perf: Add per event clockid support
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 .enabled = 1,
46 };
47
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
50 u64 __read_mostly hw_cache_event_ids
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58
59 /*
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
62 * Returns the delta events processed.
63 */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 struct hw_perf_event *hwc = &event->hw;
67 int shift = 64 - x86_pmu.cntval_bits;
68 u64 prev_raw_count, new_raw_count;
69 int idx = hwc->idx;
70 s64 delta;
71
72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 return 0;
74
75 /*
76 * Careful: an NMI might modify the previous event value.
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
80 * count to the generic event atomically:
81 */
82 again:
83 prev_raw_count = local64_read(&hwc->prev_count);
84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85
86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
93 * (event-)time and add that to the generic event.
94 *
95 * Careful, not all hw sign-extends above the physical width
96 * of the count.
97 */
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
100
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
103
104 return new_raw_count;
105 }
106
107 /*
108 * Find and validate any extra registers to set up.
109 */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 struct hw_perf_event_extra *reg;
113 struct extra_reg *er;
114
115 reg = &event->hw.extra_reg;
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
132 break;
133 }
134 return 0;
135 }
136
137 static atomic_t active_events;
138 static DEFINE_MUTEX(pmc_reserve_mutex);
139
140 #ifdef CONFIG_X86_LOCAL_APIC
141
142 static bool reserve_pmc_hardware(void)
143 {
144 int i;
145
146 for (i = 0; i < x86_pmu.num_counters; i++) {
147 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
148 goto perfctr_fail;
149 }
150
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
153 goto eventsel_fail;
154 }
155
156 return true;
157
158 eventsel_fail:
159 for (i--; i >= 0; i--)
160 release_evntsel_nmi(x86_pmu_config_addr(i));
161
162 i = x86_pmu.num_counters;
163
164 perfctr_fail:
165 for (i--; i >= 0; i--)
166 release_perfctr_nmi(x86_pmu_event_addr(i));
167
168 return false;
169 }
170
171 static void release_pmc_hardware(void)
172 {
173 int i;
174
175 for (i = 0; i < x86_pmu.num_counters; i++) {
176 release_perfctr_nmi(x86_pmu_event_addr(i));
177 release_evntsel_nmi(x86_pmu_config_addr(i));
178 }
179 }
180
181 #else
182
183 static bool reserve_pmc_hardware(void) { return true; }
184 static void release_pmc_hardware(void) {}
185
186 #endif
187
188 static bool check_hw_exists(void)
189 {
190 u64 val, val_fail, val_new= ~0;
191 int i, reg, reg_fail, ret = 0;
192 int bios_fail = 0;
193
194 /*
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
197 */
198 for (i = 0; i < x86_pmu.num_counters; i++) {
199 reg = x86_pmu_config_addr(i);
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
204 bios_fail = 1;
205 val_fail = val;
206 reg_fail = reg;
207 }
208 }
209
210 if (x86_pmu.num_counters_fixed) {
211 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
212 ret = rdmsrl_safe(reg, &val);
213 if (ret)
214 goto msr_fail;
215 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
216 if (val & (0x03 << i*4)) {
217 bios_fail = 1;
218 val_fail = val;
219 reg_fail = reg;
220 }
221 }
222 }
223
224 /*
225 * Read the current value, change it and read it back to see if it
226 * matches, this is needed to detect certain hardware emulators
227 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
228 */
229 reg = x86_pmu_event_addr(0);
230 if (rdmsrl_safe(reg, &val))
231 goto msr_fail;
232 val ^= 0xffffUL;
233 ret = wrmsrl_safe(reg, val);
234 ret |= rdmsrl_safe(reg, &val_new);
235 if (ret || val != val_new)
236 goto msr_fail;
237
238 /*
239 * We still allow the PMU driver to operate:
240 */
241 if (bios_fail) {
242 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
243 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
244 }
245
246 return true;
247
248 msr_fail:
249 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
250 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
251 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
252 reg, val_new);
253
254 return false;
255 }
256
257 static void hw_perf_event_destroy(struct perf_event *event)
258 {
259 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
260 release_pmc_hardware();
261 release_ds_buffers();
262 mutex_unlock(&pmc_reserve_mutex);
263 }
264 }
265
266 static inline int x86_pmu_initialized(void)
267 {
268 return x86_pmu.handle_irq != NULL;
269 }
270
271 static inline int
272 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
273 {
274 struct perf_event_attr *attr = &event->attr;
275 unsigned int cache_type, cache_op, cache_result;
276 u64 config, val;
277
278 config = attr->config;
279
280 cache_type = (config >> 0) & 0xff;
281 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
282 return -EINVAL;
283
284 cache_op = (config >> 8) & 0xff;
285 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
286 return -EINVAL;
287
288 cache_result = (config >> 16) & 0xff;
289 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
290 return -EINVAL;
291
292 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
293
294 if (val == 0)
295 return -ENOENT;
296
297 if (val == -1)
298 return -EINVAL;
299
300 hwc->config |= val;
301 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
302 return x86_pmu_extra_regs(val, event);
303 }
304
305 int x86_setup_perfctr(struct perf_event *event)
306 {
307 struct perf_event_attr *attr = &event->attr;
308 struct hw_perf_event *hwc = &event->hw;
309 u64 config;
310
311 if (!is_sampling_event(event)) {
312 hwc->sample_period = x86_pmu.max_period;
313 hwc->last_period = hwc->sample_period;
314 local64_set(&hwc->period_left, hwc->sample_period);
315 }
316
317 if (attr->type == PERF_TYPE_RAW)
318 return x86_pmu_extra_regs(event->attr.config, event);
319
320 if (attr->type == PERF_TYPE_HW_CACHE)
321 return set_ext_hw_attr(hwc, event);
322
323 if (attr->config >= x86_pmu.max_events)
324 return -EINVAL;
325
326 /*
327 * The generic map:
328 */
329 config = x86_pmu.event_map(attr->config);
330
331 if (config == 0)
332 return -ENOENT;
333
334 if (config == -1LL)
335 return -EINVAL;
336
337 /*
338 * Branch tracing:
339 */
340 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
341 !attr->freq && hwc->sample_period == 1) {
342 /* BTS is not supported by this architecture. */
343 if (!x86_pmu.bts_active)
344 return -EOPNOTSUPP;
345
346 /* BTS is currently only allowed for user-mode. */
347 if (!attr->exclude_kernel)
348 return -EOPNOTSUPP;
349 }
350
351 hwc->config |= config;
352
353 return 0;
354 }
355
356 /*
357 * check that branch_sample_type is compatible with
358 * settings needed for precise_ip > 1 which implies
359 * using the LBR to capture ALL taken branches at the
360 * priv levels of the measurement
361 */
362 static inline int precise_br_compat(struct perf_event *event)
363 {
364 u64 m = event->attr.branch_sample_type;
365 u64 b = 0;
366
367 /* must capture all branches */
368 if (!(m & PERF_SAMPLE_BRANCH_ANY))
369 return 0;
370
371 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
372
373 if (!event->attr.exclude_user)
374 b |= PERF_SAMPLE_BRANCH_USER;
375
376 if (!event->attr.exclude_kernel)
377 b |= PERF_SAMPLE_BRANCH_KERNEL;
378
379 /*
380 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
381 */
382
383 return m == b;
384 }
385
386 int x86_pmu_hw_config(struct perf_event *event)
387 {
388 if (event->attr.precise_ip) {
389 int precise = 0;
390
391 /* Support for constant skid */
392 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
393 precise++;
394
395 /* Support for IP fixup */
396 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
397 precise++;
398 }
399
400 if (event->attr.precise_ip > precise)
401 return -EOPNOTSUPP;
402 }
403 /*
404 * check that PEBS LBR correction does not conflict with
405 * whatever the user is asking with attr->branch_sample_type
406 */
407 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
408 u64 *br_type = &event->attr.branch_sample_type;
409
410 if (has_branch_stack(event)) {
411 if (!precise_br_compat(event))
412 return -EOPNOTSUPP;
413
414 /* branch_sample_type is compatible */
415
416 } else {
417 /*
418 * user did not specify branch_sample_type
419 *
420 * For PEBS fixups, we capture all
421 * the branches at the priv level of the
422 * event.
