < n);
2190
2191 return len;
2192 }
2193
2194 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
2195 {
2196 unsigned long bytes;
2197
2198 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
2199
2200 return bytes == sizeof(*frame);
2201 }
2202
2203 static void
2204 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
2205 {
2206 struct stack_frame frame;
2207 const void __user *fp;
2208
2209 if (!user_mode(regs))
2210 regs = task_pt_regs(current);
2211
2212 fp = (void __user *)regs->bp;
2213
2214 callchain_store(entry, PERF_CONTEXT_USER);
2215 callchain_store(entry, regs->ip);
2216
2217 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2218 frame.next_frame = NULL;
2219 frame.return_address = 0;
2220
2221 if (!copy_stack_frame(fp, &frame))
2222 break;
2223
2224 if ((unsigned long)fp < regs->sp)
2225 break;
2226
2227 callchain_store(entry, frame.return_address);
2228 fp = frame.next_frame;
2229 }
2230 }
2231
2232 static void
2233 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
2234 {
2235 int is_user;
2236
2237 if (!regs)
2238 return;
2239
2240 is_user = user_mode(regs);
2241
2242 if (!current || current->pid == 0)
2243 return;
2244
2245 if (is_user && current->state != TASK_RUNNING)
2246 return;
2247
2248 if (!is_user)
2249 perf_callchain_kernel(regs, entry);
2250
2251 if (current->mm)
2252 perf_callchain_user(regs, entry);
2253 }
2254
2255 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2256 {
2257 struct perf_callchain_entry *entry;
2258
2259 if (in_nmi())
2260 entry = &__get_cpu_var(nmi_entry);
2261 else
2262 entry = &__get_cpu_var(irq_entry);
2263
2264 entry->nr = 0;
2265
2266 perf_do_callchain(regs, entry);
2267
2268 return entry;
2269 }
2270
2271 void hw_perf_counter_setup_online(int cpu)
2272 {
2273 init_debug_store_on_cpu(cpu);
2274 }
This page took 0.105035 seconds and 6 git commands to generate.