Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/perfcou...
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2 * Performance counter x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 *
11 * For licencing details see kernel-base/COPYING
12 */
13
14 #include <linux/perf_counter.h>
15 #include <linux/capability.h>
16 #include <linux/notifier.h>
17 #include <linux/hardirq.h>
18 #include <linux/kprobes.h>
19 #include <linux/module.h>
20 #include <linux/kdebug.h>
21 #include <linux/sched.h>
22 #include <linux/uaccess.h>
23 #include <linux/highmem.h>
24 #include <linux/cpu.h>
25
26 #include <asm/apic.h>
27 #include <asm/stacktrace.h>
28 #include <asm/nmi.h>
29
30 static u64 perf_counter_mask __read_mostly;
31
32 /* The maximal number of PEBS counters: */
33 #define MAX_PEBS_COUNTERS 4
34
35 /* The size of a BTS record in bytes: */
36 #define BTS_RECORD_SIZE 24
37
38 /* The size of a per-cpu BTS buffer in bytes: */
39 #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 1024)
40
41 /* The BTS overflow threshold in bytes from the end of the buffer: */
42 #define BTS_OVFL_TH (BTS_RECORD_SIZE * 64)
43
44
45 /*
46 * Bits in the debugctlmsr controlling branch tracing.
47 */
48 #define X86_DEBUGCTL_TR (1 << 6)
49 #define X86_DEBUGCTL_BTS (1 << 7)
50 #define X86_DEBUGCTL_BTINT (1 << 8)
51 #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
52 #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
53
54 /*
55 * A debug store configuration.
56 *
57 * We only support architectures that use 64bit fields.
58 */
59 struct debug_store {
60 u64 bts_buffer_base;
61 u64 bts_index;
62 u64 bts_absolute_maximum;
63 u64 bts_interrupt_threshold;
64 u64 pebs_buffer_base;
65 u64 pebs_index;
66 u64 pebs_absolute_maximum;
67 u64 pebs_interrupt_threshold;
68 u64 pebs_counter_reset[MAX_PEBS_COUNTERS];
69 };
70
71 struct cpu_hw_counters {
72 struct perf_counter *counters[X86_PMC_IDX_MAX];
73 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
74 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
75 unsigned long interrupts;
76 int enabled;
77 struct debug_store *ds;
78 };
79
80 /*
81 * struct x86_pmu - generic x86 pmu
82 */
83 struct x86_pmu {
84 const char *name;
85 int version;
86 int (*handle_irq)(struct pt_regs *);
87 void (*disable_all)(void);
88 void (*enable_all)(void);
89 void (*enable)(struct hw_perf_counter *, int);
90 void (*disable)(struct hw_perf_counter *, int);
91 unsigned eventsel;
92 unsigned perfctr;
93 u64 (*event_map)(int);
94 u64 (*raw_event)(u64);
95 int max_events;
96 int num_counters;
97 int num_counters_fixed;
98 int counter_bits;
99 u64 counter_mask;
100 int apic;
101 u64 max_period;
102 u64 intel_ctrl;
103 void (*enable_bts)(u64 config);
104 void (*disable_bts)(void);
105 };
106
107 static struct x86_pmu x86_pmu __read_mostly;
108
109 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
110 .enabled = 1,
111 };
112
113 /*
114 * Not sure about some of these
115 */
116 static const u64 p6_perfmon_event_map[] =
117 {
118 [PERF_COUNT_HW_CPU_CYCLES] = 0x0079,
119 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
120 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e,
121 [PERF_COUNT_HW_CACHE_MISSES] = 0x012e,
122 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
123 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
124 [PERF_COUNT_HW_BUS_CYCLES] = 0x0062,
125 };
126
127 static u64 p6_pmu_event_map(int event)
128 {
129 return p6_perfmon_event_map[event];
130 }
131
132 /*
133 * Counter setting that is specified not to count anything.
134 * We use this to effectively disable a counter.
135 *
136 * L2_RQSTS with 0 MESI unit mask.
137 */
138 #define P6_NOP_COUNTER 0x0000002EULL
139
140 static u64 p6_pmu_raw_event(u64 event)
141 {
142 #define P6_EVNTSEL_EVENT_MASK 0x000000FFULL
143 #define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL
144 #define P6_EVNTSEL_EDGE_MASK 0x00040000ULL
145 #define P6_EVNTSEL_INV_MASK 0x00800000ULL
146 #define P6_EVNTSEL_COUNTER_MASK 0xFF000000ULL
147
148 #define P6_EVNTSEL_MASK \
149 (P6_EVNTSEL_EVENT_MASK | \
150 P6_EVNTSEL_UNIT_MASK | \
151 P6_EVNTSEL_EDGE_MASK | \
152 P6_EVNTSEL_INV_MASK | \
153 P6_EVNTSEL_COUNTER_MASK)
154
155 return event & P6_EVNTSEL_MASK;
156 }
157
158
159 /*
160 * Intel PerfMon v3. Used on Core2 and later.
161 */
162 static const u64 intel_perfmon_event_map[] =
163 {
164 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
165 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
166 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
167 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
168 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
169 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
170 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
171 };
172
173 static u64 intel_pmu_event_map(int event)
174 {
175 return intel_perfmon_event_map[event];
176 }
177
178 /*
179 * Generalized hw caching related event table, filled
180 * in on a per model basis. A value of 0 means
181 * 'not supported', -1 means 'event makes no sense on
182 * this CPU', any other value means the raw event
183 * ID.
184 */
185
186 #define C(x) PERF_COUNT_HW_CACHE_##x
187
188 static u64 __read_mostly hw_cache_event_ids
189 [PERF_COUNT_HW_CACHE_MAX]
190 [PERF_COUNT_HW_CACHE_OP_MAX]
191 [PERF_COUNT_HW_CACHE_RESULT_MAX];
192
193 static const u64 nehalem_hw_cache_event_ids
194 [PERF_COUNT_HW_CACHE_MAX]
195 [PERF_COUNT_HW_CACHE_OP_MAX]
196 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
197 {
198 [ C(L1D) ] = {
199 [ C(OP_READ) ] = {
200 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
201 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
202 },
203 [ C(OP_WRITE) ] = {
204 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
205 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
206 },
207 [ C(OP_PREFETCH) ] = {
208 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
209 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
210 },
211 },
212 [ C(L1I ) ] = {
213 [ C(OP_READ) ] = {
214 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
215 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
216 },
217 [ C(OP_WRITE) ] = {
218 [ C(RESULT_ACCESS) ] = -1,
219 [ C(RESULT_MISS) ] = -1,
220 },
221 [ C(OP_PREFETCH) ] = {
222 [ C(RESULT_ACCESS) ] = 0x0,
223 [ C(RESULT_MISS) ] = 0x0,
224 },
225 },
226 [ C(LL ) ] = {
227 [ C(OP_READ) ] = {
228 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
229 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
230 },
231 [ C(OP_WRITE) ] = {
232 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
233 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
234 },
235 [ C(OP_PREFETCH) ] = {
236 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
237 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
238 },
239 },
240 [ C(DTLB) ] = {
241 [ C(OP_READ) ] = {
242 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
243 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
244 },
245 [ C(OP_WRITE) ] = {
246 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
247 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
248 },
249 [ C(OP_PREFETCH) ] = {
250 [ C(RESULT_ACCESS) ] = 0x0,
251 [ C(RESULT_MISS) ] = 0x0,
252 },
253 },
254 [ C(ITLB) ] = {
255 [ C(OP_READ) ] = {
256 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
257 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
258 },
259 [ C(OP_WRITE) ] = {
260 [ C(RESULT_ACCESS) ] = -1,
261 [ C(RESULT_MISS) ] = -1,
262 },
263 [ C(OP_PREFETCH) ] = {
264 [ C(RESULT_ACCESS) ] = -1,
265 [ C(RESULT_MISS) ] = -1,
266 },
267 },
268 [ C(BPU ) ] = {
269 [ C(OP_READ) ] = {
270 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
271 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
272 },
273 [ C(OP_WRITE) ] = {
274 [ C(RESULT_ACCESS) ] = -1,
275 [ C(RESULT_MISS) ] = -1,
276 },
277 [ C(OP_PREFETCH) ] = {
278 [ C(RESULT_ACCESS) ] = -1,
279 [ C(RESULT_MISS) ] = -1,
280 },
281 },
282 };
283
284 static const u64 core2_hw_cache_event_ids