423 */
424 *br_type = PERF_SAMPLE_BRANCH_ANY;
425
426 if (!event->attr.exclude_user)
427 *br_type |= PERF_SAMPLE_BRANCH_USER;
428
429 if (!event->attr.exclude_kernel)
430 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
431 }
432 }
433
434 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
435 event->attach_state |= PERF_ATTACH_TASK_DATA;
436
437 /*
438 * Generate PMC IRQs:
439 * (keep 'enabled' bit clear for now)
440 */
441 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
442
443 /*
444 * Count user and OS events unless requested not to
445 */
446 if (!event->attr.exclude_user)
447 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
448 if (!event->attr.exclude_kernel)
449 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
450
451 if (event->attr.type == PERF_TYPE_RAW)
452 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
453
454 if (event->attr.sample_period && x86_pmu.limit_period) {
455 if (x86_pmu.limit_period(event, event->attr.sample_period) >
456 event->attr.sample_period)
457 return -EINVAL;
458 }
459
460 return x86_setup_perfctr(event);
461 }
462
463 /*
464 * Setup the hardware configuration for a given attr_type
465 */
466 static int __x86_pmu_event_init(struct perf_event *event)
467 {
468 int err;
469
470 if (!x86_pmu_initialized())
471 return -ENODEV;
472
473 err = 0;
474 if (!atomic_inc_not_zero(&active_events)) {
475 mutex_lock(&pmc_reserve_mutex);
476 if (atomic_read(&active_events) == 0) {
477 if (!reserve_pmc_hardware())
478 err = -EBUSY;
479 else
480 reserve_ds_buffers();
481 }
482 if (!err)
483 atomic_inc(&active_events);
484 mutex_unlock(&pmc_reserve_mutex);
485 }
486 if (err)
487 return err;
488
489 event->destroy = hw_perf_event_destroy;
490
491 event->hw.idx = -1;
492 event->hw.last_cpu = -1;
493 event->hw.last_tag = ~0ULL;
494
495 /* mark unused */
496 event->hw.extra_reg.idx = EXTRA_REG_NONE;
497 event->hw.branch_reg.idx = EXTRA_REG_NONE;
498
499 return x86_pmu.hw_config(event);
500 }
501
502 void x86_pmu_disable_all(void)
503 {
504 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
505 int idx;
506
507 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
508 u64 val;
509
510 if (!test_bit(idx, cpuc->active_mask))
511 continue;
512 rdmsrl(x86_pmu_config_addr(idx), val);
513 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
514 continue;
515 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
516 wrmsrl(x86_pmu_config_addr(idx), val);
517 }
518 }
519
520 static void x86_pmu_disable(struct pmu *pmu)
521 {
522 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
523
524 if (!x86_pmu_initialized())
525 return;
526
527 if (!cpuc->enabled)
528 return;
529
530 cpuc->n_added = 0;
531 cpuc->enabled = 0;
532 barrier();
533
534 x86_pmu.disable_all();
535 }
536
537 void x86_pmu_enable_all(int added)
538 {
539 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
540 int idx;
541
542 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
543 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
544
545 if (!test_bit(idx, cpuc->active_mask))
546 continue;
547
548 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
549 }
550 }
551
552 static struct pmu pmu;
553
554 static inline int is_x86_event(struct perf_event *event)
555 {
556 return event->pmu == &pmu;
557 }
558
559 /*
560 * Event scheduler state:
561 *
562 * Assign events iterating over all events and counters, beginning
563 * with events with least weights first. Keep the current iterator
564 * state in struct sched_state.
565 */
566 struct sched_state {
567 int weight;
568 int event; /* event index */
569 int counter; /* counter index */
570 int unassigned; /* number of events to be assigned left */
571 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
572 };
573
574 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
575 #define SCHED_STATES_MAX 2
576
577 struct perf_sched {
578 int max_weight;
579 int max_events;
580 struct perf_event **events;
581 struct sched_state state;
582 int saved_states;
583 struct sched_state saved[SCHED_STATES_MAX];
584 };
585
586 /*
587 * Initialize interator that runs through all events and counters.
588 */
589 static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
590 int num, int wmin, int wmax)
591 {
592 int idx;
593
594 memset(sched, 0, sizeof(*sched));
595 sched->max_events = num;
596 sched->max_weight = wmax;
597 sched->events = events;
598
599 for (idx = 0; idx < num; idx++) {
600 if (events[idx]->hw.constraint->weight == wmin)
601 break;
602 }
603
604 sched->state.event = idx; /* start with min weight */
605 sched->state.weight = wmin;
606 sched->state.unassigned = num;
607 }
608
609 static void perf_sched_save_state(struct perf_sched *sched)
610 {
611 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
612 return;
613
614 sched->saved[sched->saved_states] = sched->state;
615 sched->saved_states++;
616 }
617
618 static bool perf_sched_restore_state(struct perf_sched *sched)
619 {
620 if (!sched->saved_states)
621 return false;
622
623 sched->saved_states--;
624 sched->state = sched->saved[sched->saved_states];
625
626 /* continue with next counter: */
627 clear_bit(sched->state.counter++, sched->state.used);
628
629 return true;
630 }
631
632 /*
633 * Select a counter for the current event to schedule. Return true on
634 * success.
635 */
636 static bool __perf_sched_find_counter(struct perf_sched *sched)
637 {
638 struct event_constraint *c;
639 int idx;
640
641 if (!sched->state.unassigned)
642 return false;
643
644 if (sched->state.event >= sched->max_events)
645 return false;
646
647 c = sched->events[sched->state.event]->hw.constraint;
648 /* Prefer fixed purpose counters */
649 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
650 idx = INTEL_PMC_IDX_FIXED;
651 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
652 if (!__test_and_set_bit(idx, sched->state.used))
653 goto done;
654 }
655 }
656 /* Grab the first unused counter starting with idx */
657 idx = sched->state.counter;
658 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
659 if (!__test_and_set_bit(idx, sched->state.used))
660 goto done;
661 }
662
663 return false;
664
665 done:
666 sched->state.counter = idx;
667
668 if (c->overlap)
669 perf_sched_save_state(sched);
670
671 return true;
672 }
673
674 static bool perf_sched_find_counter(struct perf_sched *sched)
675 {
676 while (!__perf_sched_find_counter(sched)) {
677 if (!perf_sched_restore_state(sched))
678 return false;
679 }
680
681 return true;
682 }
683
684 /*
685 * Go through all unassigned events and find the next one to schedule.
