perf/x86: Use rdpmc() rather than rdmsr() when possible in the kernel
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35
36 #include "perf_event.h"
37
38 struct x86_pmu x86_pmu __read_mostly;
39
40 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
41 .enabled = 1,
42 };
43
44 u64 __read_mostly hw_cache_event_ids
45 [PERF_COUNT_HW_CACHE_MAX]
46 [PERF_COUNT_HW_CACHE_OP_MAX]
47 [PERF_COUNT_HW_CACHE_RESULT_MAX];
48 u64 __read_mostly hw_cache_extra_regs
49 [PERF_COUNT_HW_CACHE_MAX]
50 [PERF_COUNT_HW_CACHE_OP_MAX]
51 [PERF_COUNT_HW_CACHE_RESULT_MAX];
52
53 /*
54 * Propagate event elapsed time into the generic event.
55 * Can only be executed on the CPU where the event is active.
56 * Returns the delta events processed.
57 */
58 u64 x86_perf_event_update(struct perf_event *event)
59 {
60 struct hw_perf_event *hwc = &event->hw;
61 int shift = 64 - x86_pmu.cntval_bits;
62 u64 prev_raw_count, new_raw_count;
63 int idx = hwc->idx;
64 s64 delta;
65
66 if (idx == X86_PMC_IDX_FIXED_BTS)
67 return 0;
68
69 /*
70 * Careful: an NMI might modify the previous event value.
71 *
72 * Our tactic to handle this is to first atomically read and
73 * exchange a new raw count - then add that new-prev delta
74 * count to the generic event atomically:
75 */
76 again:
77 prev_raw_count = local64_read(&hwc->prev_count);
78 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
79
80 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
81 new_raw_count) != prev_raw_count)
82 goto again;
83
84 /*
85 * Now we have the new raw value and have updated the prev
86 * timestamp already. We can now calculate the elapsed delta
87 * (event-)time and add that to the generic event.
88 *
89 * Careful, not all hw sign-extends above the physical width
90 * of the count.
91 */
92 delta = (new_raw_count << shift) - (prev_raw_count << shift);
93 delta >>= shift;
94
95 local64_add(delta, &event->count);
96 local64_sub(delta, &hwc->period_left);
97
98 return new_raw_count;
99 }
100
101 /*
102 * Find and validate any extra registers to set up.
103 */
104 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
105 {
106 struct hw_perf_event_extra *reg;
107 struct extra_reg *er;
108
109 reg = &event->hw.extra_reg;
110
111 if (!x86_pmu.extra_regs)
112 return 0;
113
114 for (er = x86_pmu.extra_regs; er->msr; er++) {
115 if (er->event != (config & er->config_mask))
116 continue;
117 if (event->attr.config1 & ~er->valid_mask)
118 return -EINVAL;
119
120 reg->idx = er->idx;
121 reg->config = event->attr.config1;
122 reg->reg = er->msr;
123 break;
124 }
125 return 0;
126 }
127
128 static atomic_t active_events;
129 static DEFINE_MUTEX(pmc_reserve_mutex);
130
131 #ifdef CONFIG_X86_LOCAL_APIC
132
133 static bool reserve_pmc_hardware(void)
134 {
135 int i;
136
137 for (i = 0; i < x86_pmu.num_counters; i++) {
138 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
139 goto perfctr_fail;
140 }
141
142 for (i = 0; i < x86_pmu.num_counters; i++) {
143 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
144 goto eventsel_fail;
145 }
146
147 return true;
148
149 eventsel_fail:
150 for (i--; i >= 0; i--)
151 release_evntsel_nmi(x86_pmu_config_addr(i));
152
153 i = x86_pmu.num_counters;
154
155 perfctr_fail:
156 for (i--; i >= 0; i--)
157 release_perfctr_nmi(x86_pmu_event_addr(i));
158
159 return false;
160 }
161
162 static void release_pmc_hardware(void)
163 {
164 int i;
165
166 for (i = 0; i < x86_pmu.num_counters; i++) {
167 release_perfctr_nmi(x86_pmu_event_addr(i));
168 release_evntsel_nmi(x86_pmu_config_addr(i));
169 }
170 }
171
172 #else
173
174 static bool reserve_pmc_hardware(void) { return true; }
175 static void release_pmc_hardware(void) {}
176
177 #endif
178
179 static bool check_hw_exists(void)
180 {
181 u64 val, val_new = 0;
182 int i, reg, ret = 0;
183
184 /*
185 * Check to see if the BIOS enabled any of the counters, if so
186 * complain and bail.
187 */
188 for (i = 0; i < x86_pmu.num_counters; i++) {
189 reg = x86_pmu_config_addr(i);
190 ret = rdmsrl_safe(reg, &val);
191 if (ret)
192 goto msr_fail;
193 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
194 goto bios_fail;
195 }
196
197 if (x86_pmu.num_counters_fixed) {
198 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
199 ret = rdmsrl_safe(reg, &val);
200 if (ret)
201 goto msr_fail;
202 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
203 if (val & (0x03 << i*4))
204 goto bios_fail;
205 }
206 }
207
208 /*
209 * Now write a value and read it back to see if it matches,
210 * this is needed to detect certain hardware emulators (qemu/kvm)
211 * that don't trap on the MSR access and always return 0s.