285 [PERF_COUNT_HW_CACHE_MAX]
286 [PERF_COUNT_HW_CACHE_OP_MAX]
287 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
288 {
289 [ C(L1D) ] = {
290 [ C(OP_READ) ] = {
291 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
292 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
293 },
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
296 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
297 },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
300 [ C(RESULT_MISS) ] = 0,
301 },
302 },
303 [ C(L1I ) ] = {
304 [ C(OP_READ) ] = {
305 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
306 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
307 },
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = -1,
310 [ C(RESULT_MISS) ] = -1,
311 },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = 0,
314 [ C(RESULT_MISS) ] = 0,
315 },
316 },
317 [ C(LL ) ] = {
318 [ C(OP_READ) ] = {
319 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
320 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
321 },
322 [ C(OP_WRITE) ] = {
323 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
324 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
325 },
326 [ C(OP_PREFETCH) ] = {
327 [ C(RESULT_ACCESS) ] = 0,
328 [ C(RESULT_MISS) ] = 0,
329 },
330 },
331 [ C(DTLB) ] = {
332 [ C(OP_READ) ] = {
333 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
334 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
335 },
336 [ C(OP_WRITE) ] = {
337 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
338 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
339 },
340 [ C(OP_PREFETCH) ] = {
341 [ C(RESULT_ACCESS) ] = 0,
342 [ C(RESULT_MISS) ] = 0,
343 },
344 },
345 [ C(ITLB) ] = {
346 [ C(OP_READ) ] = {
347 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
348 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
349 },
350 [ C(OP_WRITE) ] = {
351 [ C(RESULT_ACCESS) ] = -1,
352 [ C(RESULT_MISS) ] = -1,
353 },
354 [ C(OP_PREFETCH) ] = {
355 [ C(RESULT_ACCESS) ] = -1,
356 [ C(RESULT_MISS) ] = -1,
357 },
358 },
359 [ C(BPU ) ] = {
360 [ C(OP_READ) ] = {
361 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
362 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
363 },
364 [ C(OP_WRITE) ] = {
365 [ C(RESULT_ACCESS) ] = -1,
366 [ C(RESULT_MISS) ] = -1,
367 },
368 [ C(OP_PREFETCH) ] = {
369 [ C(RESULT_ACCESS) ] = -1,
370 [ C(RESULT_MISS) ] = -1,
371 },
372 },
373 };
374
375 static const u64 atom_hw_cache_event_ids
376 [PERF_COUNT_HW_CACHE_MAX]
377 [PERF_COUNT_HW_CACHE_OP_MAX]
378 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
379 {
380 [ C(L1D) ] = {
381 [ C(OP_READ) ] = {
382 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
383 [ C(RESULT_MISS) ] = 0,
384 },
385 [ C(OP_WRITE) ] = {
386 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
387 [ C(RESULT_MISS) ] = 0,
388 },
389 [ C(OP_PREFETCH) ] = {
390 [ C(RESULT_ACCESS) ] = 0x0,
391 [ C(RESULT_MISS) ] = 0,
392 },
393 },
394 [ C(L1I ) ] = {
395 [ C(OP_READ) ] = {
396 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
397 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
398 },
399 [ C(OP_WRITE) ] = {
400 [ C(RESULT_ACCESS) ] = -1,
401 [ C(RESULT_MISS) ] = -1,
402 },
403 [ C(OP_PREFETCH) ] = {
404 [ C(RESULT_ACCESS) ] = 0,
405 [ C(RESULT_MISS) ] = 0,
406 },
407 },
408 [ C(LL ) ] = {
409 [ C(OP_READ) ] = {
410 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
411 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
412 },
413 [ C(OP_WRITE) ] = {
414 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
415 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
416 },
417 [ C(OP_PREFETCH) ] = {
418 [ C(RESULT_ACCESS) ] = 0,
419 [ C(RESULT_MISS) ] = 0,
420 },
421 },
422 [ C(DTLB) ] = {
423 [ C(OP_READ) ] = {
424 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
425 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
426 },
427 [ C(OP_WRITE) ] = {
428 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
429 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
430 },
431 [ C(OP_PREFETCH) ] = {
432 [ C(RESULT_ACCESS) ] = 0,
433 [ C(RESULT_MISS) ] = 0,
434 },
435 },
436 [ C(ITLB) ] = {
437 [ C(OP_READ) ] = {
438 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
439 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
440 },
441 [ C(OP_WRITE) ] = {
442 [ C(RESULT_ACCESS) ] = -1,
443 [ C(RESULT_MISS) ] = -1,
444 },
445 [ C(OP_PREFETCH) ] = {
446 [ C(RESULT_ACCESS) ] = -1,
447 [ C(RESULT_MISS) ] = -1,
448 },
449 },
450 [ C(BPU ) ] = {
451 [ C(OP_READ) ] = {
452 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
453 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
454 },
455 [ C(OP_WRITE) ] = {
456 [ C(RESULT_ACCESS) ] = -1,
457 [ C(RESULT_MISS) ] = -1,
458 },
459 [ C(OP_PREFETCH) ] = {
460 [ C(RESULT_ACCESS) ] = -1,
461 [ C(RESULT_MISS) ] = -1,
462 },
463 },
464 };
465
466 static u64 intel_pmu_raw_event(u64 event)
467 {
468 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
469 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
470 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
471 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
472 #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
473
474 #define CORE_EVNTSEL_MASK \
475 (CORE_EVNTSEL_EVENT_MASK | \
476 CORE_EVNTSEL_UNIT_MASK | \
477 CORE_EVNTSEL_EDGE_MASK | \
478 CORE_EVNTSEL_INV_MASK | \
479 CORE_EVNTSEL_COUNTER_MASK)
480
481 return event & CORE_EVNTSEL_MASK;
482 }
483
484 static const u64 amd_hw_cache_event_ids
485 [PERF_COUNT_HW_CACHE_MAX]
486 [PERF_COUNT_HW_CACHE_OP_MAX]
487 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
488 {
489 [ C(L1D) ] = {
490 [ C(OP_READ) ] = {
491 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
492 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
493 },
494 [ C(OP_WRITE) ] = {
495 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
496 [ C(RESULT_MISS) ] = 0,
497 },
498 [ C(OP_PREFETCH) ] = {
499 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
500 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
501 },
502 },
503 [ C(L1I ) ] = {
504 [ C(OP_READ) ] = {
505 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
506 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
507 },
508 [ C(OP_WRITE) ] = {
509 [ C(RESULT_ACCESS) ] = -1,
510 [ C(RESULT_MISS) ] = -1,
511 },
512 [ C(OP_PREFETCH) ] = {
513 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
514 [ C(RESULT_MISS) ] = 0,
515 },
516 },
517 [ C(LL ) ] = {
518 [ C(OP_READ) ] = {
519 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
520 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
521 },
522 [ C(OP_WRITE) ] = {
523 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
524 [ C(RESULT_MISS) ] = 0,
525 },
526 [ C(OP_PREFETCH) ] = {
527 [ C(RESULT_ACCESS) ] = 0,
528 [ C(RESULT_MISS) ] = 0,
529 },
530 },
531 [ C(DTLB) ] = {
532 [ C(OP_READ) ] = {
533 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
534 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
535 },
536 [ C(OP_WRITE) ] = {
537 [ C(RESULT_ACCESS) ] = 0,
538 [ C(RESULT_MISS) ] = 0,
539 },
540 [ C(OP_PREFETCH) ] = {
541 [ C(RESULT_ACCESS) ] = 0,
542 [ C(RESULT_MISS) ] = 0,
543 },
544 },
545 [ C(ITLB) ] = {
546 [ C(OP_READ) ] = {
547 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
548 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
549 },
550 [ C(OP_WRITE) ] = {
551 [ C(RESULT_ACCESS) ] = -1,
552 [ C(RESULT_MISS) ] = -1,
553 },
554 [ C(OP_PREFETCH) ] = {
555 [ C(RESULT_ACCESS) ] = -1,
556 [ C(RESULT_MISS) ] = -1,
557 },
558 },
559 [ C(BPU ) ] = {
560 [ C(OP_READ) ] = {
561 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
562 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
563 },
564 [ C(OP_WRITE) ] = {
565 [ C(RESULT_ACCESS) ] = -1,
566 [ C(RESULT_MISS) ] = -1,
567 },
568 [ C(OP_PREFETCH) ] = {
569 [ C(RESULT_ACCESS) ] = -1,
570 [ C(RESULT_MISS) ] = -1,
571 },
572 },
573 };
574
575 /*
576 * AMD Performance Monitor K7 and later.
