Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_counter.c
1 /*
2 * Performance counter x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 *
10 * For licencing details see kernel-base/COPYING
11 */
12
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22 #include <linux/highmem.h>
23
24 #include <asm/apic.h>
25 #include <asm/stacktrace.h>
26 #include <asm/nmi.h>
27
28 static u64 perf_counter_mask __read_mostly;
29
30 struct cpu_hw_counters {
31 struct perf_counter *counters[X86_PMC_IDX_MAX];
32 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
34 unsigned long interrupts;
35 int enabled;
36 };
37
38 /*
39 * struct x86_pmu - generic x86 pmu
40 */
41 struct x86_pmu {
42 const char *name;
43 int version;
44 int (*handle_irq)(struct pt_regs *);
45 void (*disable_all)(void);
46 void (*enable_all)(void);
47 void (*enable)(struct hw_perf_counter *, int);
48 void (*disable)(struct hw_perf_counter *, int);
49 unsigned eventsel;
50 unsigned perfctr;
51 u64 (*event_map)(int);
52 u64 (*raw_event)(u64);
53 int max_events;
54 int num_counters;
55 int num_counters_fixed;
56 int counter_bits;
57 u64 counter_mask;
58 int apic;
59 u64 max_period;
60 u64 intel_ctrl;
61 };
62
63 static struct x86_pmu x86_pmu __read_mostly;
64
65 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
66 .enabled = 1,
67 };
68
69 /*
70 * Not sure about some of these
71 */
72 static const u64 p6_perfmon_event_map[] =
73 {
74 [PERF_COUNT_HW_CPU_CYCLES] = 0x0079,
75 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
76 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e,
77 [PERF_COUNT_HW_CACHE_MISSES] = 0x012e,
78 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
79 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
80 [PERF_COUNT_HW_BUS_CYCLES] = 0x0062,
81 };
82
83 static u64 p6_pmu_event_map(int event)
84 {
85 return p6_perfmon_event_map[event];
86 }
87
88 /*
89 * Counter setting that is specified not to count anything.
90 * We use this to effectively disable a counter.
91 *
92 * L2_RQSTS with 0 MESI unit mask.
93 */
94 #define P6_NOP_COUNTER 0x0000002EULL
95
96 static u64 p6_pmu_raw_event(u64 event)
97 {
98 #define P6_EVNTSEL_EVENT_MASK 0x000000FFULL
99 #define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL
100 #define P6_EVNTSEL_EDGE_MASK 0x00040000ULL
101 #define P6_EVNTSEL_INV_MASK 0x00800000ULL
102 #define P6_EVNTSEL_COUNTER_MASK 0xFF000000ULL
103
104 #define P6_EVNTSEL_MASK \
105 (P6_EVNTSEL_EVENT_MASK | \
106 P6_EVNTSEL_UNIT_MASK | \
107 P6_EVNTSEL_EDGE_MASK | \
108 P6_EVNTSEL_INV_MASK | \
109 P6_EVNTSEL_COUNTER_MASK)
110
111 return event & P6_EVNTSEL_MASK;
112 }
113
114
115 /*
116 * Intel PerfMon v3. Used on Core2 and later.
117 */
118 static const u64 intel_perfmon_event_map[] =
119 {
120 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
121 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
122 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
123 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
124 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
125 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
126 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
127 };
128
129 static u64 intel_pmu_event_map(int event)
130 {
131 return intel_perfmon_event_map[event];
132 }
133
134 /*
135 * Generalized hw caching related event table, filled
136 * in on a per model basis. A value of 0 means
137 * 'not supported', -1 means 'event makes no sense on
138 * this CPU', any other value means the raw event
139 * ID.
140 */
141
142 #define C(x) PERF_COUNT_HW_CACHE_##x
143
144 static u64 __read_mostly hw_cache_event_ids
145 [PERF_COUNT_HW_CACHE_MAX]
146 [PERF_COUNT_HW_CACHE_OP_MAX]
147 [PERF_COUNT_HW_CACHE_RESULT_MAX];
148
149 static const u64 nehalem_hw_cache_event_ids
150 [PERF_COUNT_HW_CACHE_MAX]
151 [PERF_COUNT_HW_CACHE_OP_MAX]
152 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
153 {
154 [ C(L1D) ] = {
155 [ C(OP_READ) ] = {
156 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
157 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
158 },
159 [ C(OP_WRITE) ] = {
160 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
161 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
162 },
163 [ C(OP_PREFETCH) ] = {
164 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
165 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
166 },
167 },
168 [ C(L1I ) ] = {
169 [ C(OP_READ) ] = {
170 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
171 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
172 },
173 [ C(OP_WRITE) ] = {
174 [ C(RESULT_ACCESS) ] = -1,
175 [ C(RESULT_MISS) ] = -1,
176 },
177 [ C(OP_PREFETCH) ] = {
178 [ C(RESULT_ACCESS) ] = 0x0,
179 [ C(RESULT_MISS) ] = 0x0,
180 },
181 },
182 [ C(LL ) ] = {
183 [ C(OP_READ) ] = {
184 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
185 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
186 },
187 [ C(OP_WRITE) ] = {
188 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
189 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
190 },
191 [ C(OP_PREFETCH) ] = {
192 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
193 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
194 },
195 },
196 [ C(DTLB) ] = {
197 [ C(OP_READ) ] = {
198 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
199 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
200 },
201 [ C(OP_WRITE) ] = {
202 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
203 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
204 },
205 [ C(OP_PREFETCH) ] = {
206 [ C(RESULT_ACCESS) ] = 0x0,
207 [ C(RESULT_MISS) ] = 0x0,
208 },
209 },
210 [ C(ITLB) ] = {
211 [ C(OP_READ) ] = {
212 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
213 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
214 },
215 [ C(OP_WRITE) ] = {
216 [ C(RESULT_ACCESS) ] = -1,
217 [ C(RESULT_MISS) ] = -1,
218 },
219 [ C(OP_PREFETCH) ] = {
220 [ C(RESULT_ACCESS) ] = -1,
221 [ C(RESULT_MISS) ] = -1,
222 },
223 },
224 [ C(BPU ) ] = {
225 [ C(OP_READ) ] = {
226 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
227 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
228 },
229 [ C(OP_WRITE) ] = {
230 [ C(RESULT_ACCESS) ] = -1,
231 [ C(RESULT_MISS) ] = -1,
232 },
233 [ C(OP_PREFETCH) ] = {
234 [ C(RESULT_ACCESS) ] = -1,
235 [ C(RESULT_MISS) ] = -1,
236 },
237 },
238 };
239
240 static const u64 core2_hw_cache_event_ids
241 [PERF_COUNT_HW_CACHE_MAX]
242 [PERF_COUNT_HW_CACHE_OP_MAX]
243 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
244 {
245 [ C(L1D) ] = {
246 [ C(OP_READ) ] = {
247 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
248 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
249 },
250 [ C(OP_WRITE) ] = {