212 */
213 val = 0xabcdUL;
214 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
215 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
216 if (ret || val != val_new)
217 goto msr_fail;
218
219 return true;
220
221 bios_fail:
222 /*
223 * We still allow the PMU driver to operate:
224 */
225 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
226 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
227
228 return true;
229
230 msr_fail:
231 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
232
233 return false;
234 }
235
236 static void hw_perf_event_destroy(struct perf_event *event)
237 {
238 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
239 release_pmc_hardware();
240 release_ds_buffers();
241 mutex_unlock(&pmc_reserve_mutex);
242 }
243 }
244
245 static inline int x86_pmu_initialized(void)
246 {
247 return x86_pmu.handle_irq != NULL;
248 }
249
250 static inline int
251 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
252 {
253 struct perf_event_attr *attr = &event->attr;
254 unsigned int cache_type, cache_op, cache_result;
255 u64 config, val;
256
257 config = attr->config;
258
259 cache_type = (config >> 0) & 0xff;
260 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
261 return -EINVAL;
262
263 cache_op = (config >> 8) & 0xff;
264 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
265 return -EINVAL;
266
267 cache_result = (config >> 16) & 0xff;
268 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
269 return -EINVAL;
270
271 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
272
273 if (val == 0)
274 return -ENOENT;
275
276 if (val == -1)
277 return -EINVAL;
278
279 hwc->config |= val;
280 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
281 return x86_pmu_extra_regs(val, event);
282 }
283
284 int x86_setup_perfctr(struct perf_event *event)
285 {
286 struct perf_event_attr *attr = &event->attr;
287 struct hw_perf_event *hwc = &event->hw;
288 u64 config;
289
290 if (!is_sampling_event(event)) {
291 hwc->sample_period = x86_pmu.max_period;
292 hwc->last_period = hwc->sample_period;
293 local64_set(&hwc->period_left, hwc->sample_period);
294 } else {
295 /*
296 * If we have a PMU initialized but no APIC
297 * interrupts, we cannot sample hardware
298 * events (user-space has to fall back and
299 * sample via a hrtimer based software event):
300 */
301 if (!x86_pmu.apic)
302 return -EOPNOTSUPP;
303 }
304
305 if (attr->type == PERF_TYPE_RAW)
306 return x86_pmu_extra_regs(event->attr.config, event);
307
308 if (attr->type == PERF_TYPE_HW_CACHE)
309 return set_ext_hw_attr(hwc, event);
310
311 if (attr->config >= x86_pmu.max_events)
312 return -EINVAL;
313
314 /*
315 * The generic map:
316 */
317 config = x86_pmu.event_map(attr->config);
318
319 if (config == 0)
320 return -ENOENT;
321
322 if (config == -1LL)
323 return -EINVAL;
324
325 /*
326 * Branch tracing:
327 */
328 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
329 !attr->freq && hwc->sample_period == 1) {
330 /* BTS is not supported by this architecture. */
331 if (!x86_pmu.bts_active)
332 return -EOPNOTSUPP;
333
334 /* BTS is currently only allowed for user-mode. */
335 if (!attr->exclude_kernel)
336 return -EOPNOTSUPP;
337 }
338
339 hwc->config |= config;
340
341 return 0;
342 }
343
344 /*
345 * check that branch_sample_type is compatible with
346 * settings needed for precise_ip > 1 which implies
347 * using the LBR to capture ALL taken branches at the
348 * priv levels of the measurement
349 */
350 static inline int precise_br_compat(struct perf_event *event)
351 {
352 u64 m = event->attr.branch_sample_type;
353 u64 b = 0;
354
355 /* must capture all branches */
356 if (!(m & PERF_SAMPLE_BRANCH_ANY))
357 return 0;
358
359 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
360
361 if (!event->attr.exclude_user)
362 b |= PERF_SAMPLE_BRANCH_USER;
363
364 if (!event->attr.exclude_kernel)
365 b |= PERF_SAMPLE_BRANCH_KERNEL;
366
367 /*
368 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
369 */
370
371 return m == b;
372 }
373
374 int x86_pmu_hw_config(struct perf_event *event)
375 {
376 if (event->attr.precise_ip) {
377 int precise = 0;
378
379 /* Support for constant skid */
380 if (x86_pmu.pebs_active) {
381 precise++;
382
383 /* Support for IP fixup */
384 if (x86_pmu.lbr_nr)
385 precise++;
386 }
387
388 if (event->attr.precise_ip > precise)
389 return -EOPNOTSUPP;
390 /*
391 * check that PEBS LBR correction does not conflict with
392 * whatever the user is asking with attr->branch_sample_type
393 */
394 if (event->attr.precise_ip > 1) {
395 u64 *br_type = &event->attr.branch_sample_type;
396
397 if (has_branch_stack(event)) {
398 if (!precise_br_compat(event))
399 return -EOPNOTSUPP;
400
401 /* branch_sample_type is compatible */
402
403 } else {
404 /*
405 * user did not specify branch_sample_type
406 *
407 * For PEBS fixups, we capture all
408 * the branches at the priv level of the
409 * event.
410 */
411 *br_type = PERF_SAMPLE_BRANCH_ANY;
412
413 if (!event->attr.exclude_user)
414 *br_type |= PERF_SAMPLE_BRANCH_USER;
415
416 if (!event->attr.exclude_kernel)
417 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
418 }
419 }
420 }
421
422 /*
423 * Generate PMC IRQs:
424 * (keep 'enabled' bit clear for now)
425 */
426 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
427
428 /*
429 * Count user and OS events unless requested not to
430 */
431 if (!event->attr.exclude_user)
432 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
433 if (!event->attr.exclude_kernel)
434 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
435
436 if (event->attr.type == PERF_TYPE_RAW)
437 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
438
439 return x86_setup_perfctr(event);
440 }
441
442 /*
443 * Setup the hardware configuration for a given attr_type
444 */
445 static int __x86_pmu_event_init(struct perf_event *event)
446 {
447 int err;
448
449 if (!x86_pmu_initialized())
450 return -ENODEV;
451
452 err = 0;
453 if (!atomic_inc_not_zero(&active_events)) {
454 mutex_lock(&pmc_reserve_mutex);
455 if (atomic_read(&active_events) == 0) {
456 if (!reserve_pmc_hardware())
457 err = -EBUSY;
458 else
459 reserve_ds_buffers();
460 }
461 if (!err)
462 atomic_inc(&active_events);
463 mutex_unlock(&pmc_reserve_mutex);
464 }
465 if (err)
466 return err;
467
468 event->destroy = hw_perf_event_destroy;
469
470 event->hw.idx = -1;
471 event->hw.last_cpu = -1;
472 event->hw.last_tag = ~0ULL;
473
474 /* mark unused */
475 event->hw.extra_reg.idx = EXTRA_REG_NONE;
476 event->hw.branch_reg.idx = EXTRA_REG_NONE;
477
478 return x86_pmu.hw_config(event);
479 }
480
481 void x86_pmu_disable_all(void)
482 {
483 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
484 int idx;
485
486 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
487 u64 val;
488
489 if (!test_bit(idx, cpuc->active_mask))
490 continue;
491 rdmsrl(x86_pmu_config_addr(idx), val);
492 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
493 continue;
494 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
495 wrmsrl(x86_pmu_config_addr(idx), val);
496 }
497 }
498
499 static void x86_pmu_disable(struct pmu *pmu)
500 {
501 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
502
503 if (!x86_pmu_initialized())
504 return;
505
506 if (!cpuc->enabled)
507 return;
508
509 cpuc->n_added = 0;
510 cpuc->enabled = 0;
511 barrier();
512
513 x86_pmu.disable_all();
514 }
515
516 void x86_pmu_enable_all(int added)
517 {
518 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
519 int idx;
520
521 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
522 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
523
524 if (!test_bit(idx, cpuc->active_mask))
525 continue;
526
527 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
528 }
529 }
530
531 static struct pmu pmu;
532
533 static inline int is_x86_event(struct perf_event *event)
534 {
535 return event->pmu == &pmu;
536 }
537
538 /*
539 * Event scheduler state:
540 *
541 * Assign events iterating over all events and counters, beginning
542 * with events with least weights first. Keep the current iterator
543 * state in struct sched_state.