686 * Take events with the least weight first. Return true on success.
687 */
688 static bool perf_sched_next_event(struct perf_sched *sched)
689 {
690 struct event_constraint *c;
691
692 if (!sched->state.unassigned || !--sched->state.unassigned)
693 return false;
694
695 do {
696 /* next event */
697 sched->state.event++;
698 if (sched->state.event >= sched->max_events) {
699 /* next weight */
700 sched->state.event = 0;
701 sched->state.weight++;
702 if (sched->state.weight > sched->max_weight)
703 return false;
704 }
705 c = sched->events[sched->state.event]->hw.constraint;
706 } while (c->weight != sched->state.weight);
707
708 sched->state.counter = 0; /* start with first counter */
709
710 return true;
711 }
712
713 /*
714 * Assign a counter for each event.
715 */
716 int perf_assign_events(struct perf_event **events, int n,
717 int wmin, int wmax, int *assign)
718 {
719 struct perf_sched sched;
720
721 perf_sched_init(&sched, events, n, wmin, wmax);
722
723 do {
724 if (!perf_sched_find_counter(&sched))
725 break; /* failed */
726 if (assign)
727 assign[sched.state.event] = sched.state.counter;
728 } while (perf_sched_next_event(&sched));
729
730 return sched.state.unassigned;
731 }
732 EXPORT_SYMBOL_GPL(perf_assign_events);
733
734 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
735 {
736 struct event_constraint *c;
737 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
738 struct perf_event *e;
739 int i, wmin, wmax, num = 0;
740 struct hw_perf_event *hwc;
741
742 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
743
744 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
745 hwc = &cpuc->event_list[i]->hw;
746 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
747 hwc->constraint = c;
748
749 wmin = min(wmin, c->weight);
750 wmax = max(wmax, c->weight);
751 }
752
753 /*
754 * fastpath, try to reuse previous register
755 */
756 for (i = 0; i < n; i++) {
757 hwc = &cpuc->event_list[i]->hw;
758 c = hwc->constraint;
759
760 /* never assigned */
761 if (hwc->idx == -1)
762 break;
763
764 /* constraint still honored */
765 if (!test_bit(hwc->idx, c->idxmsk))
766 break;
767
768 /* not already used */
769 if (test_bit(hwc->idx, used_mask))
770 break;
771
772 __set_bit(hwc->idx, used_mask);
773 if (assign)
774 assign[i] = hwc->idx;
775 }
776
777 /* slow path */
778 if (i != n)
779 num = perf_assign_events(cpuc->event_list, n, wmin,
780 wmax, assign);
781
782 /*
783 * Mark the event as committed, so we do not put_constraint()
784 * in case new events are added and fail scheduling.
785 */
786 if (!num && assign) {
787 for (i = 0; i < n; i++) {
788 e = cpuc->event_list[i];
789 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
790 }
791 }
792 /*
793 * scheduling failed or is just a simulation,
794 * free resources if necessary
795 */
796 if (!assign || num) {
797 for (i = 0; i < n; i++) {
798 e = cpuc->event_list[i];
799 /*
800 * do not put_constraint() on comitted events,
801 * because they are good to go
802 */
803 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
804 continue;
805
806 if (x86_pmu.put_event_constraints)
807 x86_pmu.put_event_constraints(cpuc, e);
808 }
809 }
810 return num ? -EINVAL : 0;
811 }
812
813 /*
814 * dogrp: true if must collect siblings events (group)
815 * returns total number of events and error code
816 */
817 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
818 {
819 struct perf_event *event;
820 int n, max_count;
821
822 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
823
824 /* current number of events already accepted */
825 n = cpuc->n_events;
826
827 if (is_x86_event(leader)) {
828 if (n >= max_count)
829 return -EINVAL;
830 cpuc->event_list[n] = leader;
831 n++;
832 }
833 if (!dogrp)
834 return n;
835
836 list_for_each_entry(event, &leader->sibling_list, group_entry) {
837 if (!is_x86_event(event) ||
838 event->state <= PERF_EVENT_STATE_OFF)
839 continue;
840
841 if (n >= max_count)
842 return -EINVAL;
843
844 cpuc->event_list[n] = event;
845 n++;
846 }
847 return n;
848 }
849
850 static inline void x86_assign_hw_event(struct perf_event *event,
851 struct cpu_hw_events *cpuc, int i)
852 {
853 struct hw_perf_event *hwc = &event->hw;
854
855 hwc->idx = cpuc->assign[i];
856 hwc->last_cpu = smp_processor_id();
857 hwc->last_tag = ++cpuc->tags[i];
858
859 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
860 hwc->config_base = 0;
861 hwc->event_base = 0;
862 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
863 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
864 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
865 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
866 } else {
867 hwc->config_base = x86_pmu_config_addr(hwc->idx);
868 hwc->event_base = x86_pmu_event_addr(hwc->idx);
869 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
870 }
871 }
872
873 static inline int match_prev_assignment(struct hw_perf_event *hwc,
874 struct cpu_hw_events *cpuc,
875 int i)
876 {
877 return hwc->idx == cpuc->assign[i] &&
878 hwc->last_cpu == smp_processor_id() &&
879 hwc->last_tag == cpuc->tags[i];
880 }
881
882 static void x86_pmu_start(struct perf_event *event, int flags);
883
884 static void x86_pmu_enable(struct pmu *pmu)
885 {
886 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
887 struct perf_event *event;
888 struct hw_perf_event *hwc;
889 int i, added = cpuc->n_added;
890
891 if (!x86_pmu_initialized())
892 return;
893
894 if (cpuc->enabled)
895 return;
896
897 if (cpuc->n_added) {
898 int n_running = cpuc->n_events - cpuc->n_added;
899 /*
900 * apply assignment obtained either from
901 * hw_perf_group_sched_in() or x86_pmu_enable()
902 *
903 * step1: save events moving to new counters
904 */
905 for (i = 0; i < n_running; i++) {
906 event = cpuc->event_list[i];
907 hwc = &event->hw;
908
909 /*
910 * we can avoid reprogramming counter if:
911 * - assigned same counter as last time
912 * - running on same CPU as last time
913 * - no other event has used the counter since
914 */
915 if (hwc->idx == -1 ||
916 match_prev_assignment(hwc, cpuc, i))
917 continue;
918
919 /*
920 * Ensure we don't accidentally enable a stopped
921 * counter simply because we rescheduled.
922 */
923 if (hwc->state & PERF_HES_STOPPED)
924 hwc->state |= PERF_HES_ARCH;
925
926 x86_pmu_stop(event, PERF_EF_UPDATE);
927 }
928
929 /*
930 * step2: reprogram moved events into new counters
931 */
932 for (i = 0; i < cpuc->n_events; i++) {
933 event = cpuc->event_list[i];
934 hwc = &event->hw;
935
936 if (!match_prev_assignment(hwc, cpuc, i))
937 x86_assign_hw_event(event, cpuc, i);
938 else if (i < n_running)
939 continue;
940
941 if (hwc->state & PERF_HES_ARCH)
942 continue;
943
944 x86_pmu_start(event, PERF_EF_RELOAD);
945 }
946 cpuc->n_added = 0;
947 perf_events_lapic_init();
948 }
949
950 cpuc->enabled = 1;
951 barrier();
952
953 x86_pmu.enable_all(added);
954 }
955
956 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
957
958 /*
959 * Set the next IRQ period, based on the hwc->period_left value.