251 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
252 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
253 },
254 [ C(OP_PREFETCH) ] = {
255 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
256 [ C(RESULT_MISS) ] = 0,
257 },
258 },
259 [ C(L1I ) ] = {
260 [ C(OP_READ) ] = {
261 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
262 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
263 },
264 [ C(OP_WRITE) ] = {
265 [ C(RESULT_ACCESS) ] = -1,
266 [ C(RESULT_MISS) ] = -1,
267 },
268 [ C(OP_PREFETCH) ] = {
269 [ C(RESULT_ACCESS) ] = 0,
270 [ C(RESULT_MISS) ] = 0,
271 },
272 },
273 [ C(LL ) ] = {
274 [ C(OP_READ) ] = {
275 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
276 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
277 },
278 [ C(OP_WRITE) ] = {
279 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
280 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
281 },
282 [ C(OP_PREFETCH) ] = {
283 [ C(RESULT_ACCESS) ] = 0,
284 [ C(RESULT_MISS) ] = 0,
285 },
286 },
287 [ C(DTLB) ] = {
288 [ C(OP_READ) ] = {
289 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
290 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
291 },
292 [ C(OP_WRITE) ] = {
293 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
294 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
295 },
296 [ C(OP_PREFETCH) ] = {
297 [ C(RESULT_ACCESS) ] = 0,
298 [ C(RESULT_MISS) ] = 0,
299 },
300 },
301 [ C(ITLB) ] = {
302 [ C(OP_READ) ] = {
303 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
304 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
305 },
306 [ C(OP_WRITE) ] = {
307 [ C(RESULT_ACCESS) ] = -1,
308 [ C(RESULT_MISS) ] = -1,
309 },
310 [ C(OP_PREFETCH) ] = {
311 [ C(RESULT_ACCESS) ] = -1,
312 [ C(RESULT_MISS) ] = -1,
313 },
314 },
315 [ C(BPU ) ] = {
316 [ C(OP_READ) ] = {
317 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
318 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
319 },
320 [ C(OP_WRITE) ] = {
321 [ C(RESULT_ACCESS) ] = -1,
322 [ C(RESULT_MISS) ] = -1,
323 },
324 [ C(OP_PREFETCH) ] = {
325 [ C(RESULT_ACCESS) ] = -1,
326 [ C(RESULT_MISS) ] = -1,
327 },
328 },
329 };
330
331 static const u64 atom_hw_cache_event_ids
332 [PERF_COUNT_HW_CACHE_MAX]
333 [PERF_COUNT_HW_CACHE_OP_MAX]
334 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
335 {
336 [ C(L1D) ] = {
337 [ C(OP_READ) ] = {
338 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
339 [ C(RESULT_MISS) ] = 0,
340 },
341 [ C(OP_WRITE) ] = {
342 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
343 [ C(RESULT_MISS) ] = 0,
344 },
345 [ C(OP_PREFETCH) ] = {
346 [ C(RESULT_ACCESS) ] = 0x0,
347 [ C(RESULT_MISS) ] = 0,
348 },
349 },
350 [ C(L1I ) ] = {
351 [ C(OP_READ) ] = {
352 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
353 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
354 },
355 [ C(OP_WRITE) ] = {
356 [ C(RESULT_ACCESS) ] = -1,
357 [ C(RESULT_MISS) ] = -1,
358 },
359 [ C(OP_PREFETCH) ] = {
360 [ C(RESULT_ACCESS) ] = 0,
361 [ C(RESULT_MISS) ] = 0,
362 },
363 },
364 [ C(LL ) ] = {
365 [ C(OP_READ) ] = {
366 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
367 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
368 },
369 [ C(OP_WRITE) ] = {
370 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
371 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
372 },
373 [ C(OP_PREFETCH) ] = {
374 [ C(RESULT_ACCESS) ] = 0,
375 [ C(RESULT_MISS) ] = 0,
376 },
377 },
378 [ C(DTLB) ] = {
379 [ C(OP_READ) ] = {
380 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
381 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
382 },
383 [ C(OP_WRITE) ] = {
384 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
385 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
386 },
387 [ C(OP_PREFETCH) ] = {
388 [ C(RESULT_ACCESS) ] = 0,
389 [ C(RESULT_MISS) ] = 0,
390 },
391 },
392 [ C(ITLB) ] = {
393 [ C(OP_READ) ] = {
394 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
395 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
396 },
397 [ C(OP_WRITE) ] = {
398 [ C(RESULT_ACCESS) ] = -1,
399 [ C(RESULT_MISS) ] = -1,
400 },
401 [ C(OP_PREFETCH) ] = {
402 [ C(RESULT_ACCESS) ] = -1,
403 [ C(RESULT_MISS) ] = -1,
404 },
405 },
406 [ C(BPU ) ] = {
407 [ C(OP_READ) ] = {
408 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
409 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
410 },
411 [ C(OP_WRITE) ] = {
412 [ C(RESULT_ACCESS) ] = -1,
413 [ C(RESULT_MISS) ] = -1,
414 },
415 [ C(OP_PREFETCH) ] = {
416 [ C(RESULT_ACCESS) ] = -1,
417 [ C(RESULT_MISS) ] = -1,
418 },
419 },
420 };
421
422 static u64 intel_pmu_raw_event(u64 event)
423 {
424 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
425 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
426 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
427 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
428 #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
429
430 #define CORE_EVNTSEL_MASK \
431 (CORE_EVNTSEL_EVENT_MASK | \
432 CORE_EVNTSEL_UNIT_MASK | \
433 CORE_EVNTSEL_EDGE_MASK | \
434 CORE_EVNTSEL_INV_MASK | \
435 CORE_EVNTSEL_COUNTER_MASK)
436
437 return event & CORE_EVNTSEL_MASK;
438 }
439
440 static const u64 amd_hw_cache_event_ids
441 [PERF_COUNT_HW_CACHE_MAX]
442 [PERF_COUNT_HW_CACHE_OP_MAX]
443 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
444 {
445 [ C(L1D) ] = {
446 [ C(OP_READ) ] = {
447 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
448 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
449 },
450 [ C(OP_WRITE) ] = {
451 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
452 [ C(RESULT_MISS) ] = 0,
453 },
454 [ C(OP_PREFETCH) ] = {
455 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
456 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
457 },
458 },
459 [ C(L1I ) ] = {
460 [ C(OP_READ) ] = {
461 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
462 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
463 },
464 [ C(OP_WRITE) ] = {
465 [ C(RESULT_ACCESS) ] = -1,
466 [ C(RESULT_MISS) ] = -1,
467 },
468 [ C(OP_PREFETCH) ] = {
469 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
470 [ C(RESULT_MISS) ] = 0,
471 },
472 },
473 [ C(LL ) ] = {
474 [ C(OP_READ) ] = {
475 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
476 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
477 },
478 [ C(OP_WRITE) ] = {
479 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
480 [ C(RESULT_MISS) ] = 0,
481 },
482 [ C(OP_PREFETCH) ] = {
483 [ C(RESULT_ACCESS) ] = 0,
484 [ C(RESULT_MISS) ] = 0,
485 },
486 },
487 [ C(DTLB) ] = {
488 [ C(OP_READ) ] = {
489 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
490 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