544 */
545 struct sched_state {
546 int weight;
547 int event; /* event index */
548 int counter; /* counter index */
549 int unassigned; /* number of events to be assigned left */
550 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
551 };
552
553 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
554 #define SCHED_STATES_MAX 2
555
556 struct perf_sched {
557 int max_weight;
558 int max_events;
559 struct event_constraint **constraints;
560 struct sched_state state;
561 int saved_states;
562 struct sched_state saved[SCHED_STATES_MAX];
563 };
564
565 /*
566 * Initialize interator that runs through all events and counters.
567 */
568 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
569 int num, int wmin, int wmax)
570 {
571 int idx;
572
573 memset(sched, 0, sizeof(*sched));
574 sched->max_events = num;
575 sched->max_weight = wmax;
576 sched->constraints = c;
577
578 for (idx = 0; idx < num; idx++) {
579 if (c[idx]->weight == wmin)
580 break;
581 }
582
583 sched->state.event = idx; /* start with min weight */
584 sched->state.weight = wmin;
585 sched->state.unassigned = num;
586 }
587
588 static void perf_sched_save_state(struct perf_sched *sched)
589 {
590 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
591 return;
592
593 sched->saved[sched->saved_states] = sched->state;
594 sched->saved_states++;
595 }
596
597 static bool perf_sched_restore_state(struct perf_sched *sched)
598 {
599 if (!sched->saved_states)
600 return false;
601
602 sched->saved_states--;
603 sched->state = sched->saved[sched->saved_states];
604
605 /* continue with next counter: */
606 clear_bit(sched->state.counter++, sched->state.used);
607
608 return true;
609 }
610
611 /*
612 * Select a counter for the current event to schedule. Return true on
613 * success.
614 */
615 static bool __perf_sched_find_counter(struct perf_sched *sched)
616 {
617 struct event_constraint *c;
618 int idx;
619
620 if (!sched->state.unassigned)
621 return false;
622
623 if (sched->state.event >= sched->max_events)
624 return false;
625
626 c = sched->constraints[sched->state.event];
627
628 /* Prefer fixed purpose counters */
629 if (x86_pmu.num_counters_fixed) {
630 idx = X86_PMC_IDX_FIXED;
631 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
632 if (!__test_and_set_bit(idx, sched->state.used))
633 goto done;
634 }
635 }
636 /* Grab the first unused counter starting with idx */
637 idx = sched->state.counter;
638 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_FIXED) {
639 if (!__test_and_set_bit(idx, sched->state.used))
640 goto done;
641 }
642
643 return false;
644
645 done:
646 sched->state.counter = idx;
647
648 if (c->overlap)
649 perf_sched_save_state(sched);
650
651 return true;
652 }
653
654 static bool perf_sched_find_counter(struct perf_sched *sched)
655 {
656 while (!__perf_sched_find_counter(sched)) {
657 if (!perf_sched_restore_state(sched))
658 return false;
659 }
660
661 return true;
662 }
663
664 /*
665 * Go through all unassigned events and find the next one to schedule.
666 * Take events with the least weight first. Return true on success.
667 */
668 static bool perf_sched_next_event(struct perf_sched *sched)
669 {
670 struct event_constraint *c;
671
672 if (!sched->state.unassigned || !--sched->state.unassigned)
673 return false;
674
675 do {
676 /* next event */
677 sched->state.event++;
678 if (sched->state.event >= sched->max_events) {
679 /* next weight */
680 sched->state.event = 0;
681 sched->state.weight++;
682 if (sched->state.weight > sched->max_weight)
683 return false;
684 }
685 c = sched->constraints[sched->state.event];
686 } while (c->weight != sched->state.weight);
687
688 sched->state.counter = 0; /* start with first counter */
689
690 return true;
691 }
692
693 /*
694 * Assign a counter for each event.