960 * To be called with the event disabled in hw:
961 */
962 int x86_perf_event_set_period(struct perf_event *event)
963 {
964 struct hw_perf_event *hwc = &event->hw;
965 s64 left = local64_read(&hwc->period_left);
966 s64 period = hwc->sample_period;
967 int ret = 0, idx = hwc->idx;
968
969 if (idx == INTEL_PMC_IDX_FIXED_BTS)
970 return 0;
971
972 /*
973 * If we are way outside a reasonable range then just skip forward:
974 */
975 if (unlikely(left <= -period)) {
976 left = period;
977 local64_set(&hwc->period_left, left);
978 hwc->last_period = period;
979 ret = 1;
980 }
981
982 if (unlikely(left <= 0)) {
983 left += period;
984 local64_set(&hwc->period_left, left);
985 hwc->last_period = period;
986 ret = 1;
987 }
988 /*
989 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
990 */
991 if (unlikely(left < 2))
992 left = 2;
993
994 if (left > x86_pmu.max_period)
995 left = x86_pmu.max_period;
996
997 if (x86_pmu.limit_period)
998 left = x86_pmu.limit_period(event, left);
999
1000 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1001
1002 /*
1003 * The hw event starts counting from this event offset,
1004 * mark it to be able to extra future deltas:
1005 */
1006 local64_set(&hwc->prev_count, (u64)-left);
1007
1008 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1009
1010 /*
1011 * Due to erratum on certan cpu we need
1012 * a second write to be sure the register
1013 * is updated properly
1014 */
1015 if (x86_pmu.perfctr_second_write) {
1016 wrmsrl(hwc->event_base,
1017 (u64)(-left) & x86_pmu.cntval_mask);
1018 }
1019
1020 perf_event_update_userpage(event);
1021
1022 return ret;
1023 }
1024
1025 void x86_pmu_enable_event(struct perf_event *event)
1026 {
1027 if (__this_cpu_read(cpu_hw_events.enabled))
1028 __x86_pmu_enable_event(&event->hw,
1029 ARCH_PERFMON_EVENTSEL_ENABLE);
1030 }
1031
1032 /*
1033 * Add a single event to the PMU.
1034 *
1035 * The event is added to the group of enabled events
1036 * but only if it can be scehduled with existing events.
1037 */
1038 static int x86_pmu_add(struct perf_event *event, int flags)
1039 {
1040 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1041 struct hw_perf_event *hwc;
1042 int assign[X86_PMC_IDX_MAX];
1043 int n, n0, ret;
1044
1045 hwc = &event->hw;
1046
1047 n0 = cpuc->n_events;
1048 ret = n = collect_events(cpuc, event, false);
1049 if (ret < 0)
1050 goto out;
1051
1052 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1053 if (!(flags & PERF_EF_START))
1054 hwc->state |= PERF_HES_ARCH;
1055
1056 /*
1057 * If group events scheduling transaction was started,
1058 * skip the schedulability test here, it will be performed
1059 * at commit time (->commit_txn) as a whole.
1060 */
1061 if (cpuc->group_flag & PERF_EVENT_TXN)
1062 goto done_collect;
1063
1064 ret = x86_pmu.schedule_events(cpuc, n, assign);
1065 if (ret)
1066 goto out;
1067 /*
1068 * copy new assignment, now we know it is possible
1069 * will be used by hw_perf_enable()
1070 */
1071 memcpy(cpuc->assign, assign, n*sizeof(int));
1072
1073 done_collect:
1074 /*
1075 * Commit the collect_events() state. See x86_pmu_del() and
1076 * x86_pmu_*_txn().
1077 */
1078 cpuc->n_events = n;
1079 cpuc->n_added += n - n0;
1080 cpuc->n_txn += n - n0;
1081
1082 ret = 0;
1083 out:
1084 return ret;
1085 }
1086
1087 static void x86_pmu_start(struct perf_event *event, int flags)
1088 {
1089 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1090 int idx = event->hw.idx;
1091
1092 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1093 return;
1094
1095 if (WARN_ON_ONCE(idx == -1))
1096 return;
1097
1098 if (flags & PERF_EF_RELOAD) {
1099 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1100 x86_perf_event_set_period(event);
1101 }
1102
1103 event->hw.state = 0;
1104
1105 cpuc->events[idx] = event;
1106 __set_bit(idx, cpuc->active_mask);
1107 __set_bit(idx, cpuc->running);
1108 x86_pmu.enable(event);
1109 perf_event_update_userpage(event);
1110 }
1111
1112 void perf_event_print_debug(void)
1113 {
1114 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1115 u64 pebs;
1116 struct cpu_hw_events *cpuc;
1117 unsigned long flags;
1118 int cpu, idx;
1119
1120 if (!x86_pmu.num_counters)
1121 return;
1122
1123 local_irq_save(flags);
1124
1125 cpu = smp_processor_id();
1126 cpuc = &per_cpu(cpu_hw_events, cpu);
1127
1128 if (x86_pmu.version >= 2) {
1129 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1130 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1131 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1132 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1133 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1134
1135 pr_info("\n");
1136 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1137 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1138 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1139 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1140 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1141 }
1142 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1143
1144 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1145 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1146 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1147
1148 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1149
1150 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1151 cpu, idx, pmc_ctrl);
1152 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1153 cpu, idx, pmc_count);
1154 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1155 cpu, idx, prev_left);
1156 }
1157 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1158 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1159
1160 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1161 cpu, idx, pmc_count);
1162 }
1163 local_irq_restore(flags);
1164 }
1165
1166 void x86_pmu_stop(struct perf_event *event, int flags)
1167 {
1168 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1169 struct hw_perf_event *hwc = &event->hw;
1170
1171 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1172 x86_pmu.disable(event);
1173 cpuc->events[hwc->idx] = NULL;
1174 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1175 hwc->state |= PERF_HES_STOPPED;
1176 }
1177
1178 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1179 /*
1180 * Drain the remaining delta count out of a event
1181 * that we are disabling:
1182 */
1183 x86_perf_event_update(event);
1184 hwc->state |= PERF_HES_UPTODATE;
1185 }
1186 }
1187
1188 static void x86_pmu_del(struct perf_event *event, int flags)
1189 {
1190 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1191 int i;
1192
1193 /*
1194 * event is descheduled
1195 */
1196 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1197
1198 /*
1199 * If we're called during a txn, we don't need to do anything.
1200 * The events never got scheduled and ->cancel_txn will truncate
1201 * the event_list.
1202 *
1203 * XXX assumes any ->del() called during a TXN will only be on
1204 * an event added during that same TXN.
1205 */
1206 if (cpuc->group_flag & PERF_EVENT_TXN)
1207 return;
1208
1209 /*
1210 * Not a TXN, therefore cleanup properly.