491 },
492 [ C(OP_WRITE) ] = {
493 [ C(RESULT_ACCESS) ] = 0,
494 [ C(RESULT_MISS) ] = 0,
495 },
496 [ C(OP_PREFETCH) ] = {
497 [ C(RESULT_ACCESS) ] = 0,
498 [ C(RESULT_MISS) ] = 0,
499 },
500 },
501 [ C(ITLB) ] = {
502 [ C(OP_READ) ] = {
503 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
504 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
505 },
506 [ C(OP_WRITE) ] = {
507 [ C(RESULT_ACCESS) ] = -1,
508 [ C(RESULT_MISS) ] = -1,
509 },
510 [ C(OP_PREFETCH) ] = {
511 [ C(RESULT_ACCESS) ] = -1,
512 [ C(RESULT_MISS) ] = -1,
513 },
514 },
515 [ C(BPU ) ] = {
516 [ C(OP_READ) ] = {
517 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
518 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
519 },
520 [ C(OP_WRITE) ] = {
521 [ C(RESULT_ACCESS) ] = -1,
522 [ C(RESULT_MISS) ] = -1,
523 },
524 [ C(OP_PREFETCH) ] = {
525 [ C(RESULT_ACCESS) ] = -1,
526 [ C(RESULT_MISS) ] = -1,
527 },
528 },
529 };
530
531 /*
532 * AMD Performance Monitor K7 and later.
533 */
534 static const u64 amd_perfmon_event_map[] =
535 {
536 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
537 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
538 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
539 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
540 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
541 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
542 };
543
544 static u64 amd_pmu_event_map(int event)
545 {
546 return amd_perfmon_event_map[event];
547 }
548
549 static u64 amd_pmu_raw_event(u64 event)
550 {
551 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
552 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
553 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
554 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
555 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
556
557 #define K7_EVNTSEL_MASK \
558 (K7_EVNTSEL_EVENT_MASK | \
559 K7_EVNTSEL_UNIT_MASK | \
560 K7_EVNTSEL_EDGE_MASK | \
561 K7_EVNTSEL_INV_MASK | \
562 K7_EVNTSEL_COUNTER_MASK)
563
564 return event & K7_EVNTSEL_MASK;
565 }
566
567 /*
568 * Propagate counter elapsed time into the generic counter.
569 * Can only be executed on the CPU where the counter is active.
570 * Returns the delta events processed.
571 */
572 static u64
573 x86_perf_counter_update(struct perf_counter *counter,
574 struct hw_perf_counter *hwc, int idx)
575 {
576 int shift = 64 - x86_pmu.counter_bits;
577 u64 prev_raw_count, new_raw_count;
578 s64 delta;
579
580 /*
581 * Careful: an NMI might modify the previous counter value.
582 *
583 * Our tactic to handle this is to first atomically read and
584 * exchange a new raw count - then add that new-prev delta
585 * count to the generic counter atomically:
586 */
587 again:
588 prev_raw_count = atomic64_read(&hwc->prev_count);
589 rdmsrl(hwc->counter_base + idx, new_raw_count);
590
591 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
592 new_raw_count) != prev_raw_count)
593 goto again;
594
595 /*
596 * Now we have the new raw value and have updated the prev
597 * timestamp already. We can now calculate the elapsed delta
598 * (counter-)time and add that to the generic counter.
599 *
600 * Careful, not all hw sign-extends above the physical width
601 * of the count.
602 */
603 delta = (new_raw_count << shift) - (prev_raw_count << shift);
604 delta >>= shift;
605
606 atomic64_add(delta, &counter->count);
607 atomic64_sub(delta, &hwc->period_left);
608
609 return new_raw_count;
610 }
611
612 static atomic_t active_counters;
613 static DEFINE_MUTEX(pmc_reserve_mutex);
614
615 static bool reserve_pmc_hardware(void)
616 {
617 #ifdef CONFIG_X86_LOCAL_APIC
618 int i;
619
620 if (nmi_watchdog == NMI_LOCAL_APIC)
621 disable_lapic_nmi_watchdog();
622
623 for (i = 0; i < x86_pmu.num_counters; i++) {
624 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
625 goto perfctr_fail;
626 }
627
628 for (i = 0; i < x86_pmu.num_counters; i++) {
629 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
630 goto eventsel_fail;
631 }
632 #endif
633
634 return true;
635
636 #ifdef CONFIG_X86_LOCAL_APIC
637 eventsel_fail:
638 for (i--; i >= 0; i--)
639 release_evntsel_nmi(x86_pmu.eventsel + i);
640
641 i = x86_pmu.num_counters;
642
643 perfctr_fail:
644 for (i--; i >= 0; i--)
645 release_perfctr_nmi(x86_pmu.perfctr + i);
646
647 if (nmi_watchdog == NMI_LOCAL_APIC)
648 enable_lapic_nmi_watchdog();
649
650 return false;
651 #endif
652 }
653
654 static void release_pmc_hardware(void)
655 {
656 #ifdef CONFIG_X86_LOCAL_APIC
657 int i;
658
659 for (i = 0; i < x86_pmu.num_counters; i++) {
660 release_perfctr_nmi(x86_pmu.perfctr + i);
661 release_evntsel_nmi(x86_pmu.eventsel + i);
662 }
663
664 if (nmi_watchdog == NMI_LOCAL_APIC)
665 enable_lapic_nmi_watchdog();
666 #endif
667 }
668
669 static void hw_perf_counter_destroy(struct perf_counter *counter)
670 {
671 if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
672 release_pmc_hardware();
673 mutex_unlock(&pmc_reserve_mutex);
674 }
675 }
676
677 static inline int x86_pmu_initialized(void)
678 {
679 return x86_pmu.handle_irq != NULL;
680 }
681
682 static inline int
683 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
684 {
685 unsigned int cache_type, cache_op, cache_result;
686 u64 config, val;
687
688 config = attr->config;
689
690 cache_type = (config >> 0) & 0xff;
691 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
692 return -EINVAL;
693
694 cache_op = (config >> 8) & 0xff;
695 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
696 return -EINVAL;
697
698 cache_result = (config >> 16) & 0xff;
699 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
700 return -EINVAL;
701
702 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
703
704 if (val == 0)
705 return -ENOENT;
706
707 if (val == -1)
708 return -EINVAL;
709
710 hwc->config |= val;
711
712 return 0;
713 }
714
715 /*
716 * Setup the hardware configuration for a given attr_type
717 */
718 static int __hw_perf_counter_init(struct perf_counter *counter)
719 {
720 struct perf_counter_attr *attr = &counter->attr;
721 struct hw_perf_counter *hwc = &counter->hw;
722 u64 config;
723 int err;
724
725 if (!x86_pmu_initialized())
726 return -ENODEV;
727
728 err = 0;
729 if (!atomic_inc_not_zero(&active_counters)) {
730 mutex_lock(&pmc_reserve_mutex);
731 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
732 err = -EBUSY;
733 else
734 atomic_inc(&active_counters);
735 mutex_unlock(&pmc_reserve_mutex);
736 }
737 if (err)
738 return err;
739
740 /*
741 * Generate PMC IRQs:
742 * (keep 'enabled' bit clear for now)
743 */
744 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
745
746 /*
747 * Count user and OS events unless requested not to.