695 */
696 static int perf_assign_events(struct event_constraint **constraints, int n,
697 int wmin, int wmax, int *assign)
698 {
699 struct perf_sched sched;
700
701 perf_sched_init(&sched, constraints, n, wmin, wmax);
702
703 do {
704 if (!perf_sched_find_counter(&sched))
705 break; /* failed */
706 if (assign)
707 assign[sched.state.event] = sched.state.counter;
708 } while (perf_sched_next_event(&sched));
709
710 return sched.state.unassigned;
711 }
712
713 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
714 {
715 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
716 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
717 int i, wmin, wmax, num = 0;
718 struct hw_perf_event *hwc;
719
720 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
721
722 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
723 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
724 constraints[i] = c;
725 wmin = min(wmin, c->weight);
726 wmax = max(wmax, c->weight);
727 }
728
729 /*
730 * fastpath, try to reuse previous register
731 */
732 for (i = 0; i < n; i++) {
733 hwc = &cpuc->event_list[i]->hw;
734 c = constraints[i];
735
736 /* never assigned */
737 if (hwc->idx == -1)
738 break;
739
740 /* constraint still honored */
741 if (!test_bit(hwc->idx, c->idxmsk))
742 break;
743
744 /* not already used */
745 if (test_bit(hwc->idx, used_mask))
746 break;
747
748 __set_bit(hwc->idx, used_mask);
749 if (assign)
750 assign[i] = hwc->idx;
751 }
752
753 /* slow path */
754 if (i != n)
755 num = perf_assign_events(constraints, n, wmin, wmax, assign);
756
757 /*
758 * scheduling failed or is just a simulation,
759 * free resources if necessary
760 */
761 if (!assign || num) {
762 for (i = 0; i < n; i++) {
763 if (x86_pmu.put_event_constraints)
764 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
765 }
766 }
767 return num ? -EINVAL : 0;
768 }
769
770 /*
771 * dogrp: true if must collect siblings events (group)
772 * returns total number of events and error code
773 */
774 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
775 {
776 struct perf_event *event;
777 int n, max_count;
778
779 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
780
781 /* current number of events already accepted */
782 n = cpuc->n_events;
783
784 if (is_x86_event(leader)) {
785 if (n >= max_count)
786 return -EINVAL;
787 cpuc->event_list[n] = leader;
788 n++;
789 }
790 if (!dogrp)
791 return n;
792
793 list_for_each_entry(event, &leader->sibling_list, group_entry) {
794 if (!is_x86_event(event) ||
795 event->state <= PERF_EVENT_STATE_OFF)
796 continue;
797
798 if (n >= max_count)
799 return -EINVAL;
800
801 cpuc->event_list[n] = event;
802 n++;
803 }
804 return n;
805 }
806
807 static inline void x86_assign_hw_event(struct perf_event *event,
808 struct cpu_hw_events *cpuc, int i)
809 {
810 struct hw_perf_event *hwc = &event->hw;
811
812 hwc->idx = cpuc->assign[i];
813 hwc->last_cpu = smp_processor_id();
814 hwc->last_tag = ++cpuc->tags[i];
815
816 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
817 hwc->config_base = 0;
818 hwc->event_base = 0;
819 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
820 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
821 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
822 hwc->event_base_rdpmc = (hwc->idx - X86_PMC_IDX_FIXED) | 1<<30;
823 } else {
824 hwc->config_base = x86_pmu_config_addr(hwc->idx);
825 hwc->event_base = x86_pmu_event_addr(hwc->idx);
826 hwc->event_base_rdpmc = x86_pmu_addr_offset(hwc->idx);
827 }
828 }
829
830 static inline int match_prev_assignment(struct hw_perf_event *hwc,
831 struct cpu_hw_events *cpuc,
832 int i)
833 {
834 return hwc->idx == cpuc->assign[i] &&
835 hwc->last_cpu == smp_processor_id() &&
836 hwc->last_tag == cpuc->tags[i];
837 }
838
839 static void x86_pmu_start(struct perf_event *event, int flags);
840
841 static void x86_pmu_enable(struct pmu *pmu)
842 {
843 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
844 struct perf_event *event;
845 struct hw_perf_event *hwc;
846 int i, added = cpuc->n_added;
847
848 if (!x86_pmu_initialized())
849 return;
850
851 if (cpuc->enabled)
852 return;
853
854 if (cpuc->n_added) {
855 int n_running = cpuc->n_events - cpuc->n_added;
856 /*
857 * apply assignment obtained either from
858 * hw_perf_group_sched_in() or x86_pmu_enable()
859 *
860 * step1: save events moving to new counters
861 * step2: reprogram moved events into new counters
862 */
863 for (i = 0; i < n_running; i++) {
864 event = cpuc->event_list[i];
865 hwc = &event->hw;
866
867 /*
868 * we can avoid reprogramming counter if:
869 * - assigned same counter as last time
870 * - running on same CPU as last time
871 * - no other event has used the counter since
872 */
873 if (hwc->idx == -1 ||
874 match_prev_assignment(hwc, cpuc, i))
875 continue;
876
877 /*
878 * Ensure we don't accidentally enable a stopped
879 * counter simply because we rescheduled.
880 */
881 if (hwc->state & PERF_HES_STOPPED)
882 hwc->state |= PERF_HES_ARCH;
883
884 x86_pmu_stop(event, PERF_EF_UPDATE);
885 }
886
887 for (i = 0; i < cpuc->n_events; i++) {
888 event = cpuc->event_list[i];
889 hwc = &event->hw;
890
891 if (!match_prev_assignment(hwc, cpuc, i))
892 x86_assign_hw_event(event, cpuc, i);
893 else if (i < n_running)
894 continue;
895
896 if (hwc->state & PERF_HES_ARCH)
897 continue;
898
899 x86_pmu_start(event, PERF_EF_RELOAD);
900 }
901 cpuc->n_added = 0;
902 perf_events_lapic_init();
903 }
904
905 cpuc->enabled = 1;
906 barrier();
907
908 x86_pmu.enable_all(added);
909 }
910
911 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
912
913 /*
914 * Set the next IRQ period, based on the hwc->period_left value.
915 * To be called with the event disabled in hw:
916 */
917 int x86_perf_event_set_period(struct perf_event *event)
918 {
919 struct hw_perf_event *hwc = &event->hw;
920 s64 left = local64_read(&hwc->period_left);
921 s64 period = hwc->sample_period;
922 int ret = 0, idx = hwc->idx;
923
924 if (idx == X86_PMC_IDX_FIXED_BTS)
925 return 0;
926
927 /*
928 * If we are way outside a reasonable range then just skip forward:
929 */
930 if (unlikely(left <= -period)) {
931 left = period;
932 local64_set(&hwc->period_left, left);
933 hwc->last_period = period;
934 ret = 1;
935 }
936
937 if (unlikely(left <= 0)) {
938 left += period;
939 local64_set(&hwc->period_left, left);
940 hwc->last_period = period;
941 ret = 1;
942 }
943 /*
944 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
945 */
946 if (unlikely(left < 2))
947 left = 2;
948
949 if (left > x86_pmu.max_period)
950 left = x86_pmu.max_period;
951
952 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
953
954 /*
955 * The hw event starts counting from this event offset,
956 * mark it to be able to extra future deltas:
957 */
958 local64_set(&hwc->prev_count, (u64)-left);
959
960 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
961
962 /*
963 * Due to erratum on certan cpu we need
964 * a second write to be sure the register
965 * is updated properly
966 */
967 if (x86_pmu.perfctr_second_write) {
968 wrmsrl(hwc->event_base,
969 (u64)(-left) & x86_pmu.cntval_mask);
970 }
971
972 perf_event_update_userpage(event);
973
974 return ret;
975 }
976
977 void x86_pmu_enable_event(struct perf_event *event)
978 {
979 if (__this_cpu_read(cpu_hw_events.enabled))
980 __x86_pmu_enable_event(&event->hw,
981 ARCH_PERFMON_EVENTSEL_ENABLE);
982 }
983
984 /*
985 * Add a single event to the PMU.