577 */
578 static const u64 amd_perfmon_event_map[] =
579 {
580 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
581 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
582 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
583 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
584 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
585 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
586 };
587
588 static u64 amd_pmu_event_map(int event)
589 {
590 return amd_perfmon_event_map[event];
591 }
592
593 static u64 amd_pmu_raw_event(u64 event)
594 {
595 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
596 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
597 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
598 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
599 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
600
601 #define K7_EVNTSEL_MASK \
602 (K7_EVNTSEL_EVENT_MASK | \
603 K7_EVNTSEL_UNIT_MASK | \
604 K7_EVNTSEL_EDGE_MASK | \
605 K7_EVNTSEL_INV_MASK | \
606 K7_EVNTSEL_COUNTER_MASK)
607
608 return event & K7_EVNTSEL_MASK;
609 }
610
611 /*
612 * Propagate counter elapsed time into the generic counter.
613 * Can only be executed on the CPU where the counter is active.
614 * Returns the delta events processed.
615 */
616 static u64
617 x86_perf_counter_update(struct perf_counter *counter,
618 struct hw_perf_counter *hwc, int idx)
619 {
620 int shift = 64 - x86_pmu.counter_bits;
621 u64 prev_raw_count, new_raw_count;
622 s64 delta;
623
624 if (idx == X86_PMC_IDX_FIXED_BTS)
625 return 0;
626
627 /*
628 * Careful: an NMI might modify the previous counter value.
629 *
630 * Our tactic to handle this is to first atomically read and
631 * exchange a new raw count - then add that new-prev delta
632 * count to the generic counter atomically:
633 */
634 again:
635 prev_raw_count = atomic64_read(&hwc->prev_count);
636 rdmsrl(hwc->counter_base + idx, new_raw_count);
637
638 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
639 new_raw_count) != prev_raw_count)
640 goto again;
641
642 /*
643 * Now we have the new raw value and have updated the prev
644 * timestamp already. We can now calculate the elapsed delta
645 * (counter-)time and add that to the generic counter.
646 *
647 * Careful, not all hw sign-extends above the physical width
648 * of the count.
649 */
650 delta = (new_raw_count << shift) - (prev_raw_count << shift);
651 delta >>= shift;
652
653 atomic64_add(delta, &counter->count);
654 atomic64_sub(delta, &hwc->period_left);
655
656 return new_raw_count;
657 }
658
659 static atomic_t active_counters;
660 static DEFINE_MUTEX(pmc_reserve_mutex);
661
662 static bool reserve_pmc_hardware(void)
663 {
664 #ifdef CONFIG_X86_LOCAL_APIC
665 int i;
666
667 if (nmi_watchdog == NMI_LOCAL_APIC)
668 disable_lapic_nmi_watchdog();
669
670 for (i = 0; i < x86_pmu.num_counters; i++) {
671 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
672 goto perfctr_fail;
673 }
674
675 for (i = 0; i < x86_pmu.num_counters; i++) {
676 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
677 goto eventsel_fail;
678 }
679 #endif
680
681 return true;
682
683 #ifdef CONFIG_X86_LOCAL_APIC
684 eventsel_fail:
685 for (i--; i >= 0; i--)
686 release_evntsel_nmi(x86_pmu.eventsel + i);
687
688 i = x86_pmu.num_counters;
689
690 perfctr_fail:
691 for (i--; i >= 0; i--)
692 release_perfctr_nmi(x86_pmu.perfctr + i);
693
694 if (nmi_watchdog == NMI_LOCAL_APIC)
695 enable_lapic_nmi_watchdog();
696
697 return false;
698 #endif
699 }
700
701 static void release_pmc_hardware(void)
702 {
703 #ifdef CONFIG_X86_LOCAL_APIC
704 int i;
705
706 for (i = 0; i < x86_pmu.num_counters; i++) {
707 release_perfctr_nmi(x86_pmu.perfctr + i);
708 release_evntsel_nmi(x86_pmu.eventsel + i);
709 }
710
711 if (nmi_watchdog == NMI_LOCAL_APIC)
712 enable_lapic_nmi_watchdog();
713 #endif
714 }
715
716 static inline bool bts_available(void)
717 {
718 return x86_pmu.enable_bts != NULL;
719 }
720
721 static inline void init_debug_store_on_cpu(int cpu)
722 {
723 struct debug_store *ds = per_cpu(cpu_hw_counters, cpu).ds;
724
725 if (!ds)
726 return;
727
728 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
729 (u32)((u64)(long)ds), (u32)((u64)(long)ds >> 32));
730 }
731
732 static inline void fini_debug_store_on_cpu(int cpu)
733 {
734 if (!per_cpu(cpu_hw_counters, cpu).ds)
735 return;
736
737 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
738 }
739
740 static void release_bts_hardware(void)
741 {
742 int cpu;
743
744 if (!bts_available())
745 return;
746
747 get_online_cpus();
748
749 for_each_online_cpu(cpu)
750 fini_debug_store_on_cpu(cpu);
751
752 for_each_possible_cpu(cpu) {
753 struct debug_store *ds = per_cpu(cpu_hw_counters, cpu).ds;
754
755 if (!ds)
756 continue;
757
758 per_cpu(cpu_hw_counters, cpu).ds = NULL;
759
760 kfree((void *)(long)ds->bts_buffer_base);
761 kfree(ds);
762 }
763
764 put_online_cpus();
765 }
766
767 static int reserve_bts_hardware(void)
768 {
769 int cpu, err = 0;
770
771 if (!bts_available())
772 return -EOPNOTSUPP;
773
774 get_online_cpus();
775
776 for_each_possible_cpu(cpu) {
777 struct debug_store *ds;
778 void *buffer;
779
780 err = -ENOMEM;
781 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
782 if (unlikely(!buffer))
783 break;
784
785 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
786 if (unlikely(!ds)) {
787 kfree(buffer);
788 break;
789 }
790
791 ds->bts_buffer_base = (u64)(long)buffer;
792 ds->bts_index = ds->bts_buffer_base;
793 ds->bts_absolute_maximum =
794 ds->bts_buffer_base + BTS_BUFFER_SIZE;
795 ds->bts_interrupt_threshold =
796 ds->bts_absolute_maximum - BTS_OVFL_TH;
797
798 per_cpu(cpu_hw_counters, cpu).ds = ds;
799 err = 0;
800 }
801
802 if (err)
803 release_bts_hardware();
804 else {
805 for_each_online_cpu(cpu)
806 init_debug_store_on_cpu(cpu);
807 }
808
809 put_online_cpus();
810
811 return err;
812 }
813
814 static void hw_perf_counter_destroy(struct perf_counter *counter)
815 {
816 if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
817 release_pmc_hardware();
818 release_bts_hardware();
819 mutex_unlock(&pmc_reserve_mutex);
820 }
821 }
822
823 static inline int x86_pmu_initialized(void)
824 {
825 return x86_pmu.handle_irq != NULL;
826 }
827
828 static inline int
829 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
830 {
831 unsigned int cache_type, cache_op, cache_result;
832 u64 config, val;
833
834 config = attr->config;
835
836 cache_type = (config >> 0) & 0xff;
837 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
838 return -EINVAL;
839
840 cache_op = (config >> 8) & 0xff;
841 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
842 return -EINVAL;
843
844 cache_result = (config >> 16) & 0xff;
845 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
846 return -EINVAL;
847
848 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
849
850 if (val == 0)
851 return -ENOENT;
852
853 if (val == -1)
854 return -EINVAL;
855
856 hwc->config |= val;
857
858 return 0;
859 }
860
861 static void intel_pmu_enable_bts(u64 config)
862 {
863 unsigned long debugctlmsr;
864
865 debugctlmsr = get_debugctlmsr();
866
867 debugctlmsr |= X86_DEBUGCTL_TR;
868 debugctlmsr |= X86_DEBUGCTL_BTS;
869 debugctlmsr |= X86_DEBUGCTL_BTINT;
870
871 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
872 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_OS;
873
874 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
875 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_USR;
876
877 update_debugctlmsr(debugctlmsr);
878 }
879
880 static void intel_pmu_disable_bts(void)
881 {
882 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
883 unsigned long debugctlmsr;
884
885 if (!cpuc->ds)
886 return;