748 */
749 if (!attr->exclude_user)
750 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
751 if (!attr->exclude_kernel)
752 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
753
754 if (!hwc->sample_period) {
755 hwc->sample_period = x86_pmu.max_period;
756 hwc->last_period = hwc->sample_period;
757 atomic64_set(&hwc->period_left, hwc->sample_period);
758 } else {
759 /*
760 * If we have a PMU initialized but no APIC
761 * interrupts, we cannot sample hardware
762 * counters (user-space has to fall back and
763 * sample via a hrtimer based software counter):
764 */
765 if (!x86_pmu.apic)
766 return -EOPNOTSUPP;
767 }
768
769 counter->destroy = hw_perf_counter_destroy;
770
771 /*
772 * Raw event type provide the config in the event structure
773 */
774 if (attr->type == PERF_TYPE_RAW) {
775 hwc->config |= x86_pmu.raw_event(attr->config);
776 return 0;
777 }
778
779 if (attr->type == PERF_TYPE_HW_CACHE)
780 return set_ext_hw_attr(hwc, attr);
781
782 if (attr->config >= x86_pmu.max_events)
783 return -EINVAL;
784
785 /*
786 * The generic map:
787 */
788 config = x86_pmu.event_map(attr->config);
789
790 if (config == 0)
791 return -ENOENT;
792
793 if (config == -1LL)
794 return -EINVAL;
795
796 hwc->config |= config;
797
798 return 0;
799 }
800
801 static void p6_pmu_disable_all(void)
802 {
803 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
804 u64 val;
805
806 if (!cpuc->enabled)
807 return;
808
809 cpuc->enabled = 0;
810 barrier();
811
812 /* p6 only has one enable register */
813 rdmsrl(MSR_P6_EVNTSEL0, val);
814 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
815 wrmsrl(MSR_P6_EVNTSEL0, val);
816 }
817
818 static void intel_pmu_disable_all(void)
819 {
820 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
821 }
822
823 static void amd_pmu_disable_all(void)
824 {
825 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
826 int idx;
827
828 if (!cpuc->enabled)
829 return;
830
831 cpuc->enabled = 0;
832 /*
833 * ensure we write the disable before we start disabling the
834 * counters proper, so that amd_pmu_enable_counter() does the
835 * right thing.
836 */
837 barrier();
838
839 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
840 u64 val;
841
842 if (!test_bit(idx, cpuc->active_mask))
843 continue;
844 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
845 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
846 continue;
847 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
848 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
849 }
850 }
851
852 void hw_perf_disable(void)
853 {
854 if (!x86_pmu_initialized())
855 return;
856 return x86_pmu.disable_all();
857 }
858
859 static void p6_pmu_enable_all(void)
860 {
861 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
862 unsigned long val;
863
864 if (cpuc->enabled)
865 return;
866
867 cpuc->enabled = 1;
868 barrier();
869
870 /* p6 only has one enable register */
871 rdmsrl(MSR_P6_EVNTSEL0, val);
872 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
873 wrmsrl(MSR_P6_EVNTSEL0, val);
874 }
875
876 static void intel_pmu_enable_all(void)
877 {
878 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
879 }
880
881 static void amd_pmu_enable_all(void)
882 {
883 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
884 int idx;
885
886 if (cpuc->enabled)
887 return;
888
889 cpuc->enabled = 1;
890 barrier();
891
892 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
893 struct perf_counter *counter = cpuc->counters[idx];
894 u64 val;
895
896 if (!test_bit(idx, cpuc->active_mask))
897 continue;
898
899 val = counter->hw.config;
900 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
901 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
902 }
903 }
904
905 void hw_perf_enable(void)
906 {
907 if (!x86_pmu_initialized())
908 return;
909 x86_pmu.enable_all();
910 }
911
912 static inline u64 intel_pmu_get_status(void)
913 {
914 u64 status;
915
916 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
917
918 return status;
919 }
920
921 static inline void intel_pmu_ack_status(u64 ack)
922 {
923 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
924 }
925
926 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
927 {
928 (void)checking_wrmsrl(hwc->config_base + idx,
929 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
930 }
931
932 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
933 {
934 (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
935 }
936
937 static inline void
938 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
939 {
940 int idx = __idx - X86_PMC_IDX_FIXED;
941 u64 ctrl_val, mask;
942
943 mask = 0xfULL << (idx * 4);
944
945 rdmsrl(hwc->config_base, ctrl_val);
946 ctrl_val &= ~mask;
947 (void)checking_wrmsrl(hwc->config_base, ctrl_val);
948 }
949
950 static inline void
951 p6_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
952 {
953 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
954 u64 val = P6_NOP_COUNTER;
955
956 if (cpuc->enabled)
957 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
958
959 (void)checking_wrmsrl(hwc->config_base + idx, val);
960 }
961
962 static inline void
963 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
964 {
965 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
966 intel_pmu_disable_fixed(hwc, idx);
967 return;
968 }
969
970 x86_pmu_disable_counter(hwc, idx);
971 }
972
973 static inline void
974 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
975 {
976 x86_pmu_disable_counter(hwc, idx);
977 }
978
979 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
980
981 /*
982 * Set the next IRQ period, based on the hwc->period_left value.
