perf_events: Fix invalid pointer when pid is invalid
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33
34 #if 0
35 #undef wrmsrl
36 #define wrmsrl(msr, val) \
37 do { \
38 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
39 (unsigned long)(val)); \
40 native_write_msr((msr), (u32)((u64)(val)), \
41 (u32)((u64)(val) >> 32)); \
42 } while (0)
43 #endif
44
45 /*
46 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
47 */
48 static unsigned long
49 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
50 {
51 unsigned long offset, addr = (unsigned long)from;
52 int type = in_nmi() ? KM_NMI : KM_IRQ0;
53 unsigned long size, len = 0;
54 struct page *page;
55 void *map;
56 int ret;
57
58 do {
59 ret = __get_user_pages_fast(addr, 1, 0, &page);
60 if (!ret)
61 break;
62
63 offset = addr & (PAGE_SIZE - 1);
64 size = min(PAGE_SIZE - offset, n - len);
65
66 map = kmap_atomic(page, type);
67 memcpy(to, map+offset, size);
68 kunmap_atomic(map, type);
69 put_page(page);
70
71 len += size;
72 to += size;
73 addr += size;
74
75 } while (len < n);
76
77 return len;
78 }
79
80 struct event_constraint {
81 union {
82 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
83 u64 idxmsk64;
84 };
85 u64 code;
86 u64 cmask;
87 int weight;
88 };
89
90 struct amd_nb {
91 int nb_id; /* NorthBridge id */
92 int refcnt; /* reference count */
93 struct perf_event *owners[X86_PMC_IDX_MAX];
94 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
95 };
96
97 #define MAX_LBR_ENTRIES 16
98
99 struct cpu_hw_events {
100 /*
101 * Generic x86 PMC bits
102 */
103 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
104 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
105 int enabled;
106
107 int n_events;
108 int n_added;
109 int n_txn;
110 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
111 u64 tags[X86_PMC_IDX_MAX];
112 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
113
114 unsigned int group_flag;
115
116 /*
117 * Intel DebugStore bits
118 */
119 struct debug_store *ds;
120 u64 pebs_enabled;
121
122 /*
123 * Intel LBR bits
124 */
125 int lbr_users;
126 void *lbr_context;
127 struct perf_branch_stack lbr_stack;
128 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
129
130 /*
131 * AMD specific bits
132 */
133 struct amd_nb *amd_nb;
134 };
135
136 #define __EVENT_CONSTRAINT(c, n, m, w) {\
137 { .idxmsk64 = (n) }, \
138 .code = (c), \
139 .cmask = (m), \
140 .weight = (w), \
141 }
142
143 #define EVENT_CONSTRAINT(c, n, m) \
144 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
145
146 /*
147 * Constraint on the Event code.
148 */
149 #define INTEL_EVENT_CONSTRAINT(c, n) \
150 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
151
152 /*
153 * Constraint on the Event code + UMask + fixed-mask
154 *
155 * filter mask to validate fixed counter events.
156 * the following filters disqualify for fixed counters:
157 * - inv
158 * - edge
159 * - cnt-mask
160 * The other filters are supported by fixed counters.
161 * The any-thread option is supported starting with v3.