887
888 debugctlmsr = get_debugctlmsr();
889
890 debugctlmsr &=
891 ~(X86_DEBUGCTL_TR | X86_DEBUGCTL_BTS | X86_DEBUGCTL_BTINT |
892 X86_DEBUGCTL_BTS_OFF_OS | X86_DEBUGCTL_BTS_OFF_USR);
893
894 update_debugctlmsr(debugctlmsr);
895 }
896
897 /*
898 * Setup the hardware configuration for a given attr_type
899 */
900 static int __hw_perf_counter_init(struct perf_counter *counter)
901 {
902 struct perf_counter_attr *attr = &counter->attr;
903 struct hw_perf_counter *hwc = &counter->hw;
904 u64 config;
905 int err;
906
907 if (!x86_pmu_initialized())
908 return -ENODEV;
909
910 err = 0;
911 if (!atomic_inc_not_zero(&active_counters)) {
912 mutex_lock(&pmc_reserve_mutex);
913 if (atomic_read(&active_counters) == 0) {
914 if (!reserve_pmc_hardware())
915 err = -EBUSY;
916 else
917 reserve_bts_hardware();
918 }
919 if (!err)
920 atomic_inc(&active_counters);
921 mutex_unlock(&pmc_reserve_mutex);
922 }
923 if (err)
924 return err;
925
926 /*
927 * Generate PMC IRQs:
928 * (keep 'enabled' bit clear for now)
929 */
930 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
931
932 /*
933 * Count user and OS events unless requested not to.
934 */
935 if (!attr->exclude_user)
936 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
937 if (!attr->exclude_kernel)
938 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
939
940 if (!hwc->sample_period) {
941 hwc->sample_period = x86_pmu.max_period;
942 hwc->last_period = hwc->sample_period;
943 atomic64_set(&hwc->period_left, hwc->sample_period);
944 } else {
945 /*
946 * If we have a PMU initialized but no APIC
947 * interrupts, we cannot sample hardware
948 * counters (user-space has to fall back and
949 * sample via a hrtimer based software counter):
950 */
951 if (!x86_pmu.apic)
952 return -EOPNOTSUPP;
953 }
954
955 counter->destroy = hw_perf_counter_destroy;
956
957 /*
958 * Raw event type provide the config in the event structure
959 */
960 if (attr->type == PERF_TYPE_RAW) {
961 hwc->config |= x86_pmu.raw_event(attr->config);
962 return 0;
963 }
964
965 if (attr->type == PERF_TYPE_HW_CACHE)
966 return set_ext_hw_attr(hwc, attr);
967
968 if (attr->config >= x86_pmu.max_events)
969 return -EINVAL;
970
971 /*
972 * The generic map:
973 */
974 config = x86_pmu.event_map(attr->config);
975
976 if (config == 0)
977 return -ENOENT;
978
979 if (config == -1LL)
980 return -EINVAL;
981
982 hwc->config |= config;
983
984 return 0;
985 }
986
987 static void p6_pmu_disable_all(void)
988 {
989 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
990 u64 val;
991
992 if (!cpuc->enabled)
993 return;
994
995 cpuc->enabled = 0;
996 barrier();
997
998 /* p6 only has one enable register */
999 rdmsrl(MSR_P6_EVNTSEL0, val);
1000 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1001 wrmsrl(MSR_P6_EVNTSEL0, val);
1002 }
1003
1004 static void intel_pmu_disable_all(void)
1005 {
1006 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1007
1008 if (!cpuc->enabled)
1009 return;
1010
1011 cpuc->enabled = 0;
1012 barrier();
1013
1014 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1015
1016 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1017 intel_pmu_disable_bts();
1018 }
1019
1020 static void amd_pmu_disable_all(void)
1021 {
1022 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1023 int idx;
1024
1025 if (!cpuc->enabled)
1026 return;
1027
1028 cpuc->enabled = 0;
1029 /*
1030 * ensure we write the disable before we start disabling the
1031 * counters proper, so that amd_pmu_enable_counter() does the
1032 * right thing.
1033 */
1034 barrier();
1035
1036 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1037 u64 val;
1038
1039 if (!test_bit(idx, cpuc->active_mask))
1040 continue;
1041 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
1042 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
1043 continue;
1044 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1045 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
1046 }
1047 }
1048
1049 void hw_perf_disable(void)
1050 {
1051 if (!x86_pmu_initialized())
1052 return;
1053 return x86_pmu.disable_all();
1054 }
1055
1056 static void p6_pmu_enable_all(void)
1057 {
1058 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1059 unsigned long val;
1060
1061 if (cpuc->enabled)
1062 return;
1063
1064 cpuc->enabled = 1;
1065 barrier();
1066
1067 /* p6 only has one enable register */
1068 rdmsrl(MSR_P6_EVNTSEL0, val);
1069 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1070 wrmsrl(MSR_P6_EVNTSEL0, val);
1071 }
1072
1073 static void intel_pmu_enable_all(void)
1074 {
1075 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1076
1077 if (cpuc->enabled)
1078 return;
1079
1080 cpuc->enabled = 1;
1081 barrier();
1082
1083 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1084
1085 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1086 struct perf_counter *counter =
1087 cpuc->counters[X86_PMC_IDX_FIXED_BTS];
1088
1089 if (WARN_ON_ONCE(!counter))
1090 return;
1091
1092 intel_pmu_enable_bts(counter->hw.config);
1093 }
1094 }
1095
1096 static void amd_pmu_enable_all(void)
1097 {
1098 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1099 int idx;
1100
1101 if (cpuc->enabled)
1102 return;
1103
1104 cpuc->enabled = 1;
1105 barrier();
1106
1107 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1108 struct perf_counter *counter = cpuc->counters[idx];
1109 u64 val;
1110
1111 if (!test_bit(idx, cpuc->active_mask))
1112 continue;
1113
1114 val = counter->hw.config;
1115 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1116 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
1117 }
1118 }
1119
1120 void hw_perf_enable(void)
1121 {
1122 if (!x86_pmu_initialized())
1123 return;
1124 x86_pmu.enable_all();
1125 }
1126
1127 static inline u64 intel_pmu_get_status(void)
1128 {
1129 u64 status;
1130
1131 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1132
1133 return status;
1134 }
1135
1136 static inline void intel_pmu_ack_status(u64 ack)
1137 {
1138 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1139 }
1140
1141 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1142 {
1143 (void)checking_wrmsrl(hwc->config_base + idx,
1144 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
1145 }
1146
1147 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
1148 {
1149 (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
1150 }
1151
1152 static inline void
1153 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
1154 {
1155 int idx = __idx - X86_PMC_IDX_FIXED;
1156 u64 ctrl_val, mask;
1157
1158 mask = 0xfULL << (idx * 4);
1159
1160 rdmsrl(hwc->config_base, ctrl_val);
1161 ctrl_val &= ~mask;
1162 (void)checking_wrmsrl(hwc->config_base, ctrl_val);
1163 }
1164
1165 static inline void
1166 p6_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
1167 {
1168 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1169 u64 val = P6_NOP_COUNTER;
1170
1171 if (cpuc->enabled)
1172 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1173
1174 (void)checking_wrmsrl(hwc->config_base + idx, val);
1175 }
1176
1177 static inline void
1178 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
1179 {
1180 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1181 intel_pmu_disable_bts();
1182 return;
1183 }
1184
1185 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1186 intel_pmu_disable_fixed(hwc, idx);
1187 return;
1188 }
1189
1190 x86_pmu_disable_counter(hwc, idx);
1191 }
1192
1193 static inline void
1194 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
1195 {
1196 x86_pmu_disable_counter(hwc, idx);
1197 }
1198
1199 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
1200
1201 /*
1202 * Set the next IRQ period, based on the hwc->period_left value.