986 *
987 * The event is added to the group of enabled events
988 * but only if it can be scehduled with existing events.
989 */
990 static int x86_pmu_add(struct perf_event *event, int flags)
991 {
992 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
993 struct hw_perf_event *hwc;
994 int assign[X86_PMC_IDX_MAX];
995 int n, n0, ret;
996
997 hwc = &event->hw;
998
999 perf_pmu_disable(event->pmu);
1000 n0 = cpuc->n_events;
1001 ret = n = collect_events(cpuc, event, false);
1002 if (ret < 0)
1003 goto out;
1004
1005 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1006 if (!(flags & PERF_EF_START))
1007 hwc->state |= PERF_HES_ARCH;
1008
1009 /*
1010 * If group events scheduling transaction was started,
1011 * skip the schedulability test here, it will be performed
1012 * at commit time (->commit_txn) as a whole
1013 */
1014 if (cpuc->group_flag & PERF_EVENT_TXN)
1015 goto done_collect;
1016
1017 ret = x86_pmu.schedule_events(cpuc, n, assign);
1018 if (ret)
1019 goto out;
1020 /*
1021 * copy new assignment, now we know it is possible
1022 * will be used by hw_perf_enable()
1023 */
1024 memcpy(cpuc->assign, assign, n*sizeof(int));
1025
1026 done_collect:
1027 cpuc->n_events = n;
1028 cpuc->n_added += n - n0;
1029 cpuc->n_txn += n - n0;
1030
1031 ret = 0;
1032 out:
1033 perf_pmu_enable(event->pmu);
1034 return ret;
1035 }
1036
1037 static void x86_pmu_start(struct perf_event *event, int flags)
1038 {
1039 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1040 int idx = event->hw.idx;
1041
1042 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1043 return;
1044
1045 if (WARN_ON_ONCE(idx == -1))
1046 return;
1047
1048 if (flags & PERF_EF_RELOAD) {
1049 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1050 x86_perf_event_set_period(event);
1051 }
1052
1053 event->hw.state = 0;
1054
1055 cpuc->events[idx] = event;
1056 __set_bit(idx, cpuc->active_mask);
1057 __set_bit(idx, cpuc->running);
1058 x86_pmu.enable(event);
1059 perf_event_update_userpage(event);
1060 }
1061
1062 void perf_event_print_debug(void)
1063 {
1064 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1065 u64 pebs;
1066 struct cpu_hw_events *cpuc;
1067 unsigned long flags;
1068 int cpu, idx;
1069
1070 if (!x86_pmu.num_counters)
1071 return;
1072
1073 local_irq_save(flags);
1074
1075 cpu = smp_processor_id();
1076 cpuc = &per_cpu(cpu_hw_events, cpu);
1077
1078 if (x86_pmu.version >= 2) {
1079 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1080 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1081 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1082 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1083 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1084
1085 pr_info("\n");
1086 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1087 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1088 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1089 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1090 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1091 }
1092 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1093
1094 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1095 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1096 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1097
1098 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1099
1100 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1101 cpu, idx, pmc_ctrl);
1102 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1103 cpu, idx, pmc_count);
1104 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1105 cpu, idx, prev_left);
1106 }
1107 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1108 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1109
1110 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1111 cpu, idx, pmc_count);
1112 }
1113 local_irq_restore(flags);
1114 }
1115
1116 void x86_pmu_stop(struct perf_event *event, int flags)
1117 {
1118 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1119 struct hw_perf_event *hwc = &event->hw;
1120
1121 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1122 x86_pmu.disable(event);
1123 cpuc->events[hwc->idx] = NULL;
1124 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1125 hwc->state |= PERF_HES_STOPPED;
1126 }
1127
1128 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1129 /*
1130 * Drain the remaining delta count out of a event
1131 * that we are disabling:
1132 */
1133 x86_perf_event_update(event);
1134 hwc->state |= PERF_HES_UPTODATE;
1135 }
1136 }
1137
1138 static void x86_pmu_del(struct perf_event *event, int flags)
1139 {
1140 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1141 int i;
1142
1143 /*
1144 * If we're called during a txn, we don't need to do anything.
1145 * The events never got scheduled and ->cancel_txn will truncate
1146 * the event_list.
1147 */
1148 if (cpuc->group_flag & PERF_EVENT_TXN)
1149 return;
1150
1151 x86_pmu_stop(event, PERF_EF_UPDATE);
1152
1153 for (i = 0; i < cpuc->n_events; i++) {
1154 if (event == cpuc->event_list[i]) {
1155
1156 if (x86_pmu.put_event_constraints)
1157 x86_pmu.put_event_constraints(cpuc, event);
1158
1159 while (++i < cpuc->n_events)
1160 cpuc->event_list[i-1] = cpuc->event_list[i];
1161
1162 --cpuc->n_events;
1163 break;
1164 }
1165 }
1166 perf_event_update_userpage(event);
1167 }
1168
1169 int x86_pmu_handle_irq(struct pt_regs *regs)
1170 {
1171 struct perf_sample_data data;
1172 struct cpu_hw_events *cpuc;
1173 struct perf_event *event;
1174 int idx, handled = 0;
1175 u64 val;
1176
1177 cpuc = &__get_cpu_var(cpu_hw_events);
1178
1179 /*
1180 * Some chipsets need to unmask the LVTPC in a particular spot
1181 * inside the nmi handler. As a result, the unmasking was pushed
1182 * into all the nmi handlers.
1183 *
1184 * This generic handler doesn't seem to have any issues where the
1185 * unmasking occurs so it was left at the top.