1211 */
1212 x86_pmu_stop(event, PERF_EF_UPDATE);
1213
1214 for (i = 0; i < cpuc->n_events; i++) {
1215 if (event == cpuc->event_list[i])
1216 break;
1217 }
1218
1219 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1220 return;
1221
1222 /* If we have a newly added event; make sure to decrease n_added. */
1223 if (i >= cpuc->n_events - cpuc->n_added)
1224 --cpuc->n_added;
1225
1226 if (x86_pmu.put_event_constraints)
1227 x86_pmu.put_event_constraints(cpuc, event);
1228
1229 /* Delete the array entry. */
1230 while (++i < cpuc->n_events)
1231 cpuc->event_list[i-1] = cpuc->event_list[i];
1232 --cpuc->n_events;
1233
1234 perf_event_update_userpage(event);
1235 }
1236
1237 int x86_pmu_handle_irq(struct pt_regs *regs)
1238 {
1239 struct perf_sample_data data;
1240 struct cpu_hw_events *cpuc;
1241 struct perf_event *event;
1242 int idx, handled = 0;
1243 u64 val;
1244
1245 cpuc = this_cpu_ptr(&cpu_hw_events);
1246
1247 /*
1248 * Some chipsets need to unmask the LVTPC in a particular spot
1249 * inside the nmi handler. As a result, the unmasking was pushed
1250 * into all the nmi handlers.
1251 *
1252 * This generic handler doesn't seem to have any issues where the
1253 * unmasking occurs so it was left at the top.
1254 */
1255 apic_write(APIC_LVTPC, APIC_DM_NMI);
1256
1257 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1258 if (!test_bit(idx, cpuc->active_mask)) {
1259 /*
1260 * Though we deactivated the counter some cpus
1261 * might still deliver spurious interrupts still
1262 * in flight. Catch them:
1263 */
1264 if (__test_and_clear_bit(idx, cpuc->running))
1265 handled++;
1266 continue;
1267 }
1268
1269 event = cpuc->events[idx];
1270
1271 val = x86_perf_event_update(event);
1272 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1273 continue;
1274
1275 /*
1276 * event overflow
1277 */
1278 handled++;
1279 perf_sample_data_init(&data, 0, event->hw.last_period);
1280
1281 if (!x86_perf_event_set_period(event))
1282 continue;
1283
1284 if (perf_event_overflow(event, &data, regs))
1285 x86_pmu_stop(event, 0);
1286 }
1287
1288 if (handled)
1289 inc_irq_stat(apic_perf_irqs);
1290
1291 return handled;
1292 }
1293
1294 void perf_events_lapic_init(void)
1295 {
1296 if (!x86_pmu.apic || !x86_pmu_initialized())
1297 return;
1298
1299 /*
1300 * Always use NMI for PMU
1301 */
1302 apic_write(APIC_LVTPC, APIC_DM_NMI);
1303 }
1304
1305 static int
1306 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1307 {
1308 u64 start_clock;
1309 u64 finish_clock;
1310 int ret;
1311
1312 if (!atomic_read(&active_events))
1313 return NMI_DONE;
1314
1315 start_clock = sched_clock();
1316 ret = x86_pmu.handle_irq(regs);
1317 finish_clock = sched_clock();
1318
1319 perf_sample_event_took(finish_clock - start_clock);
1320
1321 return ret;
1322 }
1323 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1324
1325 struct event_constraint emptyconstraint;
1326 struct event_constraint unconstrained;
1327
1328 static int
1329 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1330 {
1331 unsigned int cpu = (long)hcpu;
1332 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1333 int ret = NOTIFY_OK;
1334
1335 switch (action & ~CPU_TASKS_FROZEN) {
1336 case CPU_UP_PREPARE:
1337 cpuc->kfree_on_online = NULL;
1338 if (x86_pmu.cpu_prepare)
1339 ret = x86_pmu.cpu_prepare(cpu);
1340 break;
1341
1342 case CPU_STARTING:
1343 if (x86_pmu.cpu_starting)
1344 x86_pmu.cpu_starting(cpu);
1345 break;
1346
1347 case CPU_ONLINE:
1348 kfree(cpuc->kfree_on_online);
1349 break;
1350
1351 case CPU_DYING:
1352 if (x86_pmu.cpu_dying)
1353 x86_pmu.cpu_dying(cpu);
1354 break;
1355
1356 case CPU_UP_CANCELED:
1357 case CPU_DEAD:
1358 if (x86_pmu.cpu_dead)
1359 x86_pmu.cpu_dead(cpu);
1360 break;
1361
1362 default:
1363 break;
1364 }
1365
1366 return ret;
1367 }
1368
1369 static void __init pmu_check_apic(void)
1370 {
1371 if (cpu_has_apic)
1372 return;
1373
1374 x86_pmu.apic = 0;
1375 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1376 pr_info("no hardware sampling interrupt available.\n");
1377
1378 /*
1379 * If we have a PMU initialized but no APIC
1380 * interrupts, we cannot sample hardware
1381 * events (user-space has to fall back and
1382 * sample via a hrtimer based software event):
1383 */
1384 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1385
1386 }
1387
1388 static struct attribute_group x86_pmu_format_group = {
1389 .name = "format",
1390 .attrs = NULL,
1391 };
1392
1393 /*
1394 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1395 * out of events_attr attributes.
1396 */
1397 static void __init filter_events(struct attribute **attrs)
1398 {
1399 struct device_attribute *d;
1400 struct perf_pmu_events_attr *pmu_attr;
1401 int i, j;
1402
1403 for (i = 0; attrs[i]; i++) {
1404 d = (struct device_attribute *)attrs[i];
1405 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1406 /* str trumps id */
1407 if (pmu_attr->event_str)
1408 continue;
1409 if (x86_pmu.event_map(i))
1410 continue;
1411
1412 for (j = i; attrs[j]; j++)
1413 attrs[j] = attrs[j + 1];
1414
1415 /* Check the shifted attr. */
1416 i--;
1417 }
1418 }
1419
1420 /* Merge two pointer arrays */
1421 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1422 {
1423 struct attribute **new;
1424 int j, i;
1425
1426 for (j = 0; a[j]; j++)
1427 ;
1428 for (i = 0; b[i]; i++)
1429 j++;
1430 j++;
1431
1432 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1433 if (!new)
1434 return NULL;
1435
1436 j = 0;
1437 for (i = 0; a[i]; i++)
1438 new[j++] = a[i];
1439 for (i = 0; b[i]; i++)
1440 new[j++] = b[i];
1441 new[j] = NULL;
1442
1443 return new;
1444 }
1445
1446 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1447 char *page)
1448 {
1449 struct perf_pmu_events_attr *pmu_attr = \
1450 container_of(attr, struct perf_pmu_events_attr, attr);
1451 u64 config = x86_pmu.event_map(pmu_attr->id);
1452
1453 /* string trumps id */
1454 if (pmu_attr->event_str)
1455 return sprintf(page, "%s", pmu_attr->event_str);
1456
1457 return x86_pmu.events_sysfs_show(page, config);
1458 }
1459
1460 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1461 EVENT_ATTR(instructions, INSTRUCTIONS );
1462 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1463 EVENT_ATTR(cache-misses, CACHE_MISSES );
1464 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1465 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1466 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1467 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1468 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1469 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1470
1471 static struct attribute *empty_attrs;
1472
1473 static struct attribute *events_attr[] = {
1474 EVENT_PTR(CPU_CYCLES),
1475 EVENT_PTR(INSTRUCTIONS),
1476 EVENT_PTR(CACHE_REFERENCES),
1477 EVENT_PTR(CACHE_MISSES),
1478 EVENT_PTR(BRANCH_INSTRUCTIONS),
1479 EVENT_PTR(BRANCH_MISSES),
1480 EVENT_PTR(BUS_CYCLES),
1481 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1482 EVENT_PTR(STALLED_CYCLES_BACKEND),
1483 EVENT_PTR(REF_CPU_CYCLES),
1484 NULL,
1485 };
1486
1487 static struct attribute_group x86_pmu_events_group = {
1488 .name = "events",
1489 .attrs = events_attr,
1490 };
1491
1492 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1493 {
1494 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1495 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1496 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1497 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1498 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1499 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1500 ssize_t ret;
1501
1502 /*
1503 * We have whole page size to spend and just little data
1504 * to write, so we can safely use sprintf.