1203 * To be called with the counter disabled in hw:
1204 */
1205 static int
1206 x86_perf_counter_set_period(struct perf_counter *counter,
1207 struct hw_perf_counter *hwc, int idx)
1208 {
1209 s64 left = atomic64_read(&hwc->period_left);
1210 s64 period = hwc->sample_period;
1211 int err, ret = 0;
1212
1213 if (idx == X86_PMC_IDX_FIXED_BTS)
1214 return 0;
1215
1216 /*
1217 * If we are way outside a reasoable range then just skip forward:
1218 */
1219 if (unlikely(left <= -period)) {
1220 left = period;
1221 atomic64_set(&hwc->period_left, left);
1222 hwc->last_period = period;
1223 ret = 1;
1224 }
1225
1226 if (unlikely(left <= 0)) {
1227 left += period;
1228 atomic64_set(&hwc->period_left, left);
1229 hwc->last_period = period;
1230 ret = 1;
1231 }
1232 /*
1233 * Quirk: certain CPUs dont like it if just 1 event is left:
1234 */
1235 if (unlikely(left < 2))
1236 left = 2;
1237
1238 if (left > x86_pmu.max_period)
1239 left = x86_pmu.max_period;
1240
1241 per_cpu(prev_left[idx], smp_processor_id()) = left;
1242
1243 /*
1244 * The hw counter starts counting from this counter offset,
1245 * mark it to be able to extra future deltas:
1246 */
1247 atomic64_set(&hwc->prev_count, (u64)-left);
1248
1249 err = checking_wrmsrl(hwc->counter_base + idx,
1250 (u64)(-left) & x86_pmu.counter_mask);
1251
1252 perf_counter_update_userpage(counter);
1253
1254 return ret;
1255 }
1256
1257 static inline void
1258 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
1259 {
1260 int idx = __idx - X86_PMC_IDX_FIXED;
1261 u64 ctrl_val, bits, mask;
1262 int err;
1263
1264 /*
1265 * Enable IRQ generation (0x8),
1266 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1267 * if requested:
1268 */
1269 bits = 0x8ULL;
1270 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1271 bits |= 0x2;
1272 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1273 bits |= 0x1;
1274 bits <<= (idx * 4);
1275 mask = 0xfULL << (idx * 4);
1276
1277 rdmsrl(hwc->config_base, ctrl_val);
1278 ctrl_val &= ~mask;
1279 ctrl_val |= bits;
1280 err = checking_wrmsrl(hwc->config_base, ctrl_val);
1281 }
1282
1283 static void p6_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1284 {
1285 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1286 u64 val;
1287
1288 val = hwc->config;
1289 if (cpuc->enabled)
1290 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1291
1292 (void)checking_wrmsrl(hwc->config_base + idx, val);
1293 }
1294
1295
1296 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1297 {
1298 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1299 if (!__get_cpu_var(cpu_hw_counters).enabled)
1300 return;
1301
1302 intel_pmu_enable_bts(hwc->config);
1303 return;
1304 }
1305
1306 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1307 intel_pmu_enable_fixed(hwc, idx);
1308 return;
1309 }
1310
1311 x86_pmu_enable_counter(hwc, idx);
1312 }
1313
1314 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1315 {
1316 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1317
1318 if (cpuc->enabled)
1319 x86_pmu_enable_counter(hwc, idx);
1320 }
1321
1322 static int
1323 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
1324 {
1325 unsigned int event;
1326
1327 event = hwc->config & ARCH_PERFMON_EVENT_MASK;
1328
1329 if (unlikely((event ==
1330 x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS)) &&
1331 (hwc->sample_period == 1)))
1332 return X86_PMC_IDX_FIXED_BTS;
1333
1334 if (!x86_pmu.num_counters_fixed)
1335 return -1;
1336
1337 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
1338 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
1339 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
1340 return X86_PMC_IDX_FIXED_CPU_CYCLES;
1341 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
1342 return X86_PMC_IDX_FIXED_BUS_CYCLES;
1343
1344 return -1;
1345 }
1346
1347 /*
1348 * Find a PMC slot for the freshly enabled / scheduled in counter:
1349 */
1350 static int x86_pmu_enable(struct perf_counter *counter)
1351 {
1352 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1353 struct hw_perf_counter *hwc = &counter->hw;
1354 int idx;
1355
1356 idx = fixed_mode_idx(counter, hwc);
1357 if (idx == X86_PMC_IDX_FIXED_BTS) {
1358 /*
1359 * Try to use BTS for branch tracing. If that is not
1360 * available, try to get a generic counter.