162 */
163 #define FIXED_EVENT_CONSTRAINT(c, n) \
164 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
165
166 /*
167 * Constraint on the Event code + UMask
168 */
169 #define PEBS_EVENT_CONSTRAINT(c, n) \
170 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
171
172 #define EVENT_CONSTRAINT_END \
173 EVENT_CONSTRAINT(0, 0, 0)
174
175 #define for_each_event_constraint(e, c) \
176 for ((e) = (c); (e)->weight; (e)++)
177
178 union perf_capabilities {
179 struct {
180 u64 lbr_format : 6;
181 u64 pebs_trap : 1;
182 u64 pebs_arch_reg : 1;
183 u64 pebs_format : 4;
184 u64 smm_freeze : 1;
185 };
186 u64 capabilities;
187 };
188
189 /*
190 * struct x86_pmu - generic x86 pmu
191 */
192 struct x86_pmu {
193 /*
194 * Generic x86 PMC bits
195 */
196 const char *name;
197 int version;
198 int (*handle_irq)(struct pt_regs *);
199 void (*disable_all)(void);
200 void (*enable_all)(int added);
201 void (*enable)(struct perf_event *);
202 void (*disable)(struct perf_event *);
203 int (*hw_config)(struct perf_event *event);
204 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
205 unsigned eventsel;
206 unsigned perfctr;
207 u64 (*event_map)(int);
208 int max_events;
209 int num_counters;
210 int num_counters_fixed;
211 int cntval_bits;
212 u64 cntval_mask;
213 int apic;
214 u64 max_period;
215 struct event_constraint *
216 (*get_event_constraints)(struct cpu_hw_events *cpuc,
217 struct perf_event *event);
218
219 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
220 struct perf_event *event);
221 struct event_constraint *event_constraints;
222 void (*quirks)(void);
223 int perfctr_second_write;
224
225 int (*cpu_prepare)(int cpu);
226 void (*cpu_starting)(int cpu);
227 void (*cpu_dying)(int cpu);
228 void (*cpu_dead)(int cpu);
229
230 /*
231 * Intel Arch Perfmon v2+
232 */
233 u64 intel_ctrl;
234 union perf_capabilities intel_cap;
235
236 /*
237 * Intel DebugStore bits
238 */
239 int bts, pebs;
240 int pebs_record_size;
241 void (*drain_pebs)(struct pt_regs *regs);
242 struct event_constraint *pebs_constraints;
243
244 /*
245 * Intel LBR
246 */
247 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
248 int lbr_nr; /* hardware stack size */
249 };
250
251 static struct x86_pmu x86_pmu __read_mostly;
252
253 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
254 .enabled = 1,
255 };
256
257 static int x86_perf_event_set_period(struct perf_event *event);
258
259 /*
260 * Generalized hw caching related hw_event table, filled
261 * in on a per model basis. A value of 0 means
262 * 'not supported', -1 means 'hw_event makes no sense on
263 * this CPU', any other value means the raw hw_event
264 * ID.
265 */
266
267 #define C(x) PERF_COUNT_HW_CACHE_##x
268
269 static u64 __read_mostly hw_cache_event_ids
270 [PERF_COUNT_HW_CACHE_MAX]
271 [PERF_COUNT_HW_CACHE_OP_MAX]
272 [PERF_COUNT_HW_CACHE_RESULT_MAX];
273
274 /*
275 * Propagate event elapsed time into the generic event.
276 * Can only be executed on the CPU where the event is active.
277 * Returns the delta events processed.
278 */
279 static u64
280 x86_perf_event_update(struct perf_event *event)
281 {
282 struct hw_perf_event *hwc = &event->hw;
283 int shift = 64 - x86_pmu.cntval_bits;
284 u64 prev_raw_count, new_raw_count;
285 int idx = hwc->idx;
286 s64 delta;
287
288 if (idx == X86_PMC_IDX_FIXED_BTS)
289 return 0;
290
291 /*
292 * Careful: an NMI might modify the previous event value.
293 *
294 * Our tactic to handle this is to first atomically read and
295 * exchange a new raw count - then add that new-prev delta
296 * count to the generic event atomically:
297 */
298 again:
299 prev_raw_count = local64_read(&hwc->prev_count);
300 rdmsrl(hwc->event_base + idx, new_raw_count);
301
302 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
303 new_raw_count) != prev_raw_count)
304 goto again;
305
306 /*
307 * Now we have the new raw value and have updated the prev
308 * timestamp already. We can now calculate the elapsed delta
309 * (event-)time and add that to the generic event.
310 *
311 * Careful, not all hw sign-extends above the physical width
312 * of the count.