1505 */
1506 ret = sprintf(page, "event=0x%02llx", event);
1507
1508 if (umask)
1509 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1510
1511 if (edge)
1512 ret += sprintf(page + ret, ",edge");
1513
1514 if (pc)
1515 ret += sprintf(page + ret, ",pc");
1516
1517 if (any)
1518 ret += sprintf(page + ret, ",any");
1519
1520 if (inv)
1521 ret += sprintf(page + ret, ",inv");
1522
1523 if (cmask)
1524 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1525
1526 ret += sprintf(page + ret, "\n");
1527
1528 return ret;
1529 }
1530
1531 static int __init init_hw_perf_events(void)
1532 {
1533 struct x86_pmu_quirk *quirk;
1534 int err;
1535
1536 pr_info("Performance Events: ");
1537
1538 switch (boot_cpu_data.x86_vendor) {
1539 case X86_VENDOR_INTEL:
1540 err = intel_pmu_init();
1541 break;
1542 case X86_VENDOR_AMD:
1543 err = amd_pmu_init();
1544 break;
1545 default:
1546 err = -ENOTSUPP;
1547 }
1548 if (err != 0) {
1549 pr_cont("no PMU driver, software events only.\n");
1550 return 0;
1551 }
1552
1553 pmu_check_apic();
1554
1555 /* sanity check that the hardware exists or is emulated */
1556 if (!check_hw_exists())
1557 return 0;
1558
1559 pr_cont("%s PMU driver.\n", x86_pmu.name);
1560
1561 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1562
1563 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1564 quirk->func();
1565
1566 if (!x86_pmu.intel_ctrl)
1567 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1568
1569 perf_events_lapic_init();
1570 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1571
1572 unconstrained = (struct event_constraint)
1573 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1574 0, x86_pmu.num_counters, 0, 0);
1575
1576 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1577
1578 if (x86_pmu.event_attrs)
1579 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1580
1581 if (!x86_pmu.events_sysfs_show)
1582 x86_pmu_events_group.attrs = &empty_attrs;
1583 else
1584 filter_events(x86_pmu_events_group.attrs);
1585
1586 if (x86_pmu.cpu_events) {
1587 struct attribute **tmp;
1588
1589 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1590 if (!WARN_ON(!tmp))
1591 x86_pmu_events_group.attrs = tmp;
1592 }
1593
1594 pr_info("... version: %d\n", x86_pmu.version);
1595 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1596 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1597 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1598 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1599 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1600 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1601
1602 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1603 perf_cpu_notifier(x86_pmu_notifier);
1604
1605 return 0;
1606 }
1607 early_initcall(init_hw_perf_events);
1608
1609 static inline void x86_pmu_read(struct perf_event *event)
1610 {
1611 x86_perf_event_update(event);
1612 }
1613
1614 /*
1615 * Start group events scheduling transaction
1616 * Set the flag to make pmu::enable() not perform the
1617 * schedulability test, it will be performed at commit time
1618 */
1619 static void x86_pmu_start_txn(struct pmu *pmu)
1620 {
1621 perf_pmu_disable(pmu);
1622 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1623 __this_cpu_write(cpu_hw_events.n_txn, 0);
1624 }
1625
1626 /*
1627 * Stop group events scheduling transaction
1628 * Clear the flag and pmu::enable() will perform the
1629 * schedulability test.
1630 */
1631 static void x86_pmu_cancel_txn(struct pmu *pmu)
1632 {
1633 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1634 /*
1635 * Truncate collected array by the number of events added in this
1636 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1637 */
1638 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1639 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1640 perf_pmu_enable(pmu);
1641 }
1642
1643 /*
1644 * Commit group events scheduling transaction
1645 * Perform the group schedulability test as a whole
1646 * Return 0 if success
1647 *
1648 * Does not cancel the transaction on failure; expects the caller to do this.
1649 */
1650 static int x86_pmu_commit_txn(struct pmu *pmu)
1651 {
1652 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1653 int assign[X86_PMC_IDX_MAX];
1654 int n, ret;
1655
1656 n = cpuc->n_events;
1657
1658 if (!x86_pmu_initialized())
1659 return -EAGAIN;
1660
1661 ret = x86_pmu.schedule_events(cpuc, n, assign);
1662 if (ret)
1663 return ret;
1664
1665 /*
1666 * copy new assignment, now we know it is possible
1667 * will be used by hw_perf_enable()
1668 */
1669 memcpy(cpuc->assign, assign, n*sizeof(int));
1670
1671 cpuc->group_flag &= ~PERF_EVENT_TXN;
1672 perf_pmu_enable(pmu);
1673 return 0;
1674 }
1675 /*
1676 * a fake_cpuc is used to validate event groups. Due to
1677 * the extra reg logic, we need to also allocate a fake
1678 * per_core and per_cpu structure. Otherwise, group events
1679 * using extra reg may conflict without the kernel being
1680 * able to catch this when the last event gets added to
1681 * the group.
1682 */
1683 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1684 {
1685 kfree(cpuc->shared_regs);
1686 kfree(cpuc);
1687 }
1688
1689 static struct cpu_hw_events *allocate_fake_cpuc(void)
1690 {
1691 struct cpu_hw_events *cpuc;
1692 int cpu = raw_smp_processor_id();
1693
1694 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1695 if (!cpuc)
1696 return ERR_PTR(-ENOMEM);
1697
1698 /* only needed, if we have extra_regs */
1699 if (x86_pmu.extra_regs) {
1700 cpuc->shared_regs = allocate_shared_regs(cpu);
1701 if (!cpuc->shared_regs)
1702 goto error;
1703 }
1704 cpuc->is_fake = 1;
1705 return cpuc;
1706 error:
1707 free_fake_cpuc(cpuc);
1708 return ERR_PTR(-ENOMEM);
1709 }
1710
1711 /*
1712 * validate that we can schedule this event
1713 */
1714 static int validate_event(struct perf_event *event)
1715 {
1716 struct cpu_hw_events *fake_cpuc;
1717 struct event_constraint *c;
1718 int ret = 0;
1719
1720 fake_cpuc = allocate_fake_cpuc();
1721 if (IS_ERR(fake_cpuc))
1722 return PTR_ERR(fake_cpuc);
1723
1724 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1725
1726 if (!c || !c->weight)
1727 ret = -EINVAL;
1728
1729 if (x86_pmu.put_event_constraints)
1730 x86_pmu.put_event_constraints(fake_cpuc, event);
1731
1732 free_fake_cpuc(fake_cpuc);
1733
1734 return ret;
1735 }
1736
1737 /*
1738 * validate a single event group
1739 *
1740 * validation include:
1741 * - check events are compatible which each other
1742 * - events do not compete for the same counter
1743 * - number of events <= number of counters
1744 *
1745 * validation ensures the group can be loaded onto the
1746 * PMU if it was the only group available.