1361 */
1362 if (unlikely(!cpuc->ds))
1363 goto try_generic;
1364
1365 /*
1366 * Try to get the fixed counter, if that is already taken
1367 * then try to get a generic counter:
1368 */
1369 if (test_and_set_bit(idx, cpuc->used_mask))
1370 goto try_generic;
1371
1372 hwc->config_base = 0;
1373 hwc->counter_base = 0;
1374 hwc->idx = idx;
1375 } else if (idx >= 0) {
1376 /*
1377 * Try to get the fixed counter, if that is already taken
1378 * then try to get a generic counter:
1379 */
1380 if (test_and_set_bit(idx, cpuc->used_mask))
1381 goto try_generic;
1382
1383 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1384 /*
1385 * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1386 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1387 */
1388 hwc->counter_base =
1389 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1390 hwc->idx = idx;
1391 } else {
1392 idx = hwc->idx;
1393 /* Try to get the previous generic counter again */
1394 if (test_and_set_bit(idx, cpuc->used_mask)) {
1395 try_generic:
1396 idx = find_first_zero_bit(cpuc->used_mask,
1397 x86_pmu.num_counters);
1398 if (idx == x86_pmu.num_counters)
1399 return -EAGAIN;
1400
1401 set_bit(idx, cpuc->used_mask);
1402 hwc->idx = idx;
1403 }
1404 hwc->config_base = x86_pmu.eventsel;
1405 hwc->counter_base = x86_pmu.perfctr;
1406 }
1407
1408 perf_counters_lapic_init();
1409
1410 x86_pmu.disable(hwc, idx);
1411
1412 cpuc->counters[idx] = counter;
1413 set_bit(idx, cpuc->active_mask);
1414
1415 x86_perf_counter_set_period(counter, hwc, idx);
1416 x86_pmu.enable(hwc, idx);
1417
1418 perf_counter_update_userpage(counter);
1419
1420 return 0;
1421 }
1422
1423 static void x86_pmu_unthrottle(struct perf_counter *counter)
1424 {
1425 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1426 struct hw_perf_counter *hwc = &counter->hw;
1427
1428 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1429 cpuc->counters[hwc->idx] != counter))
1430 return;
1431
1432 x86_pmu.enable(hwc, hwc->idx);
1433 }
1434
1435 void perf_counter_print_debug(void)
1436 {
1437 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1438 struct cpu_hw_counters *cpuc;
1439 unsigned long flags;
1440 int cpu, idx;
1441
1442 if (!x86_pmu.num_counters)
1443 return;
1444
1445 local_irq_save(flags);
1446
1447 cpu = smp_processor_id();
1448 cpuc = &per_cpu(cpu_hw_counters, cpu);
1449
1450 if (x86_pmu.version >= 2) {
1451 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1452 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1453 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1454 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1455
1456 pr_info("\n");
1457 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1458 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1459 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1460 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1461 }
1462 pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1463
1464 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1465 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1466 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1467
1468 prev_left = per_cpu(prev_left[idx], cpu);
1469
1470 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1471 cpu, idx, pmc_ctrl);
1472 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1473 cpu, idx, pmc_count);
1474 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1475 cpu, idx, prev_left);
1476 }
1477 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1478 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1479
1480 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1481 cpu, idx, pmc_count);
1482 }
1483 local_irq_restore(flags);
1484 }
1485
1486 static void intel_pmu_drain_bts_buffer(struct cpu_hw_counters *cpuc,
1487 struct perf_sample_data *data)
1488 {
1489 struct debug_store *ds = cpuc->ds;
1490 struct bts_record {
1491 u64 from;
1492 u64 to;
1493 u64 flags;
1494 };
1495 struct perf_counter *counter = cpuc->counters[X86_PMC_IDX_FIXED_BTS];
1496 unsigned long orig_ip = data->regs->ip;
1497 u64 at;
1498
1499 if (!counter)
1500 return;
1501
1502 if (!ds)
1503 return;
1504
1505 for (at = ds->bts_buffer_base;
1506 at < ds->bts_index;
1507 at += sizeof(struct bts_record)) {
1508 struct bts_record *rec = (struct bts_record *)(long)at;
1509
1510 data->regs->ip = rec->from;
1511 data->addr = rec->to;
1512
1513 perf_counter_output(counter, 1, data);
1514 }
1515
1516 ds->bts_index = ds->bts_buffer_base;
1517
1518 data->regs->ip = orig_ip;
1519 data->addr = 0;
1520
1521 /* There's new data available. */
1522 counter->pending_kill = POLL_IN;
1523 }
1524
1525 static void x86_pmu_disable(struct perf_counter *counter)
1526 {
1527 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1528 struct hw_perf_counter *hwc = &counter->hw;
1529 int idx = hwc->idx;
1530
1531 /*
1532 * Must be done before we disable, otherwise the nmi handler
1533 * could reenable again:
1534 */
1535 clear_bit(idx, cpuc->active_mask);
1536 x86_pmu.disable(hwc, idx);
1537
1538 /*
1539 * Make sure the cleared pointer becomes visible before we
1540 * (potentially) free the counter:
1541 */
1542 barrier();
1543
1544 /*
1545 * Drain the remaining delta count out of a counter
1546 * that we are disabling:
1547 */
1548 x86_perf_counter_update(counter, hwc, idx);
1549
1550 /* Drain the remaining BTS records. */
1551 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1552 struct perf_sample_data data;
1553 struct pt_regs regs;
1554
1555 data.regs = &regs;
1556 intel_pmu_drain_bts_buffer(cpuc, &data);
1557 }
1558 cpuc->counters[idx] = NULL;
1559 clear_bit(idx, cpuc->used_mask);
1560
1561 perf_counter_update_userpage(counter);
1562 }
1563
1564 /*
1565 * Save and restart an expired counter. Called by NMI contexts,
1566 * so it has to be careful about preempting normal counter ops:
1567 */
1568 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1569 {
1570 struct hw_perf_counter *hwc = &counter->hw;
1571 int idx = hwc->idx;
1572 int ret;
1573
1574 x86_perf_counter_update(counter, hwc, idx);
1575 ret = x86_perf_counter_set_period(counter, hwc, idx);
1576
1577 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1578 intel_pmu_enable_counter(hwc, idx);
1579
1580 return ret;
1581 }
1582
1583 static void intel_pmu_reset(void)
1584 {
1585 struct debug_store *ds = __get_cpu_var(cpu_hw_counters).ds;
1586 unsigned long flags;
1587 int idx;
1588
1589 if (!x86_pmu.num_counters)
1590 return;
1591
1592 local_irq_save(flags);
1593
1594 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1595
1596 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1597 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1598 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1599 }
1600 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1601 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1602 }
1603 if (ds)
1604 ds->bts_index = ds->bts_buffer_base;
1605
1606 local_irq_restore(flags);
1607 }
1608
1609 static int p6_pmu_handle_irq(struct pt_regs *regs)
1610 {
1611 struct perf_sample_data data;
1612 struct cpu_hw_counters *cpuc;
1613 struct perf_counter *counter;
1614 struct hw_perf_counter *hwc;
1615 int idx, handled = 0;
1616 u64 val;
1617
1618 data.regs = regs;
1619 data.addr = 0;
1620
1621 cpuc = &__get_cpu_var(cpu_hw_counters);
1622
1623 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1624 if (!test_bit(idx, cpuc->active_mask))
1625 continue;
1626
1627 counter = cpuc->counters[idx];
1628 hwc = &counter->hw;
1629
1630 val = x86_perf_counter_update(counter, hwc, idx);
1631 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1632 continue;
1633
1634 /*
1635 * counter overflow
1636 */
1637 handled = 1;
1638 data.period = counter->hw.last_period;
1639
1640 if (!x86_perf_counter_set_period(counter, hwc, idx))
1641 continue;
1642
1643 if (perf_counter_overflow(counter, 1, &data))
1644 p6_pmu_disable_counter(hwc, idx);