983 * To be called with the counter disabled in hw:
984 */
985 static int
986 x86_perf_counter_set_period(struct perf_counter *counter,
987 struct hw_perf_counter *hwc, int idx)
988 {
989 s64 left = atomic64_read(&hwc->period_left);
990 s64 period = hwc->sample_period;
991 int err, ret = 0;
992
993 /*
994 * If we are way outside a reasoable range then just skip forward:
995 */
996 if (unlikely(left <= -period)) {
997 left = period;
998 atomic64_set(&hwc->period_left, left);
999 hwc->last_period = period;
1000 ret = 1;
1001 }
1002
1003 if (unlikely(left <= 0)) {
1004 left += period;
1005 atomic64_set(&hwc->period_left, left);
1006 hwc->last_period = period;
1007 ret = 1;
1008 }
1009 /*
1010 * Quirk: certain CPUs dont like it if just 1 event is left:
1011 */
1012 if (unlikely(left < 2))
1013 left = 2;
1014
1015 if (left > x86_pmu.max_period)
1016 left = x86_pmu.max_period;
1017
1018 per_cpu(prev_left[idx], smp_processor_id()) = left;
1019
1020 /*
1021 * The hw counter starts counting from this counter offset,
1022 * mark it to be able to extra future deltas:
1023 */
1024 atomic64_set(&hwc->prev_count, (u64)-left);
1025
1026 err = checking_wrmsrl(hwc->counter_base + idx,
1027 (u64)(-left) & x86_pmu.counter_mask);
1028
1029 perf_counter_update_userpage(counter);
1030
1031 return ret;
1032 }
1033
1034 static inline void
1035 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
1036 {
1037 int idx = __idx - X86_PMC_IDX_FIXED;
1038 u64 ctrl_val, bits, mask;
1039 int err;
1040
1041 /*
1042 * Enable IRQ generation (0x8),
1043 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1044 * if requested:
1045 */
1046 bits = 0x8ULL;
1047 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1048 bits |= 0x2;
1049 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1050 bits |= 0x1;
1051 bits <<= (idx * 4);
1052 mask = 0xfULL << (idx * 4);
1053
1054 rdmsrl(hwc->config_base, ctrl_val);
1055 ctrl_val &= ~mask;
1056 ctrl_val |= bits;
1057 err = checking_wrmsrl(hwc->config_base, ctrl_val);
1058 }
1059
1060 static void p6_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1061 {
1062 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1063 u64 val;
1064
1065 val = hwc->config;
1066 if (cpuc->enabled)
1067 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1068
1069 (void)checking_wrmsrl(hwc->config_base + idx, val);
1070 }
1071
1072
1073 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1074 {
1075 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1076 intel_pmu_enable_fixed(hwc, idx);
1077 return;
1078 }
1079
1080 x86_pmu_enable_counter(hwc, idx);
1081 }
1082
1083 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
1084 {
1085 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1086
1087 if (cpuc->enabled)
1088 x86_pmu_enable_counter(hwc, idx);
1089 }
1090
1091 static int
1092 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
1093 {
1094 unsigned int event;
1095
1096 if (!x86_pmu.num_counters_fixed)
1097 return -1;
1098
1099 event = hwc->config & ARCH_PERFMON_EVENT_MASK;
1100
1101 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
1102 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
1103 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
1104 return X86_PMC_IDX_FIXED_CPU_CYCLES;
1105 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
1106 return X86_PMC_IDX_FIXED_BUS_CYCLES;
1107
1108 return -1;
1109 }
1110
1111 /*
1112 * Find a PMC slot for the freshly enabled / scheduled in counter:
1113 */
1114 static int x86_pmu_enable(struct perf_counter *counter)
1115 {
1116 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1117 struct hw_perf_counter *hwc = &counter->hw;
1118 int idx;
1119
1120 idx = fixed_mode_idx(counter, hwc);
1121 if (idx >= 0) {
1122 /*
1123 * Try to get the fixed counter, if that is already taken
1124 * then try to get a generic counter:
1125 */
1126 if (test_and_set_bit(idx, cpuc->used_mask))
1127 goto try_generic;
1128
1129 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1130 /*
1131 * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1132 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1133 */
1134 hwc->counter_base =
1135 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1136 hwc->idx = idx;
1137 } else {
1138 idx = hwc->idx;
1139 /* Try to get the previous generic counter again */
1140 if (test_and_set_bit(idx, cpuc->used_mask)) {
1141 try_generic:
1142 idx = find_first_zero_bit(cpuc->used_mask,
1143 x86_pmu.num_counters);
1144 if (idx == x86_pmu.num_counters)
1145 return -EAGAIN;
1146
1147 set_bit(idx, cpuc->used_mask);
1148 hwc->idx = idx;
1149 }
1150 hwc->config_base = x86_pmu.eventsel;
1151 hwc->counter_base = x86_pmu.perfctr;
1152 }
1153
1154 perf_counters_lapic_init();
1155
1156 x86_pmu.disable(hwc, idx);
1157
1158 cpuc->counters[idx] = counter;
1159 set_bit(idx, cpuc->active_mask);
1160
1161 x86_perf_counter_set_period(counter, hwc, idx);
1162 x86_pmu.enable(hwc, idx);
1163
1164 perf_counter_update_userpage(counter);
1165
1166 return 0;
1167 }
1168
1169 static void x86_pmu_unthrottle(struct perf_counter *counter)
1170 {
1171 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1172 struct hw_perf_counter *hwc = &counter->hw;
1173
1174 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1175 cpuc->counters[hwc->idx] != counter))
1176 return;
1177
1178 x86_pmu.enable(hwc, hwc->idx);
1179 }
1180
1181 void perf_counter_print_debug(void)
1182 {
1183 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1184 struct cpu_hw_counters *cpuc;
1185 unsigned long flags;
1186 int cpu, idx;
1187
1188 if (!x86_pmu.num_counters)
1189 return;
1190
1191 local_irq_save(flags);
1192
1193 cpu = smp_processor_id();
1194 cpuc = &per_cpu(cpu_hw_counters, cpu);
1195
1196 if (x86_pmu.version >= 2) {
1197 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1198 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1199 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1200 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1201
1202 pr_info("\n");
1203 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1204 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1205 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1206 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1207 }
1208 pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1209
1210 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1211 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1212 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1213
1214 prev_left = per_cpu(prev_left[idx], cpu);
1215
1216 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1217 cpu, idx, pmc_ctrl);
1218 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1219 cpu, idx, pmc_count);
1220 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1221 cpu, idx, prev_left);
1222 }
1223 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1224 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1225
1226 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1227 cpu, idx, pmc_count);