1747 */
1748 static int validate_group(struct perf_event *event)
1749 {
1750 struct perf_event *leader = event->group_leader;
1751 struct cpu_hw_events *fake_cpuc;
1752 int ret = -EINVAL, n;
1753
1754 fake_cpuc = allocate_fake_cpuc();
1755 if (IS_ERR(fake_cpuc))
1756 return PTR_ERR(fake_cpuc);
1757 /*
1758 * the event is not yet connected with its
1759 * siblings therefore we must first collect
1760 * existing siblings, then add the new event
1761 * before we can simulate the scheduling
1762 */
1763 n = collect_events(fake_cpuc, leader, true);
1764 if (n < 0)
1765 goto out;
1766
1767 fake_cpuc->n_events = n;
1768 n = collect_events(fake_cpuc, event, false);
1769 if (n < 0)
1770 goto out;
1771
1772 fake_cpuc->n_events = n;
1773
1774 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1775
1776 out:
1777 free_fake_cpuc(fake_cpuc);
1778 return ret;
1779 }
1780
1781 static int x86_pmu_event_init(struct perf_event *event)
1782 {
1783 struct pmu *tmp;
1784 int err;
1785
1786 switch (event->attr.type) {
1787 case PERF_TYPE_RAW:
1788 case PERF_TYPE_HARDWARE:
1789 case PERF_TYPE_HW_CACHE:
1790 break;
1791
1792 default:
1793 return -ENOENT;
1794 }
1795
1796 err = __x86_pmu_event_init(event);
1797 if (!err) {
1798 /*
1799 * we temporarily connect event to its pmu
1800 * such that validate_group() can classify
1801 * it as an x86 event using is_x86_event()
1802 */
1803 tmp = event->pmu;
1804 event->pmu = &pmu;
1805
1806 if (event->group_leader != event)
1807 err = validate_group(event);
1808 else
1809 err = validate_event(event);
1810
1811 event->pmu = tmp;
1812 }
1813 if (err) {
1814 if (event->destroy)
1815 event->destroy(event);
1816 }
1817
1818 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1819 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1820
1821 return err;
1822 }
1823
1824 static void refresh_pce(void *ignored)
1825 {
1826 if (current->mm)
1827 load_mm_cr4(current->mm);
1828 }
1829
1830 static void x86_pmu_event_mapped(struct perf_event *event)
1831 {
1832 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1833 return;
1834
1835 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1836 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1837 }
1838
1839 static void x86_pmu_event_unmapped(struct perf_event *event)
1840 {
1841 if (!current->mm)
1842 return;
1843
1844 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1845 return;
1846
1847 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1848 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1849 }
1850
1851 static int x86_pmu_event_idx(struct perf_event *event)
1852 {
1853 int idx = event->hw.idx;
1854
1855 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1856 return 0;
1857
1858 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1859 idx -= INTEL_PMC_IDX_FIXED;
1860 idx |= 1 << 30;
1861 }
1862
1863 return idx + 1;
1864 }
1865
1866 static ssize_t get_attr_rdpmc(struct device *cdev,
1867 struct device_attribute *attr,
1868 char *buf)
1869 {
1870 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1871 }
1872
1873 static ssize_t set_attr_rdpmc(struct device *cdev,
1874 struct device_attribute *attr,
1875 const char *buf, size_t count)
1876 {
1877 unsigned long val;
1878 ssize_t ret;
1879
1880 ret = kstrtoul(buf, 0, &val);
1881 if (ret)
1882 return ret;
1883
1884 if (val > 2)
1885 return -EINVAL;
1886
1887 if (x86_pmu.attr_rdpmc_broken)
1888 return -ENOTSUPP;
1889
1890 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
1891 /*
1892 * Changing into or out of always available, aka
1893 * perf-event-bypassing mode. This path is extremely slow,
1894 * but only root can trigger it, so it's okay.
1895 */
1896 if (val == 2)
1897 static_key_slow_inc(&rdpmc_always_available);
1898 else
1899 static_key_slow_dec(&rdpmc_always_available);
1900 on_each_cpu(refresh_pce, NULL, 1);
1901 }
1902
1903 x86_pmu.attr_rdpmc = val;
1904
1905 return count;
1906 }
1907
1908 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1909
1910 static struct attribute *x86_pmu_attrs[] = {
1911 &dev_attr_rdpmc.attr,
1912 NULL,
1913 };
1914
1915 static struct attribute_group x86_pmu_attr_group = {
1916 .attrs = x86_pmu_attrs,
1917 };
1918
1919 static const struct attribute_group *x86_pmu_attr_groups[] = {
1920 &x86_pmu_attr_group,
1921 &x86_pmu_format_group,
1922 &x86_pmu_events_group,
1923 NULL,
1924 };
1925
1926 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
1927 {
1928 if (x86_pmu.sched_task)
1929 x86_pmu.sched_task(ctx, sched_in);
1930 }
1931
1932 void perf_check_microcode(void)
1933 {
1934 if (x86_pmu.check_microcode)
1935 x86_pmu.check_microcode();
1936 }
1937 EXPORT_SYMBOL_GPL(perf_check_microcode);
1938
1939 static struct pmu pmu = {
1940 .pmu_enable = x86_pmu_enable,
1941 .pmu_disable = x86_pmu_disable,
1942
1943 .attr_groups = x86_pmu_attr_groups,
1944
1945 .event_init = x86_pmu_event_init,
1946
1947 .event_mapped = x86_pmu_event_mapped,
1948 .event_unmapped = x86_pmu_event_unmapped,
1949
1950 .add = x86_pmu_add,
1951 .del = x86_pmu_del,
1952 .start = x86_pmu_start,
1953 .stop = x86_pmu_stop,
1954 .read = x86_pmu_read,
1955
1956 .start_txn = x86_pmu_start_txn,
1957 .cancel_txn = x86_pmu_cancel_txn,
1958 .commit_txn = x86_pmu_commit_txn,
1959
1960 .event_idx = x86_pmu_event_idx,
1961 .sched_task = x86_pmu_sched_task,
1962 .task_ctx_size = sizeof(struct x86_perf_task_context),
1963 };
1964
1965 void arch_perf_update_userpage(struct perf_event *event,
1966 struct perf_event_mmap_page *userpg, u64 now)
1967 {
1968 struct cyc2ns_data *data;
1969
1970 userpg->cap_user_time = 0;
1971 userpg->cap_user_time_zero = 0;
1972 userpg->cap_user_rdpmc =
1973 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
1974 userpg->pmc_width = x86_pmu.cntval_bits;
1975
1976 if (!sched_clock_stable())
1977 return;
1978
1979 data = cyc2ns_read_begin();
1980
1981 /*
1982 * Internal timekeeping for enabled/running/stopped times
1983 * is always in the local_clock domain.