313 */
314 delta = (new_raw_count << shift) - (prev_raw_count << shift);
315 delta >>= shift;
316
317 local64_add(delta, &event->count);
318 local64_sub(delta, &hwc->period_left);
319
320 return new_raw_count;
321 }
322
323 static atomic_t active_events;
324 static DEFINE_MUTEX(pmc_reserve_mutex);
325
326 #ifdef CONFIG_X86_LOCAL_APIC
327
328 static bool reserve_pmc_hardware(void)
329 {
330 int i;
331
332 if (nmi_watchdog == NMI_LOCAL_APIC)
333 disable_lapic_nmi_watchdog();
334
335 for (i = 0; i < x86_pmu.num_counters; i++) {
336 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
337 goto perfctr_fail;
338 }
339
340 for (i = 0; i < x86_pmu.num_counters; i++) {
341 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
342 goto eventsel_fail;
343 }
344
345 return true;
346
347 eventsel_fail:
348 for (i--; i >= 0; i--)
349 release_evntsel_nmi(x86_pmu.eventsel + i);
350
351 i = x86_pmu.num_counters;
352
353 perfctr_fail:
354 for (i--; i >= 0; i--)
355 release_perfctr_nmi(x86_pmu.perfctr + i);
356
357 if (nmi_watchdog == NMI_LOCAL_APIC)
358 enable_lapic_nmi_watchdog();
359
360 return false;
361 }
362
363 static void release_pmc_hardware(void)
364 {
365 int i;
366
367 for (i = 0; i < x86_pmu.num_counters; i++) {
368 release_perfctr_nmi(x86_pmu.perfctr + i);
369 release_evntsel_nmi(x86_pmu.eventsel + i);
370 }
371
372 if (nmi_watchdog == NMI_LOCAL_APIC)
373 enable_lapic_nmi_watchdog();
374 }
375
376 #else
377
378 static bool reserve_pmc_hardware(void) { return true; }
379 static void release_pmc_hardware(void) {}
380
381 #endif
382
383 static int reserve_ds_buffers(void);
384 static void release_ds_buffers(void);
385
386 static void hw_perf_event_destroy(struct perf_event *event)
387 {
388 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
389 release_pmc_hardware();
390 release_ds_buffers();
391 mutex_unlock(&pmc_reserve_mutex);
392 }
393 }
394
395 static inline int x86_pmu_initialized(void)
396 {
397 return x86_pmu.handle_irq != NULL;
398 }
399
400 static inline int
401 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
402 {
403 unsigned int cache_type, cache_op, cache_result;
404 u64 config, val;
405
406 config = attr->config;
407
408 cache_type = (config >> 0) & 0xff;
409 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
410 return -EINVAL;
411
412 cache_op = (config >> 8) & 0xff;
413 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
414 return -EINVAL;
415
416 cache_result = (config >> 16) & 0xff;
417 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
418 return -EINVAL;
419
420 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
421
422 if (val == 0)
423 return -ENOENT;
424
425 if (val == -1)
426 return -EINVAL;
427
428 hwc->config |= val;
429
430 return 0;
431 }
432
433 static int x86_setup_perfctr(struct perf_event *event)
434 {
435 struct perf_event_attr *attr = &event->attr;
436 struct hw_perf_event *hwc = &event->hw;
437 u64 config;
438
439 if (!hwc->sample_period) {
440 hwc->sample_period = x86_pmu.max_period;
441 hwc->last_period = hwc->sample_period;
442 local64_set(&hwc->period_left, hwc->sample_period);
443 } else {
444 /*
445 * If we have a PMU initialized but no APIC
446 * interrupts, we cannot sample hardware
447 * events (user-space has to fall back and
448 * sample via a hrtimer based software event):
449 */
450 if (!x86_pmu.apic)
451 return -EOPNOTSUPP;
452 }
453
454 if (attr->type == PERF_TYPE_RAW)
455 return 0;
456
457 if (attr->type == PERF_TYPE_HW_CACHE)
458 return set_ext_hw_attr(hwc, attr);
459
460 if (attr->config >= x86_pmu.max_events)
461 return -EINVAL;
462
463 /*
464 * The generic map:
465 */
466 config = x86_pmu.event_map(attr->config);
467
468 if (config == 0)
469 return -ENOENT;
470
471 if (config == -1LL)
472 return -EINVAL;
473
474 /*
475 * Branch tracing:
476 */
477 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
478 (hwc->sample_period == 1)) {
479 /* BTS is not supported by this architecture. */
480 if (!x86_pmu.bts)
481 return -EOPNOTSUPP;
482
483 /* BTS is currently only allowed for user-mode. */
484 if (!attr->exclude_kernel)
485 return -EOPNOTSUPP;
486 }
487
488 hwc->config |= config;
489
490 return 0;
491 }
492
493 static int x86_pmu_hw_config(struct perf_event *event)
494 {
495 if (event->attr.precise_ip) {