1645 }
1646
1647 if (handled)
1648 inc_irq_stat(apic_perf_irqs);
1649
1650 return handled;
1651 }
1652
1653 /*
1654 * This handler is triggered by the local APIC, so the APIC IRQ handling
1655 * rules apply:
1656 */
1657 static int intel_pmu_handle_irq(struct pt_regs *regs)
1658 {
1659 struct perf_sample_data data;
1660 struct cpu_hw_counters *cpuc;
1661 int bit, loops;
1662 u64 ack, status;
1663
1664 data.regs = regs;
1665 data.addr = 0;
1666
1667 cpuc = &__get_cpu_var(cpu_hw_counters);
1668
1669 perf_disable();
1670 intel_pmu_drain_bts_buffer(cpuc, &data);
1671 status = intel_pmu_get_status();
1672 if (!status) {
1673 perf_enable();
1674 return 0;
1675 }
1676
1677 loops = 0;
1678 again:
1679 if (++loops > 100) {
1680 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1681 perf_counter_print_debug();
1682 intel_pmu_reset();
1683 perf_enable();
1684 return 1;
1685 }
1686
1687 inc_irq_stat(apic_perf_irqs);
1688 ack = status;
1689 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1690 struct perf_counter *counter = cpuc->counters[bit];
1691
1692 clear_bit(bit, (unsigned long *) &status);
1693 if (!test_bit(bit, cpuc->active_mask))
1694 continue;
1695
1696 if (!intel_pmu_save_and_restart(counter))
1697 continue;
1698
1699 data.period = counter->hw.last_period;
1700
1701 if (perf_counter_overflow(counter, 1, &data))
1702 intel_pmu_disable_counter(&counter->hw, bit);
1703 }
1704
1705 intel_pmu_ack_status(ack);
1706
1707 /*
1708 * Repeat if there is more work to be done:
1709 */
1710 status = intel_pmu_get_status();
1711 if (status)
1712 goto again;
1713
1714 perf_enable();
1715
1716 return 1;
1717 }
1718
1719 static int amd_pmu_handle_irq(struct pt_regs *regs)
1720 {
1721 struct perf_sample_data data;
1722 struct cpu_hw_counters *cpuc;
1723 struct perf_counter *counter;
1724 struct hw_perf_counter *hwc;
1725 int idx, handled = 0;
1726 u64 val;
1727
1728 data.regs = regs;
1729 data.addr = 0;
1730
1731 cpuc = &__get_cpu_var(cpu_hw_counters);
1732
1733 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1734 if (!test_bit(idx, cpuc->active_mask))
1735 continue;
1736
1737 counter = cpuc->counters[idx];
1738 hwc = &counter->hw;
1739
1740 val = x86_perf_counter_update(counter, hwc, idx);
1741 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1742 continue;
1743
1744 /*
1745 * counter overflow
1746 */
1747 handled = 1;
1748 data.period = counter->hw.last_period;
1749
1750 if (!x86_perf_counter_set_period(counter, hwc, idx))
1751 continue;
1752
1753 if (perf_counter_overflow(counter, 1, &data))
1754 amd_pmu_disable_counter(hwc, idx);
1755 }
1756
1757 if (handled)
1758 inc_irq_stat(apic_perf_irqs);
1759
1760 return handled;
1761 }
1762
1763 void smp_perf_pending_interrupt(struct pt_regs *regs)
1764 {
1765 irq_enter();
1766 ack_APIC_irq();
1767 inc_irq_stat(apic_pending_irqs);
1768 perf_counter_do_pending();
1769 irq_exit();
1770 }
1771
1772 void set_perf_counter_pending(void)
1773 {
1774 #ifdef CONFIG_X86_LOCAL_APIC
1775 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1776 #endif
1777 }
1778
1779 void perf_counters_lapic_init(void)
1780 {
1781 #ifdef CONFIG_X86_LOCAL_APIC
1782 if (!x86_pmu.apic || !x86_pmu_initialized())
1783 return;
1784
1785 /*
1786 * Always use NMI for PMU
1787 */
1788 apic_write(APIC_LVTPC, APIC_DM_NMI);
1789 #endif
1790 }
1791
1792 static int __kprobes
1793 perf_counter_nmi_handler(struct notifier_block *self,
1794 unsigned long cmd, void *__args)
1795 {
1796 struct die_args *args = __args;
1797 struct pt_regs *regs;
1798
1799 if (!atomic_read(&active_counters))
1800 return NOTIFY_DONE;
1801
1802 switch (cmd) {
1803 case DIE_NMI:
1804 case DIE_NMI_IPI:
1805 break;
1806
1807 default:
1808 return NOTIFY_DONE;
1809 }
1810
1811 regs = args->regs;
1812
1813 #ifdef CONFIG_X86_LOCAL_APIC
1814 apic_write(APIC_LVTPC, APIC_DM_NMI);
1815 #endif
1816 /*
1817 * Can't rely on the handled return value to say it was our NMI, two
1818 * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1819 *
1820 * If the first NMI handles both, the latter will be empty and daze
1821 * the CPU.
1822 */
1823 x86_pmu.handle_irq(regs);
1824
1825 return NOTIFY_STOP;
1826 }
1827
1828 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1829 .notifier_call = perf_counter_nmi_handler,
1830 .next = NULL,
1831 .priority = 1
1832 };
1833
1834 static struct x86_pmu p6_pmu = {
1835 .name = "p6",
1836 .handle_irq = p6_pmu_handle_irq,
1837 .disable_all = p6_pmu_disable_all,
1838 .enable_all = p6_pmu_enable_all,
1839 .enable = p6_pmu_enable_counter,
1840 .disable = p6_pmu_disable_counter,
1841 .eventsel = MSR_P6_EVNTSEL0,
1842 .perfctr = MSR_P6_PERFCTR0,
1843 .event_map = p6_pmu_event_map,
1844 .raw_event = p6_pmu_raw_event,
1845 .max_events = ARRAY_SIZE(p6_perfmon_event_map),
1846 .apic = 1,
1847 .max_period = (1ULL << 31) - 1,
1848 .version = 0,
1849 .num_counters = 2,
1850 /*
1851 * Counters have 40 bits implemented. However they are designed such
1852 * that bits [32-39] are sign extensions of bit 31. As such the
1853 * effective width of a counter for P6-like PMU is 32 bits only.
1854 *
1855 * See IA-32 Intel Architecture Software developer manual Vol 3B
1856 */
1857 .counter_bits = 32,
1858 .counter_mask = (1ULL << 32) - 1,
1859 };
1860
1861 static struct x86_pmu intel_pmu = {
1862 .name = "Intel",
1863 .handle_irq = intel_pmu_handle_irq,
1864 .disable_all = intel_pmu_disable_all,
1865 .enable_all = intel_pmu_enable_all,
1866 .enable = intel_pmu_enable_counter,
1867 .disable = intel_pmu_disable_counter,
1868 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1869 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1870 .event_map = intel_pmu_event_map,
1871 .raw_event = intel_pmu_raw_event,
1872 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1873 .apic = 1,
1874 /*
1875 * Intel PMCs cannot be accessed sanely above 32 bit width,
1876 * so we install an artificial 1<<31 period regardless of
1877 * the generic counter period:
1878 */
1879 .max_period = (1ULL << 31) - 1,
1880 .enable_bts = intel_pmu_enable_bts,
1881 .disable_bts = intel_pmu_disable_bts,
1882 };
1883
1884 static struct x86_pmu amd_pmu = {
1885 .name = "AMD",
1886 .handle_irq = amd_pmu_handle_irq,
1887 .disable_all = amd_pmu_disable_all,
1888 .enable_all = amd_pmu_enable_all,
1889 .enable = amd_pmu_enable_counter,
1890 .disable = amd_pmu_disable_counter,
1891 .eventsel = MSR_K7_EVNTSEL0,
1892 .perfctr = MSR_K7_PERFCTR0,
1893 .event_map = amd_pmu_event_map,
1894 .raw_event = amd_pmu_raw_event,
1895 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
1896 .num_counters = 4,
1897 .counter_bits = 48,
1898 .counter_mask = (1ULL << 48) - 1,
1899 .apic = 1,
1900 /* use highest bit to detect overflow */
1901 .max_period = (1ULL << 47) - 1,
1902 };
1903
1904 static int p6_pmu_init(void)
1905 {
1906 switch (boot_cpu_data.x86_model) {
1907 case 1:
1908 case 3: /* Pentium Pro */
1909 case 5:
1910 case 6: /* Pentium II */
1911 case 7:
1912 case 8:
1913 case 11: /* Pentium III */
1914 break;
1915 case 9:
1916 case 13:
1917 /* Pentium M */
1918 break;
1919 default:
1920 pr_cont("unsupported p6 CPU model %d ",
1921 boot_cpu_data.x86_model);
1922 return -ENODEV;
1923 }
1924
1925 x86_pmu = p6_pmu;
1926
1927 if (!cpu_has_apic) {
1928 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1929 pr_info("no hardware sampling interrupt available.\n");
1930 x86_pmu.apic = 0;
1931 }
1932
1933 return 0;
1934 }
1935
1936 static int intel_pmu_init(void)
1937 {
1938 union cpuid10_edx edx;
1939 union cpuid10_eax eax;
1940 unsigned int unused;
1941 unsigned int ebx;
1942 int version;
1943
1944 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1945 /* check for P6 processor family */
1946 if (boot_cpu_data.x86 == 6) {
1947 return p6_pmu_init();
1948 } else {
1949 return -ENODEV;
1950 }
1951 }
1952
1953 /*
1954 * Check whether the Architectural PerfMon supports
1955 * Branch Misses Retired Event or not.