1984 */
1985 userpg->cap_user_time = 1;
1986 userpg->time_mult = data->cyc2ns_mul;
1987 userpg->time_shift = data->cyc2ns_shift;
1988 userpg->time_offset = data->cyc2ns_offset - now;
1989
1990 /*
1991 * cap_user_time_zero doesn't make sense when we're using a different
1992 * time base for the records.
1993 */
1994 if (event->clock == &local_clock) {
1995 userpg->cap_user_time_zero = 1;
1996 userpg->time_zero = data->cyc2ns_offset;
1997 }
1998
1999 cyc2ns_read_end(data);
2000 }
2001
2002 /*
2003 * callchain support
2004 */
2005
2006 static int backtrace_stack(void *data, char *name)
2007 {
2008 return 0;
2009 }
2010
2011 static void backtrace_address(void *data, unsigned long addr, int reliable)
2012 {
2013 struct perf_callchain_entry *entry = data;
2014
2015 perf_callchain_store(entry, addr);
2016 }
2017
2018 static const struct stacktrace_ops backtrace_ops = {
2019 .stack = backtrace_stack,
2020 .address = backtrace_address,
2021 .walk_stack = print_context_stack_bp,
2022 };
2023
2024 void
2025 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2026 {
2027 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2028 /* TODO: We don't support guest os callchain now */
2029 return;
2030 }
2031
2032 perf_callchain_store(entry, regs->ip);
2033
2034 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2035 }
2036
2037 static inline int
2038 valid_user_frame(const void __user *fp, unsigned long size)
2039 {
2040 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2041 }
2042
2043 static unsigned long get_segment_base(unsigned int segment)
2044 {
2045 struct desc_struct *desc;
2046 int idx = segment >> 3;
2047
2048 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2049 if (idx > LDT_ENTRIES)
2050 return 0;
2051
2052 if (idx > current->active_mm->context.size)
2053 return 0;
2054
2055 desc = current->active_mm->context.ldt;
2056 } else {
2057 if (idx > GDT_ENTRIES)
2058 return 0;
2059
2060 desc = raw_cpu_ptr(gdt_page.gdt);
2061 }
2062
2063 return get_desc_base(desc + idx);
2064 }
2065
2066 #ifdef CONFIG_COMPAT
2067
2068 #include <asm/compat.h>
2069
2070 static inline int
2071 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2072 {
2073 /* 32-bit process in 64-bit kernel. */
2074 unsigned long ss_base, cs_base;
2075 struct stack_frame_ia32 frame;
2076 const void __user *fp;
2077
2078 if (!test_thread_flag(TIF_IA32))
2079 return 0;
2080
2081 cs_base = get_segment_base(regs->cs);
2082 ss_base = get_segment_base(regs->ss);
2083
2084 fp = compat_ptr(ss_base + regs->bp);
2085 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2086 unsigned long bytes;
2087 frame.next_frame = 0;
2088 frame.return_address = 0;
2089
2090 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2091 if (bytes != 0)
2092 break;
2093
2094 if (!valid_user_frame(fp, sizeof(frame)))
2095 break;
2096
2097 perf_callchain_store(entry, cs_base + frame.return_address);
2098 fp = compat_ptr(ss_base + frame.next_frame);
2099 }
2100 return 1;
2101 }
2102 #else
2103 static inline int
2104 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2105 {
2106 return 0;
2107 }
2108 #endif
2109
2110 void
2111 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2112 {
2113 struct stack_frame frame;
2114 const void __user *fp;
2115
2116 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2117 /* TODO: We don't support guest os callchain now */
2118 return;
2119 }
2120
2121 /*
2122 * We don't know what to do with VM86 stacks.. ignore them for now.
2123 */
2124 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2125 return;
2126
2127 fp = (void __user *)regs->bp;
2128
2129 perf_callchain_store(entry, regs->ip);
2130
2131 if (!current->mm)
2132 return;
2133
2134 if (perf_callchain_user32(regs, entry))
2135 return;
2136
2137 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2138 unsigned long bytes;
2139 frame.next_frame = NULL;
2140 frame.return_address = 0;
2141
2142 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2143 if (bytes != 0)
2144 break;
2145
2146 if (!valid_user_frame(fp, sizeof(frame)))
2147 break;
2148
2149 perf_callchain_store(entry, frame.return_address);
2150 fp = frame.next_frame;
2151 }
2152 }
2153
2154 /*
2155 * Deal with code segment offsets for the various execution modes:
2156 *
2157 * VM86 - the good olde 16 bit days, where the linear address is
2158 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2159 *
2160 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2161 * to figure out what the 32bit base address is.
2162 *
2163 * X32 - has TIF_X32 set, but is running in x86_64
2164 *
2165 * X86_64 - CS,DS,SS,ES are all zero based.
2166 */
2167 static unsigned long code_segment_base(struct pt_regs *regs)
2168 {
2169 /*
2170 * If we are in VM86 mode, add the segment offset to convert to a
2171 * linear address.
2172 */
2173 if (regs->flags & X86_VM_MASK)
2174 return 0x10 * regs->cs;
2175
2176 /*
2177 * For IA32 we look at the GDT/LDT segment base to convert the
2178 * effective IP to a linear address.
2179 */
2180 #ifdef CONFIG_X86_32
2181 if (user_mode(regs) && regs->cs != __USER_CS)
2182 return get_segment_base(regs->cs);
2183 #else
2184 if (test_thread_flag(TIF_IA32)) {
2185 if (user_mode(regs) && regs->cs != __USER32_CS)
2186 return get_segment_base(regs->cs);
2187 }
2188 #endif
2189 return 0;
2190 }
2191
2192 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2193 {
2194 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2195 return perf_guest_cbs->get_guest_ip();
2196
2197 return regs->ip + code_segment_base(regs);
2198 }
2199
2200 unsigned long perf_misc_flags(struct pt_regs *regs)
2201 {
2202 int misc = 0;
2203
2204 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2205 if (perf_guest_cbs->is_user_mode())
2206 misc |= PERF_RECORD_MISC_GUEST_USER;
2207 else
2208 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2209 } else {
2210 if (user_mode(regs))
2211 misc |= PERF_RECORD_MISC_USER;
2212 else
2213 misc |= PERF_RECORD_MISC_KERNEL;
2214 }
2215
2216 if (regs->flags & PERF_EFLAGS_EXACT)
2217 misc |= PERF_RECORD_MISC_EXACT_IP;
2218
2219 return misc;
2220 }
2221
2222 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2223 {
2224 cap->version = x86_pmu.version;
2225 cap->num_counters_gp = x86_pmu.num_counters;
2226 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2227 cap->bit_width_gp = x86_pmu.cntval_bits;
2228 cap->bit_width_fixed = x86_pmu.cntval_bits;
2229 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2230 cap->events_mask_len = x86_pmu.events_mask_len;
2231 }
2232 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.10098 seconds and 5 git commands to generate.