496 int precise = 0;
497
498 /* Support for constant skid */
499 if (x86_pmu.pebs)
500 precise++;
501
502 /* Support for IP fixup */
503 if (x86_pmu.lbr_nr)
504 precise++;
505
506 if (event->attr.precise_ip > precise)
507 return -EOPNOTSUPP;
508 }
509
510 /*
511 * Generate PMC IRQs:
512 * (keep 'enabled' bit clear for now)
513 */
514 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
515
516 /*
517 * Count user and OS events unless requested not to
518 */
519 if (!event->attr.exclude_user)
520 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
521 if (!event->attr.exclude_kernel)
522 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
523
524 if (event->attr.type == PERF_TYPE_RAW)
525 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
526
527 return x86_setup_perfctr(event);
528 }
529
530 /*
531 * Setup the hardware configuration for a given attr_type
532 */
533 static int __x86_pmu_event_init(struct perf_event *event)
534 {
535 int err;
536
537 if (!x86_pmu_initialized())
538 return -ENODEV;
539
540 err = 0;
541 if (!atomic_inc_not_zero(&active_events)) {
542 mutex_lock(&pmc_reserve_mutex);
543 if (atomic_read(&active_events) == 0) {
544 if (!reserve_pmc_hardware())
545 err = -EBUSY;
546 else {
547 err = reserve_ds_buffers();
548 if (err)
549 release_pmc_hardware();
550 }
551 }
552 if (!err)
553 atomic_inc(&active_events);
554 mutex_unlock(&pmc_reserve_mutex);
555 }
556 if (err)
557 return err;
558
559 event->destroy = hw_perf_event_destroy;
560
561 event->hw.idx = -1;
562 event->hw.last_cpu = -1;
563 event->hw.last_tag = ~0ULL;
564
565 return x86_pmu.hw_config(event);
566 }
567
568 static void x86_pmu_disable_all(void)
569 {
570 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
571 int idx;
572
573 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
574 u64 val;
575
576 if (!test_bit(idx, cpuc->active_mask))
577 continue;
578 rdmsrl(x86_pmu.eventsel + idx, val);
579 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
580 continue;
581 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
582 wrmsrl(x86_pmu.eventsel + idx, val);
583 }
584 }
585
586 static void x86_pmu_disable(struct pmu *pmu)
587 {
588 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
589
590 if (!x86_pmu_initialized())
591 return;
592
593 if (!cpuc->enabled)
594 return;
595
596 cpuc->n_added = 0;
597 cpuc->enabled = 0;
598 barrier();
599
600 x86_pmu.disable_all();
601 }
602
603 static void x86_pmu_enable_all(int added)
604 {
605 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
606 int idx;
607
608 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
609 struct perf_event *event = cpuc->events[idx];
610 u64 val;
611
612 if (!test_bit(idx, cpuc->active_mask))
613 continue;
614
615 val = event->hw.config;
616 val |= ARCH_PERFMON_EVENTSEL_ENABLE;
617 wrmsrl(x86_pmu.eventsel + idx, val);
618 }
619 }
620
621 static struct pmu pmu;
622
623 static inline int is_x86_event(struct perf_event *event)
624 {
625 return event->pmu == &pmu;
626 }
627
628 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
629 {
630 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
631 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
632 int i, j, w, wmax, num = 0;
633 struct hw_perf_event *hwc;
634
635 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
636
637 for (i = 0; i < n; i++) {
638 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
639 constraints[i] = c;
640 }
641
642 /*
643 * fastpath, try to reuse previous register
644 */
645 for (i = 0; i < n; i++) {
646 hwc = &cpuc->event_list[i]->hw;
647 c = constraints[i];
648
649 /* never assigned */
650 if (hwc->idx == -1)
651 break;
652
653 /* constraint still honored */
654 if (!test_bit(hwc->idx, c->idxmsk))
655 break;
656
657 /* not already used */
658 if (test_bit(hwc->idx, used_mask))
659 break;
660
661 __set_bit(hwc->idx, used_mask);
662 if (assign)
663 assign[i] = hwc->idx;
664 }
665 if (i == n)
666 goto done;
667
668 /*
669 * begin slow path
670 */
671
672 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
673
674 /*
675 * weight = number of possible counters
676 *
677 * 1 = most constrained, only works on one counter
678 * wmax = least constrained, works on any counter
679 *
680 * assign events to counters starting with most
681 * constrained events.