1186 */
1187 apic_write(APIC_LVTPC, APIC_DM_NMI);
1188
1189 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1190 if (!test_bit(idx, cpuc->active_mask)) {
1191 /*
1192 * Though we deactivated the counter some cpus
1193 * might still deliver spurious interrupts still
1194 * in flight. Catch them:
1195 */
1196 if (__test_and_clear_bit(idx, cpuc->running))
1197 handled++;
1198 continue;
1199 }
1200
1201 event = cpuc->events[idx];
1202
1203 val = x86_perf_event_update(event);
1204 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1205 continue;
1206
1207 /*
1208 * event overflow
1209 */
1210 handled++;
1211 perf_sample_data_init(&data, 0, event->hw.last_period);
1212
1213 if (!x86_perf_event_set_period(event))
1214 continue;
1215
1216 if (perf_event_overflow(event, &data, regs))
1217 x86_pmu_stop(event, 0);
1218 }
1219
1220 if (handled)
1221 inc_irq_stat(apic_perf_irqs);
1222
1223 return handled;
1224 }
1225
1226 void perf_events_lapic_init(void)
1227 {
1228 if (!x86_pmu.apic || !x86_pmu_initialized())
1229 return;
1230
1231 /*
1232 * Always use NMI for PMU
1233 */
1234 apic_write(APIC_LVTPC, APIC_DM_NMI);
1235 }
1236
1237 static int __kprobes
1238 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1239 {
1240 if (!atomic_read(&active_events))
1241 return NMI_DONE;
1242
1243 return x86_pmu.handle_irq(regs);
1244 }
1245
1246 struct event_constraint emptyconstraint;
1247 struct event_constraint unconstrained;
1248
1249 static int __cpuinit
1250 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1251 {
1252 unsigned int cpu = (long)hcpu;
1253 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1254 int ret = NOTIFY_OK;
1255
1256 switch (action & ~CPU_TASKS_FROZEN) {
1257 case CPU_UP_PREPARE:
1258 cpuc->kfree_on_online = NULL;
1259 if (x86_pmu.cpu_prepare)
1260 ret = x86_pmu.cpu_prepare(cpu);
1261 break;
1262
1263 case CPU_STARTING:
1264 if (x86_pmu.attr_rdpmc)
1265 set_in_cr4(X86_CR4_PCE);
1266 if (x86_pmu.cpu_starting)
1267 x86_pmu.cpu_starting(cpu);
1268 break;
1269
1270 case CPU_ONLINE:
1271 kfree(cpuc->kfree_on_online);
1272 break;
1273
1274 case CPU_DYING:
1275 if (x86_pmu.cpu_dying)
1276 x86_pmu.cpu_dying(cpu);
1277 break;
1278
1279 case CPU_UP_CANCELED:
1280 case CPU_DEAD:
1281 if (x86_pmu.cpu_dead)
1282 x86_pmu.cpu_dead(cpu);
1283 break;
1284
1285 default:
1286 break;
1287 }
1288
1289 return ret;
1290 }
1291
1292 static void __init pmu_check_apic(void)
1293 {
1294 if (cpu_has_apic)
1295 return;
1296
1297 x86_pmu.apic = 0;
1298 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1299 pr_info("no hardware sampling interrupt available.\n");
1300 }
1301
1302 static struct attribute_group x86_pmu_format_group = {
1303 .name = "format",
1304 .attrs = NULL,
1305 };
1306
1307 static int __init init_hw_perf_events(void)
1308 {
1309 struct x86_pmu_quirk *quirk;
1310 struct event_constraint *c;
1311 int err;
1312
1313 pr_info("Performance Events: ");
1314
1315 switch (boot_cpu_data.x86_vendor) {
1316 case X86_VENDOR_INTEL:
1317 err = intel_pmu_init();
1318 break;
1319 case X86_VENDOR_AMD:
1320 err = amd_pmu_init();
1321 break;
1322 default:
1323 return 0;
1324 }
1325 if (err != 0) {
1326 pr_cont("no PMU driver, software events only.\n");
1327 return 0;
1328 }
1329
1330 pmu_check_apic();
1331
1332 /* sanity check that the hardware exists or is emulated */
1333 if (!check_hw_exists())
1334 return 0;
1335
1336 pr_cont("%s PMU driver.\n", x86_pmu.name);
1337
1338 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1339 quirk->func();
1340
1341 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1342 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1343 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1344 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1345 }
1346 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1347
1348 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1349 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1350 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1351 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1352 }
1353
1354 x86_pmu.intel_ctrl |=
1355 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1356
1357 perf_events_lapic_init();
1358 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1359
1360 unconstrained = (struct event_constraint)
1361 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1362 0, x86_pmu.num_counters, 0);
1363
1364 if (x86_pmu.event_constraints) {
1365 /*
1366 * event on fixed counter2 (REF_CYCLES) only works on this
1367 * counter, so do not extend mask to generic counters
1368 */
1369 for_each_event_constraint(c, x86_pmu.event_constraints) {
1370 if (c->cmask != X86_RAW_EVENT_MASK
1371 || c->idxmsk64 == X86_PMC_MSK_FIXED_REF_CYCLES) {
1372 continue;
1373 }
1374
1375 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1376 c->weight += x86_pmu.num_counters;
1377 }
1378 }
1379
1380 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1381 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1382
1383 pr_info("... version: %d\n", x86_pmu.version);
1384 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1385 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1386 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1387 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1388 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1389 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1390
1391 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1392 perf_cpu_notifier(x86_pmu_notifier);
1393
1394 return 0;
1395 }
1396 early_initcall(init_hw_perf_events);
1397
1398 static inline void x86_pmu_read(struct perf_event *event)
1399 {
1400 x86_perf_event_update(event);
1401 }
1402
1403 /*
1404 * Start group events scheduling transaction
1405 * Set the flag to make pmu::enable() not perform the
1406 * schedulability test, it will be performed at commit time
1407 */
1408 static void x86_pmu_start_txn(struct pmu *pmu)
1409 {
1410 perf_pmu_disable(pmu);
1411 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1412 __this_cpu_write(cpu_hw_events.n_txn, 0);
1413 }
1414
1415 /*
1416 * Stop group events scheduling transaction
1417 * Clear the flag and pmu::enable() will perform the
1418 * schedulability test.
1419 */
1420 static void x86_pmu_cancel_txn(struct pmu *pmu)
1421 {
1422 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1423 /*
1424 * Truncate the collected events.