1228 }
1229 local_irq_restore(flags);
1230 }
1231
1232 static void x86_pmu_disable(struct perf_counter *counter)
1233 {
1234 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1235 struct hw_perf_counter *hwc = &counter->hw;
1236 int idx = hwc->idx;
1237
1238 /*
1239 * Must be done before we disable, otherwise the nmi handler
1240 * could reenable again:
1241 */
1242 clear_bit(idx, cpuc->active_mask);
1243 x86_pmu.disable(hwc, idx);
1244
1245 /*
1246 * Make sure the cleared pointer becomes visible before we
1247 * (potentially) free the counter:
1248 */
1249 barrier();
1250
1251 /*
1252 * Drain the remaining delta count out of a counter
1253 * that we are disabling:
1254 */
1255 x86_perf_counter_update(counter, hwc, idx);
1256 cpuc->counters[idx] = NULL;
1257 clear_bit(idx, cpuc->used_mask);
1258
1259 perf_counter_update_userpage(counter);
1260 }
1261
1262 /*
1263 * Save and restart an expired counter. Called by NMI contexts,
1264 * so it has to be careful about preempting normal counter ops:
1265 */
1266 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1267 {
1268 struct hw_perf_counter *hwc = &counter->hw;
1269 int idx = hwc->idx;
1270 int ret;
1271
1272 x86_perf_counter_update(counter, hwc, idx);
1273 ret = x86_perf_counter_set_period(counter, hwc, idx);
1274
1275 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1276 intel_pmu_enable_counter(hwc, idx);
1277
1278 return ret;
1279 }
1280
1281 static void intel_pmu_reset(void)
1282 {
1283 unsigned long flags;
1284 int idx;
1285
1286 if (!x86_pmu.num_counters)
1287 return;
1288
1289 local_irq_save(flags);
1290
1291 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1292
1293 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1294 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1295 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1296 }
1297 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1298 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1299 }
1300
1301 local_irq_restore(flags);
1302 }
1303
1304 static int p6_pmu_handle_irq(struct pt_regs *regs)
1305 {
1306 struct perf_sample_data data;
1307 struct cpu_hw_counters *cpuc;
1308 struct perf_counter *counter;
1309 struct hw_perf_counter *hwc;
1310 int idx, handled = 0;
1311 u64 val;
1312
1313 data.regs = regs;
1314 data.addr = 0;
1315
1316 cpuc = &__get_cpu_var(cpu_hw_counters);
1317
1318 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1319 if (!test_bit(idx, cpuc->active_mask))
1320 continue;
1321
1322 counter = cpuc->counters[idx];
1323 hwc = &counter->hw;
1324
1325 val = x86_perf_counter_update(counter, hwc, idx);
1326 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1327 continue;
1328
1329 /*
1330 * counter overflow
1331 */
1332 handled = 1;
1333 data.period = counter->hw.last_period;
1334
1335 if (!x86_perf_counter_set_period(counter, hwc, idx))
1336 continue;
1337
1338 if (perf_counter_overflow(counter, 1, &data))
1339 p6_pmu_disable_counter(hwc, idx);
1340 }
1341
1342 if (handled)
1343 inc_irq_stat(apic_perf_irqs);
1344
1345 return handled;
1346 }
1347
1348 /*
1349 * This handler is triggered by the local APIC, so the APIC IRQ handling
1350 * rules apply:
1351 */
1352 static int intel_pmu_handle_irq(struct pt_regs *regs)
1353 {
1354 struct perf_sample_data data;
1355 struct cpu_hw_counters *cpuc;
1356 int bit, loops;
1357 u64 ack, status;
1358
1359 data.regs = regs;
1360 data.addr = 0;
1361
1362 cpuc = &__get_cpu_var(cpu_hw_counters);
1363
1364 perf_disable();
1365 status = intel_pmu_get_status();
1366 if (!status) {
1367 perf_enable();
1368 return 0;
1369 }
1370
1371 loops = 0;
1372 again:
1373 if (++loops > 100) {
1374 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1375 perf_counter_print_debug();
1376 intel_pmu_reset();
1377 perf_enable();
1378 return 1;
1379 }
1380
1381 inc_irq_stat(apic_perf_irqs);
1382 ack = status;
1383 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1384 struct perf_counter *counter = cpuc->counters[bit];
1385
1386 clear_bit(bit, (unsigned long *) &status);
1387 if (!test_bit(bit, cpuc->active_mask))
1388 continue;
1389
1390 if (!intel_pmu_save_and_restart(counter))
1391 continue;
1392
1393 data.period = counter->hw.last_period;
1394
1395 if (perf_counter_overflow(counter, 1, &data))
1396 intel_pmu_disable_counter(&counter->hw, bit);
1397 }
1398
1399 intel_pmu_ack_status(ack);
1400
1401 /*
1402 * Repeat if there is more work to be done:
1403 */
1404 status = intel_pmu_get_status();
1405 if (status)
1406 goto again;
1407
1408 perf_enable();
1409
1410 return 1;
1411 }
1412
1413 static int amd_pmu_handle_irq(struct pt_regs *regs)
1414 {
1415 struct perf_sample_data data;
1416 struct cpu_hw_counters *cpuc;
1417 struct perf_counter *counter;
1418 struct hw_perf_counter *hwc;
1419 int idx, handled = 0;
1420 u64 val;
1421
1422 data.regs = regs;
1423 data.addr = 0;
1424
1425 cpuc = &__get_cpu_var(cpu_hw_counters);
1426
1427 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1428 if (!test_bit(idx, cpuc->active_mask))
1429 continue;
1430
1431 counter = cpuc->counters[idx];
1432 hwc = &counter->hw;
1433
1434 val = x86_perf_counter_update(counter, hwc, idx);
1435 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1436 continue;
1437
1438 /*
1439 * counter overflow
1440 */
1441 handled = 1;
1442 data.period = counter->hw.last_period;
1443
1444 if (!x86_perf_counter_set_period(counter, hwc, idx))
1445 continue;
1446
1447 if (perf_counter_overflow(counter, 1, &data))
1448 amd_pmu_disable_counter(hwc, idx);
1449 }
1450
1451 if (handled)
1452 inc_irq_stat(apic_perf_irqs);
1453
1454 return handled;
1455 }
1456
1457 void smp_perf_pending_interrupt(struct pt_regs *regs)
1458 {
1459 irq_enter();
1460 ack_APIC_irq();
1461 inc_irq_stat(apic_pending_irqs);
1462 perf_counter_do_pending();
1463 irq_exit();
1464 }
1465
1466 void set_perf_counter_pending(void)
1467 {
1468 #ifdef CONFIG_X86_LOCAL_APIC
1469 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1470 #endif
1471 }
1472
1473 void perf_counters_lapic_init(void)
1474 {
1475 #ifdef CONFIG_X86_LOCAL_APIC
1476 if (!x86_pmu.apic || !x86_pmu_initialized())
1477 return;
1478
1479 /*
1480 * Always use NMI for PMU
1481 */
1482 apic_write(APIC_LVTPC, APIC_DM_NMI);
1483 #endif
1484 }
1485
1486 static int __kprobes
1487 perf_counter_nmi_handler(struct notifier_block *self,
1488 unsigned long cmd, void *__args)
1489 {
1490 struct die_args *args = __args;
1491 struct pt_regs *regs;
1492
1493 if (!atomic_read(&active_counters))
1494 return NOTIFY_DONE;
1495
1496 switch (cmd) {
1497 case DIE_NMI:
1498 case DIE_NMI_IPI:
1499 break;
1500
1501 default:
1502 return NOTIFY_DONE;
1503 }
1504
1505 regs = args->regs;
1506
1507 #ifdef CONFIG_X86_LOCAL_APIC
1508 apic_write(APIC_LVTPC, APIC_DM_NMI);
1509 #endif
1510 /*
1511 * Can't rely on the handled return value to say it was our NMI, two
1512 * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1513 *
1514 * If the first NMI handles both, the latter will be empty and daze
1515 * the CPU.