1956 */
1957 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1958 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1959 return -ENODEV;
1960
1961 version = eax.split.version_id;
1962 if (version < 2)
1963 return -ENODEV;
1964
1965 x86_pmu = intel_pmu;
1966 x86_pmu.version = version;
1967 x86_pmu.num_counters = eax.split.num_counters;
1968 x86_pmu.counter_bits = eax.split.bit_width;
1969 x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
1970
1971 /*
1972 * Quirk: v2 perfmon does not report fixed-purpose counters, so
1973 * assume at least 3 counters:
1974 */
1975 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1976
1977 /*
1978 * Install the hw-cache-events table:
1979 */
1980 switch (boot_cpu_data.x86_model) {
1981 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1982 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1983 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1984 case 29: /* six-core 45 nm xeon "Dunnington" */
1985 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1986 sizeof(hw_cache_event_ids));
1987
1988 pr_cont("Core2 events, ");
1989 break;
1990 default:
1991 case 26:
1992 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1993 sizeof(hw_cache_event_ids));
1994
1995 pr_cont("Nehalem/Corei7 events, ");
1996 break;
1997 case 28:
1998 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1999 sizeof(hw_cache_event_ids));
2000
2001 pr_cont("Atom events, ");
2002 break;
2003 }
2004 return 0;
2005 }
2006
2007 static int amd_pmu_init(void)
2008 {
2009 /* Performance-monitoring supported from K7 and later: */
2010 if (boot_cpu_data.x86 < 6)
2011 return -ENODEV;
2012
2013 x86_pmu = amd_pmu;
2014
2015 /* Events are common for all AMDs */
2016 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
2017 sizeof(hw_cache_event_ids));
2018
2019 return 0;
2020 }
2021
2022 void __init init_hw_perf_counters(void)
2023 {
2024 int err;
2025
2026 pr_info("Performance Counters: ");
2027
2028 switch (boot_cpu_data.x86_vendor) {
2029 case X86_VENDOR_INTEL:
2030 err = intel_pmu_init();
2031 break;
2032 case X86_VENDOR_AMD:
2033 err = amd_pmu_init();
2034 break;
2035 default:
2036 return;
2037 }
2038 if (err != 0) {
2039 pr_cont("no PMU driver, software counters only.\n");
2040 return;
2041 }
2042
2043 pr_cont("%s PMU driver.\n", x86_pmu.name);
2044
2045 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
2046 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
2047 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
2048 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
2049 }
2050 perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
2051 perf_max_counters = x86_pmu.num_counters;
2052
2053 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
2054 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
2055 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
2056 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
2057 }
2058
2059 perf_counter_mask |=
2060 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
2061 x86_pmu.intel_ctrl = perf_counter_mask;
2062
2063 perf_counters_lapic_init();
2064 register_die_notifier(&perf_counter_nmi_notifier);
2065
2066 pr_info("... version: %d\n", x86_pmu.version);
2067 pr_info("... bit width: %d\n", x86_pmu.counter_bits);
2068 pr_info("... generic counters: %d\n", x86_pmu.num_counters);
2069 pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
2070 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2071 pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
2072 pr_info("... counter mask: %016Lx\n", perf_counter_mask);
2073 }
2074
2075 static inline void x86_pmu_read(struct perf_counter *counter)
2076 {
2077 x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
2078 }
2079
2080 static const struct pmu pmu = {
2081 .enable = x86_pmu_enable,
2082 .disable = x86_pmu_disable,
2083 .read = x86_pmu_read,
2084 .unthrottle = x86_pmu_unthrottle,
2085 };
2086
2087 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
2088 {
2089 int err;
2090
2091 err = __hw_perf_counter_init(counter);
2092 if (err)
2093 return ERR_PTR(err);
2094
2095 return &pmu;
2096 }
2097
2098 /*
2099 * callchain support
2100 */
2101
2102 static inline
2103 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
2104 {
2105 if (entry->nr < PERF_MAX_STACK_DEPTH)
2106 entry->ip[entry->nr++] = ip;
2107 }
2108
2109 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
2110 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
2111 static DEFINE_PER_CPU(int, in_nmi_frame);
2112
2113
2114 static void
2115 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
2116 {
2117 /* Ignore warnings */
2118 }
2119
2120 static void backtrace_warning(void *data, char *msg)
2121 {
2122 /* Ignore warnings */
2123 }
2124
2125 static int backtrace_stack(void *data, char *name)
2126 {
2127 per_cpu(in_nmi_frame, smp_processor_id()) =
2128 x86_is_stack_id(NMI_STACK, name);
2129
2130 return 0;
2131 }
2132
2133 static void backtrace_address(void *data, unsigned long addr, int reliable)
2134 {
2135 struct perf_callchain_entry *entry = data;
2136
2137 if (per_cpu(in_nmi_frame, smp_processor_id()))
2138 return;
2139
2140 if (reliable)
2141 callchain_store(entry, addr);
2142 }
2143
2144 static const struct stacktrace_ops backtrace_ops = {
2145 .warning = backtrace_warning,
2146 .warning_symbol = backtrace_warning_symbol,
2147 .stack = backtrace_stack,
2148 .address = backtrace_address,
2149 };
2150
2151 #include "../dumpstack.h"
2152
2153 static void
2154 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
2155 {
2156 callchain_store(entry, PERF_CONTEXT_KERNEL);
2157 callchain_store(entry, regs->ip);
2158
2159 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2160 }
2161
2162 /*
2163 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
2164 */
2165 static unsigned long
2166 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
2167 {
2168 unsigned long offset, addr = (unsigned long)from;
2169 int type = in_nmi() ? KM_NMI : KM_IRQ0;
2170 unsigned long size, len = 0;
2171 struct page *page;
2172 void *map;
2173 int ret;
2174
2175 do {
2176 ret = __get_user_pages_fast(addr, 1, 0, &page);
2177 if (!ret)
2178 break;
2179
2180 offset = addr & (PAGE_SIZE - 1);
2181 size = min(PAGE_SIZE - offset, n - len);
2182
2183 map = kmap_atomic(page, type);
2184 memcpy(to, map+offset, size);
2185 kunmap_atomic(map, type);
2186 put_page(page);
2187
2188 len += size;
2189 to += size;
2190 addr += size;
2191
2192 } while (len < n);
2193
2194 return len;
2195 }
2196
2197 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
2198 {
2199 unsigned long bytes;
2200
2201 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
2202
2203 return bytes == sizeof(*frame);
2204 }
2205
2206 static void
2207 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
2208 {
2209 struct stack_frame frame;
2210 const void __user *fp;
2211
2212 if (!user_mode(regs))
2213 regs = task_pt_regs(current);
2214
2215 fp = (void __user *)regs->bp;
2216
2217 callchain_store(entry, PERF_CONTEXT_USER);
2218 callchain_store(entry, regs->ip);
2219
2220 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2221 frame.next_frame = NULL;
2222 frame.return_address = 0;
2223
2224 if (!copy_stack_frame(fp, &frame))
2225 break;
2226
2227 if ((unsigned long)fp < regs->sp)
2228 break;
2229
2230 callchain_store(entry, frame.return_address);
2231 fp = frame.next_frame;
2232 }
2233 }
2234
2235 static void
2236 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
2237 {
2238 int is_user;
2239
2240 if (!regs)
2241 return;
2242
2243 is_user = user_mode(regs);
2244
2245 if (!current || current->pid == 0)
2246 return;
2247
2248 if (is_user && current->state != TASK_RUNNING)
2249 return;
2250
2251 if (!is_user)
2252 perf_callchain_kernel(regs, entry);
2253
2254 if (current->mm)
2255 perf_callchain_user(regs, entry);
2256 }
2257
2258 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2259 {
2260 struct perf_callchain_entry *entry;
2261
2262 if (in_nmi())
2263 entry = &__get_cpu_var(nmi_entry);
2264 else
2265 entry = &__get_cpu_var(irq_entry);
2266
2267 entry->nr = 0;
2268
2269 perf_do_callchain(regs, entry);
2270
2271 return entry;
2272 }
2273
2274 void hw_perf_counter_setup_online(int cpu)
2275 {
2276 init_debug_store_on_cpu(cpu);
2277 }
This page took 0.097568 seconds and 6 git commands to generate.