1425 */
1426 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1427 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1428 perf_pmu_enable(pmu);
1429 }
1430
1431 /*
1432 * Commit group events scheduling transaction
1433 * Perform the group schedulability test as a whole
1434 * Return 0 if success
1435 */
1436 static int x86_pmu_commit_txn(struct pmu *pmu)
1437 {
1438 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1439 int assign[X86_PMC_IDX_MAX];
1440 int n, ret;
1441
1442 n = cpuc->n_events;
1443
1444 if (!x86_pmu_initialized())
1445 return -EAGAIN;
1446
1447 ret = x86_pmu.schedule_events(cpuc, n, assign);
1448 if (ret)
1449 return ret;
1450
1451 /*
1452 * copy new assignment, now we know it is possible
1453 * will be used by hw_perf_enable()
1454 */
1455 memcpy(cpuc->assign, assign, n*sizeof(int));
1456
1457 cpuc->group_flag &= ~PERF_EVENT_TXN;
1458 perf_pmu_enable(pmu);
1459 return 0;
1460 }
1461 /*
1462 * a fake_cpuc is used to validate event groups. Due to
1463 * the extra reg logic, we need to also allocate a fake
1464 * per_core and per_cpu structure. Otherwise, group events
1465 * using extra reg may conflict without the kernel being
1466 * able to catch this when the last event gets added to
1467 * the group.
1468 */
1469 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1470 {
1471 kfree(cpuc->shared_regs);
1472 kfree(cpuc);
1473 }
1474
1475 static struct cpu_hw_events *allocate_fake_cpuc(void)
1476 {
1477 struct cpu_hw_events *cpuc;
1478 int cpu = raw_smp_processor_id();
1479
1480 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1481 if (!cpuc)
1482 return ERR_PTR(-ENOMEM);
1483
1484 /* only needed, if we have extra_regs */
1485 if (x86_pmu.extra_regs) {
1486 cpuc->shared_regs = allocate_shared_regs(cpu);
1487 if (!cpuc->shared_regs)
1488 goto error;
1489 }
1490 cpuc->is_fake = 1;
1491 return cpuc;
1492 error:
1493 free_fake_cpuc(cpuc);
1494 return ERR_PTR(-ENOMEM);
1495 }
1496
1497 /*
1498 * validate that we can schedule this event
1499 */
1500 static int validate_event(struct perf_event *event)
1501 {
1502 struct cpu_hw_events *fake_cpuc;
1503 struct event_constraint *c;
1504 int ret = 0;
1505
1506 fake_cpuc = allocate_fake_cpuc();
1507 if (IS_ERR(fake_cpuc))
1508 return PTR_ERR(fake_cpuc);
1509
1510 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1511
1512 if (!c || !c->weight)
1513 ret = -EINVAL;
1514
1515 if (x86_pmu.put_event_constraints)
1516 x86_pmu.put_event_constraints(fake_cpuc, event);
1517
1518 free_fake_cpuc(fake_cpuc);
1519
1520 return ret;
1521 }
1522
1523 /*
1524 * validate a single event group
1525 *
1526 * validation include:
1527 * - check events are compatible which each other
1528 * - events do not compete for the same counter
1529 * - number of events <= number of counters
1530 *
1531 * validation ensures the group can be loaded onto the
1532 * PMU if it was the only group available.
1533 */
1534 static int validate_group(struct perf_event *event)
1535 {
1536 struct perf_event *leader = event->group_leader;
1537 struct cpu_hw_events *fake_cpuc;
1538 int ret = -EINVAL, n;
1539
1540 fake_cpuc = allocate_fake_cpuc();
1541 if (IS_ERR(fake_cpuc))
1542 return PTR_ERR(fake_cpuc);
1543 /*
1544 * the event is not yet connected with its
1545 * siblings therefore we must first collect
1546 * existing siblings, then add the new event
1547 * before we can simulate the scheduling
1548 */
1549 n = collect_events(fake_cpuc, leader, true);
1550 if (n < 0)
1551 goto out;
1552
1553 fake_cpuc->n_events = n;
1554 n = collect_events(fake_cpuc, event, false);
1555 if (n < 0)
1556 goto out;
1557
1558 fake_cpuc->n_events = n;
1559
1560 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1561
1562 out:
1563 free_fake_cpuc(fake_cpuc);
1564 return ret;
1565 }
1566
1567 static int x86_pmu_event_init(struct perf_event *event)
1568 {
1569 struct pmu *tmp;
1570 int err;
1571
1572 switch (event->attr.type) {
1573 case PERF_TYPE_RAW:
1574 case PERF_TYPE_HARDWARE:
1575 case PERF_TYPE_HW_CACHE:
1576 break;
1577
1578 default:
1579 return -ENOENT;
1580 }
1581
1582 err = __x86_pmu_event_init(event);
1583 if (!err) {
1584 /*
1585 * we temporarily connect event to its pmu
1586 * such that validate_group() can classify
1587 * it as an x86 event using is_x86_event()
1588 */
1589 tmp = event->pmu;
1590 event->pmu = &pmu;
1591
1592 if (event->group_leader != event)
1593 err = validate_group(event);
1594 else
1595 err = validate_event(event);
1596
1597 event->pmu = tmp;
1598 }
1599 if (err) {
1600 if (event->destroy)
1601 event->destroy(event);
1602 }
1603
1604 return err;
1605 }
1606
1607 static int x86_pmu_event_idx(struct perf_event *event)
1608 {
1609 int idx = event->hw.idx;
1610
1611 if (!x86_pmu.attr_rdpmc)
1612 return 0;
1613
1614 if (x86_pmu.num_counters_fixed && idx >= X86_PMC_IDX_FIXED) {
1615 idx -= X86_PMC_IDX_FIXED;
1616 idx |= 1 << 30;
1617 }
1618
1619 return idx + 1;
1620 }
1621
1622 static ssize_t get_attr_rdpmc(struct device *cdev,
1623 struct device_attribute *attr,
1624 char *buf)
1625 {
1626 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1627 }
1628
1629 static void change_rdpmc(void *info)
1630 {
1631 bool enable = !!(unsigned long)info;
1632
1633 if (enable)
1634 set_in_cr4(X86_CR4_PCE);
1635 else
1636 clear_in_cr4(X86_CR4_PCE);
1637 }
1638
1639 static ssize_t set_attr_rdpmc(struct device *cdev,
1640 struct device_attribute *attr,
1641 const char *buf, size_t count)
1642 {
1643 unsigned long val = simple_strtoul(buf, NULL, 0);
1644
1645 if (!!val != !!x86_pmu.attr_rdpmc) {
1646 x86_pmu.attr_rdpmc = !!val;
1647 smp_call_function(change_rdpmc, (void *)val, 1);
1648 }
1649
1650 return count;
1651 }
1652
1653 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1654
1655 static struct attribute *x86_pmu_attrs[] = {