1516 */
1517 x86_pmu.handle_irq(regs);
1518
1519 return NOTIFY_STOP;
1520 }
1521
1522 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1523 .notifier_call = perf_counter_nmi_handler,
1524 .next = NULL,
1525 .priority = 1
1526 };
1527
1528 static struct x86_pmu p6_pmu = {
1529 .name = "p6",
1530 .handle_irq = p6_pmu_handle_irq,
1531 .disable_all = p6_pmu_disable_all,
1532 .enable_all = p6_pmu_enable_all,
1533 .enable = p6_pmu_enable_counter,
1534 .disable = p6_pmu_disable_counter,
1535 .eventsel = MSR_P6_EVNTSEL0,
1536 .perfctr = MSR_P6_PERFCTR0,
1537 .event_map = p6_pmu_event_map,
1538 .raw_event = p6_pmu_raw_event,
1539 .max_events = ARRAY_SIZE(p6_perfmon_event_map),
1540 .apic = 1,
1541 .max_period = (1ULL << 31) - 1,
1542 .version = 0,
1543 .num_counters = 2,
1544 /*
1545 * Counters have 40 bits implemented. However they are designed such
1546 * that bits [32-39] are sign extensions of bit 31. As such the
1547 * effective width of a counter for P6-like PMU is 32 bits only.
1548 *
1549 * See IA-32 Intel Architecture Software developer manual Vol 3B
1550 */
1551 .counter_bits = 32,
1552 .counter_mask = (1ULL << 32) - 1,
1553 };
1554
1555 static struct x86_pmu intel_pmu = {
1556 .name = "Intel",
1557 .handle_irq = intel_pmu_handle_irq,
1558 .disable_all = intel_pmu_disable_all,
1559 .enable_all = intel_pmu_enable_all,
1560 .enable = intel_pmu_enable_counter,
1561 .disable = intel_pmu_disable_counter,
1562 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1563 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1564 .event_map = intel_pmu_event_map,
1565 .raw_event = intel_pmu_raw_event,
1566 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1567 .apic = 1,
1568 /*
1569 * Intel PMCs cannot be accessed sanely above 32 bit width,
1570 * so we install an artificial 1<<31 period regardless of
1571 * the generic counter period:
1572 */
1573 .max_period = (1ULL << 31) - 1,
1574 };
1575
1576 static struct x86_pmu amd_pmu = {
1577 .name = "AMD",
1578 .handle_irq = amd_pmu_handle_irq,
1579 .disable_all = amd_pmu_disable_all,
1580 .enable_all = amd_pmu_enable_all,
1581 .enable = amd_pmu_enable_counter,
1582 .disable = amd_pmu_disable_counter,
1583 .eventsel = MSR_K7_EVNTSEL0,
1584 .perfctr = MSR_K7_PERFCTR0,
1585 .event_map = amd_pmu_event_map,
1586 .raw_event = amd_pmu_raw_event,
1587 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
1588 .num_counters = 4,
1589 .counter_bits = 48,
1590 .counter_mask = (1ULL << 48) - 1,
1591 .apic = 1,
1592 /* use highest bit to detect overflow */
1593 .max_period = (1ULL << 47) - 1,
1594 };
1595
1596 static int p6_pmu_init(void)
1597 {
1598 switch (boot_cpu_data.x86_model) {
1599 case 1:
1600 case 3: /* Pentium Pro */
1601 case 5:
1602 case 6: /* Pentium II */
1603 case 7:
1604 case 8:
1605 case 11: /* Pentium III */
1606 break;
1607 case 9:
1608 case 13:
1609 /* Pentium M */
1610 break;
1611 default:
1612 pr_cont("unsupported p6 CPU model %d ",
1613 boot_cpu_data.x86_model);
1614 return -ENODEV;
1615 }
1616
1617 x86_pmu = p6_pmu;
1618
1619 if (!cpu_has_apic) {
1620 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1621 pr_info("no hardware sampling interrupt available.\n");
1622 x86_pmu.apic = 0;
1623 }
1624
1625 return 0;
1626 }
1627
1628 static int intel_pmu_init(void)
1629 {
1630 union cpuid10_edx edx;
1631 union cpuid10_eax eax;
1632 unsigned int unused;
1633 unsigned int ebx;
1634 int version;
1635
1636 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1637 /* check for P6 processor family */
1638 if (boot_cpu_data.x86 == 6) {
1639 return p6_pmu_init();
1640 } else {
1641 return -ENODEV;
1642 }
1643 }
1644
1645 /*
1646 * Check whether the Architectural PerfMon supports
1647 * Branch Misses Retired Event or not.