1656 &dev_attr_rdpmc.attr,
1657 NULL,
1658 };
1659
1660 static struct attribute_group x86_pmu_attr_group = {
1661 .attrs = x86_pmu_attrs,
1662 };
1663
1664 static const struct attribute_group *x86_pmu_attr_groups[] = {
1665 &x86_pmu_attr_group,
1666 &x86_pmu_format_group,
1667 NULL,
1668 };
1669
1670 static void x86_pmu_flush_branch_stack(void)
1671 {
1672 if (x86_pmu.flush_branch_stack)
1673 x86_pmu.flush_branch_stack();
1674 }
1675
1676 static struct pmu pmu = {
1677 .pmu_enable = x86_pmu_enable,
1678 .pmu_disable = x86_pmu_disable,
1679
1680 .attr_groups = x86_pmu_attr_groups,
1681
1682 .event_init = x86_pmu_event_init,
1683
1684 .add = x86_pmu_add,
1685 .del = x86_pmu_del,
1686 .start = x86_pmu_start,
1687 .stop = x86_pmu_stop,
1688 .read = x86_pmu_read,
1689
1690 .start_txn = x86_pmu_start_txn,
1691 .cancel_txn = x86_pmu_cancel_txn,
1692 .commit_txn = x86_pmu_commit_txn,
1693
1694 .event_idx = x86_pmu_event_idx,
1695 .flush_branch_stack = x86_pmu_flush_branch_stack,
1696 };
1697
1698 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1699 {
1700 userpg->cap_usr_time = 0;
1701 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1702 userpg->pmc_width = x86_pmu.cntval_bits;
1703
1704 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1705 return;
1706
1707 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1708 return;
1709
1710 userpg->cap_usr_time = 1;
1711 userpg->time_mult = this_cpu_read(cyc2ns);
1712 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1713 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1714 }
1715
1716 /*
1717 * callchain support
1718 */
1719
1720 static int backtrace_stack(void *data, char *name)
1721 {
1722 return 0;
1723 }
1724
1725 static void backtrace_address(void *data, unsigned long addr, int reliable)
1726 {
1727 struct perf_callchain_entry *entry = data;
1728
1729 perf_callchain_store(entry, addr);
1730 }
1731
1732 static const struct stacktrace_ops backtrace_ops = {
1733 .stack = backtrace_stack,
1734 .address = backtrace_address,
1735 .walk_stack = print_context_stack_bp,
1736 };
1737
1738 void
1739 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1740 {
1741 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1742 /* TODO: We don't support guest os callchain now */
1743 return;
1744 }
1745
1746 perf_callchain_store(entry, regs->ip);
1747
1748 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1749 }
1750
1751 static inline int
1752 valid_user_frame(const void __user *fp, unsigned long size)
1753 {
1754 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1755 }
1756
1757 #ifdef CONFIG_COMPAT
1758
1759 #include <asm/compat.h>
1760
1761 static inline int
1762 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1763 {
1764 /* 32-bit process in 64-bit kernel. */
1765 struct stack_frame_ia32 frame;
1766 const void __user *fp;
1767
1768 if (!test_thread_flag(TIF_IA32))
1769 return 0;
1770
1771 fp = compat_ptr(regs->bp);
1772 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1773 unsigned long bytes;
1774 frame.next_frame = 0;
1775 frame.return_address = 0;
1776
1777 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1778 if (bytes != sizeof(frame))
1779 break;
1780
1781 if (!valid_user_frame(fp, sizeof(frame)))
1782 break;
1783
1784 perf_callchain_store(entry, frame.return_address);
1785 fp = compat_ptr(frame.next_frame);
1786 }
1787 return 1;
1788 }
1789 #else
1790 static inline int
1791 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1792 {
1793 return 0;
1794 }
1795 #endif
1796
1797 void
1798 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1799 {
1800 struct stack_frame frame;
1801 const void __user *fp;
1802
1803 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1804 /* TODO: We don't support guest os callchain now */
1805 return;
1806 }
1807
1808 fp = (void __user *)regs->bp;
1809
1810 perf_callchain_store(entry, regs->ip);
1811
1812 if (!current->mm)
1813 return;
1814
1815 if (perf_callchain_user32(regs, entry))
1816 return;
1817
1818 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1819 unsigned long bytes;
1820 frame.next_frame = NULL;
1821 frame.return_address = 0;
1822
1823 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1824 if (bytes != sizeof(frame))
1825 break;
1826
1827 if (!valid_user_frame(fp, sizeof(frame)))
1828 break;
1829
1830 perf_callchain_store(entry, frame.return_address);
1831 fp = frame.next_frame;
1832 }
1833 }
1834
1835 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1836 {
1837 unsigned long ip;
1838
1839 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1840 ip = perf_guest_cbs->get_guest_ip();
1841 else
1842 ip = instruction_pointer(regs);
1843
1844 return ip;
1845 }
1846
1847 unsigned long perf_misc_flags(struct pt_regs *regs)
1848 {
1849 int misc = 0;
1850
1851 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1852 if (perf_guest_cbs->is_user_mode())
1853 misc |= PERF_RECORD_MISC_GUEST_USER;
1854 else
1855 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1856 } else {
1857 if (user_mode(regs))
1858 misc |= PERF_RECORD_MISC_USER;
1859 else
1860 misc |= PERF_RECORD_MISC_KERNEL;
1861 }
1862
1863 if (regs->flags & PERF_EFLAGS_EXACT)
1864 misc |= PERF_RECORD_MISC_EXACT_IP;
1865
1866 return misc;
1867 }
1868
1869 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
1870 {
1871 cap->version = x86_pmu.version;
1872 cap->num_counters_gp = x86_pmu.num_counters;
1873 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
1874 cap->bit_width_gp = x86_pmu.cntval_bits;
1875 cap->bit_width_fixed = x86_pmu.cntval_bits;
1876 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
1877 cap->events_mask_len = x86_pmu.events_mask_len;
1878 }
1879 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.109742 seconds and 5 git commands to generate.