1648 */
1649 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1650 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1651 return -ENODEV;
1652
1653 version = eax.split.version_id;
1654 if (version < 2)
1655 return -ENODEV;
1656
1657 x86_pmu = intel_pmu;
1658 x86_pmu.version = version;
1659 x86_pmu.num_counters = eax.split.num_counters;
1660 x86_pmu.counter_bits = eax.split.bit_width;
1661 x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
1662
1663 /*
1664 * Quirk: v2 perfmon does not report fixed-purpose counters, so
1665 * assume at least 3 counters:
1666 */
1667 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1668
1669 /*
1670 * Install the hw-cache-events table:
1671 */
1672 switch (boot_cpu_data.x86_model) {
1673 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1674 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1675 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1676 case 29: /* six-core 45 nm xeon "Dunnington" */
1677 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1678 sizeof(hw_cache_event_ids));
1679
1680 pr_cont("Core2 events, ");
1681 break;
1682 default:
1683 case 26:
1684 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1685 sizeof(hw_cache_event_ids));
1686
1687 pr_cont("Nehalem/Corei7 events, ");
1688 break;
1689 case 28:
1690 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1691 sizeof(hw_cache_event_ids));
1692
1693 pr_cont("Atom events, ");
1694 break;
1695 }
1696 return 0;
1697 }
1698
1699 static int amd_pmu_init(void)
1700 {
1701 /* Performance-monitoring supported from K7 and later: */
1702 if (boot_cpu_data.x86 < 6)
1703 return -ENODEV;
1704
1705 x86_pmu = amd_pmu;
1706
1707 /* Events are common for all AMDs */
1708 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
1709 sizeof(hw_cache_event_ids));
1710
1711 return 0;
1712 }
1713
1714 void __init init_hw_perf_counters(void)
1715 {
1716 int err;
1717
1718 pr_info("Performance Counters: ");
1719
1720 switch (boot_cpu_data.x86_vendor) {
1721 case X86_VENDOR_INTEL:
1722 err = intel_pmu_init();
1723 break;
1724 case X86_VENDOR_AMD:
1725 err = amd_pmu_init();
1726 break;
1727 default:
1728 return;
1729 }
1730 if (err != 0) {
1731 pr_cont("no PMU driver, software counters only.\n");
1732 return;
1733 }
1734
1735 pr_cont("%s PMU driver.\n", x86_pmu.name);
1736
1737 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1738 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1739 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1740 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1741 }
1742 perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1743 perf_max_counters = x86_pmu.num_counters;
1744
1745 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1746 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1747 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1748 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1749 }
1750
1751 perf_counter_mask |=
1752 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1753 x86_pmu.intel_ctrl = perf_counter_mask;
1754
1755 perf_counters_lapic_init();
1756 register_die_notifier(&perf_counter_nmi_notifier);
1757
1758 pr_info("... version: %d\n", x86_pmu.version);
1759 pr_info("... bit width: %d\n", x86_pmu.counter_bits);
1760 pr_info("... generic counters: %d\n", x86_pmu.num_counters);
1761 pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
1762 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1763 pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
1764 pr_info("... counter mask: %016Lx\n", perf_counter_mask);
1765 }
1766
1767 static inline void x86_pmu_read(struct perf_counter *counter)
1768 {
1769 x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1770 }
1771
1772 static const struct pmu pmu = {
1773 .enable = x86_pmu_enable,
1774 .disable = x86_pmu_disable,
1775 .read = x86_pmu_read,
1776 .unthrottle = x86_pmu_unthrottle,
1777 };
1778
1779 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1780 {
1781 int err;
1782
1783 err = __hw_perf_counter_init(counter);
1784 if (err)
1785 return ERR_PTR(err);
1786
1787 return &pmu;
1788 }
1789
1790 /*
1791 * callchain support
1792 */
1793
1794 static inline
1795 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1796 {
1797 if (entry->nr < PERF_MAX_STACK_DEPTH)
1798 entry->ip[entry->nr++] = ip;
1799 }
1800
1801 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1802 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1803 static DEFINE_PER_CPU(int, in_nmi_frame);
1804
1805
1806 static void
1807 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1808 {
1809 /* Ignore warnings */
1810 }
1811
1812 static void backtrace_warning(void *data, char *msg)
1813 {
1814 /* Ignore warnings */
1815 }
1816
1817 static int backtrace_stack(void *data, char *name)
1818 {
1819 per_cpu(in_nmi_frame, smp_processor_id()) =
1820 x86_is_stack_id(NMI_STACK, name);
1821
1822 return 0;
1823 }
1824
1825 static void backtrace_address(void *data, unsigned long addr, int reliable)
1826 {
1827 struct perf_callchain_entry *entry = data;
1828
1829 if (per_cpu(in_nmi_frame, smp_processor_id()))
1830 return;
1831
1832 if (reliable)
1833 callchain_store(entry, addr);
1834 }
1835
1836 static const struct stacktrace_ops backtrace_ops = {
1837 .warning = backtrace_warning,
1838 .warning_symbol = backtrace_warning_symbol,
1839 .stack = backtrace_stack,
1840 .address = backtrace_address,
1841 };
1842
1843 #include "../dumpstack.h"
1844
1845 static void
1846 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1847 {
1848 callchain_store(entry, PERF_CONTEXT_KERNEL);
1849 callchain_store(entry, regs->ip);
1850
1851 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1852 }
1853
1854 /*
1855 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1856 */
1857 static unsigned long
1858 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
1859 {
1860 unsigned long offset, addr = (unsigned long)from;
1861 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1862 unsigned long size, len = 0;
1863 struct page *page;
1864 void *map;
1865 int ret;
1866
1867 do {
1868 ret = __get_user_pages_fast(addr, 1, 0, &page);
1869 if (!ret)
1870 break;
1871
1872 offset = addr & (PAGE_SIZE - 1);
1873 size = min(PAGE_SIZE - offset, n - len);
1874
1875 map = kmap_atomic(page, type);
1876 memcpy(to, map+offset, size);
1877 kunmap_atomic(map, type);
1878 put_page(page);
1879
1880 len += size;
1881 to += size;
1882 addr += size;
1883
1884 } while (len < n);
1885
1886 return len;
1887 }
1888
1889 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1890 {
1891 unsigned long bytes;
1892
1893 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1894
1895 return bytes == sizeof(*frame);
1896 }
1897
1898 static void
1899 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1900 {
1901 struct stack_frame frame;
1902 const void __user *fp;
1903
1904 if (!user_mode(regs))
1905 regs = task_pt_regs(current);
1906
1907 fp = (void __user *)regs->bp;
1908
1909 callchain_store(entry, PERF_CONTEXT_USER);
1910 callchain_store(entry, regs->ip);
1911
1912 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1913 frame.next_frame = NULL;
1914 frame.return_address = 0;
1915
1916 if (!copy_stack_frame(fp, &frame))
1917 break;
1918
1919 if ((unsigned long)fp < regs->sp)
1920 break;
1921
1922 callchain_store(entry, frame.return_address);
1923 fp = frame.next_frame;
1924 }
1925 }
1926
1927 static void
1928 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1929 {
1930 int is_user;
1931
1932 if (!regs)
1933 return;
1934
1935 is_user = user_mode(regs);
1936
1937 if (!current || current->pid == 0)
1938 return;
1939
1940 if (is_user && current->state != TASK_RUNNING)
1941 return;
1942
1943 if (!is_user)
1944 perf_callchain_kernel(regs, entry);
1945
1946 if (current->mm)
1947 perf_callchain_user(regs, entry);
1948 }
1949
1950 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1951 {
1952 struct perf_callchain_entry *entry;
1953
1954 if (in_nmi())
1955 entry = &__get_cpu_var(nmi_entry);
1956 else
1957 entry = &__get_cpu_var(irq_entry);
1958
1959 entry->nr = 0;
1960
1961 perf_do_callchain(regs, entry);
1962
1963 return entry;
1964 }
This page took 0.100513 seconds and 6 git commands to generate.