682 */
683 wmax = x86_pmu.num_counters;
684
685 /*
686 * when fixed event counters are present,
687 * wmax is incremented by 1 to account
688 * for one more choice
689 */
690 if (x86_pmu.num_counters_fixed)
691 wmax++;
692
693 for (w = 1, num = n; num && w <= wmax; w++) {
694 /* for each event */
695 for (i = 0; num && i < n; i++) {
696 c = constraints[i];
697 hwc = &cpuc->event_list[i]->hw;
698
699 if (c->weight != w)
700 continue;
701
702 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
703 if (!test_bit(j, used_mask))
704 break;
705 }
706
707 if (j == X86_PMC_IDX_MAX)
708 break;
709
710 __set_bit(j, used_mask);
711
712 if (assign)
713 assign[i] = j;
714 num--;
715 }
716 }
717 done:
718 /*
719 * scheduling failed or is just a simulation,
720 * free resources if necessary
721 */
722 if (!assign || num) {
723 for (i = 0; i < n; i++) {
724 if (x86_pmu.put_event_constraints)
725 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
726 }
727 }
728 return num ? -ENOSPC : 0;
729 }
730
731 /*
732 * dogrp: true if must collect siblings events (group)
733 * returns total number of events and error code
734 */
735 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
736 {
737 struct perf_event *event;
738 int n, max_count;
739
740 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
741
742 /* current number of events already accepted */
743 n = cpuc->n_events;
744
745 if (is_x86_event(leader)) {
746 if (n >= max_count)
747 return -ENOSPC;
748 cpuc->event_list[n] = leader;
749 n++;
750 }
751 if (!dogrp)
752 return n;
753
754 list_for_each_entry(event, &leader->sibling_list, group_entry) {
755 if (!is_x86_event(event) ||
756 event->state <= PERF_EVENT_STATE_OFF)
757 continue;
758
759 if (n >= max_count)
760 return -ENOSPC;
761
762 cpuc->event_list[n] = event;
763 n++;
764 }
765 return n;
766 }
767
768 static inline void x86_assign_hw_event(struct perf_event *event,
769 struct cpu_hw_events *cpuc, int i)
770 {
771 struct hw_perf_event *hwc = &event->hw;
772
773 hwc->idx = cpuc->assign[i];
774 hwc->last_cpu = smp_processor_id();
775 hwc->last_tag = ++cpuc->tags[i];
776
777 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
778 hwc->config_base = 0;
779 hwc->event_base = 0;
780 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
781 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
782 /*
783 * We set it so that event_base + idx in wrmsr/rdmsr maps to
784 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
785 */
786 hwc->event_base =
787 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
788 } else {
789 hwc->config_base = x86_pmu.eventsel;
790 hwc->event_base = x86_pmu.perfctr;
791 }
792 }
793
794 static inline int match_prev_assignment(struct hw_perf_event *hwc,
795 struct cpu_hw_events *cpuc,
796 int i)
797 {
798 return hwc->idx == cpuc->assign[i] &&
799 hwc->last_cpu == smp_processor_id() &&
800 hwc->last_tag == cpuc->tags[i];
801 }
802
803 static void x86_pmu_start(struct perf_event *event, int flags);
804 static void x86_pmu_stop(struct perf_event *event, int flags);
805
806 static void x86_pmu_enable(struct pmu *pmu)
807 {
808 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
809 struct perf_event *event;
810 struct hw_perf_event *hwc;
811 int i, added = cpuc->n_added;
812
813 if (!x86_pmu_initialized())
814 return;
815
816 if (cpuc->enabled)
817 return;
818
819 if (cpuc->n_added) {
820 int n_running = cpuc->n_events - cpuc->n_added;
821 /*
822 * apply assignment obtained either from
823 * hw_perf_group_sched_in() or x86_pmu_enable()
824 *
825 * step1: save events moving to new counters
826 * step2: reprogram moved events into new counters
827 */
828 for (i = 0; i < n_running; i++) {
829 event = cpuc->event_list[i];
830 hwc = &event->hw;
831
832 /*
833 * we can avoid reprogramming counter if:
834 * - assigned same counter as last time
835 * - running on same CPU as last time
836 * - no other event has used the counter since
837 */
838 if (hwc->idx == -1 ||
839 match_prev_assignment(hwc, cpuc, i))
840 continue;
841
842 /*
843 * Ensure we don't accidentally enable a stopped
844 * counter simply because we rescheduled.
845 */
846 if (hwc->state & PERF_HES_STOPPED)
847 hwc->state |= PERF_HES_ARCH;
848
849 x86_pmu_stop(event, PERF_EF_UPDATE);
850 }
851
852 for (i = 0; i < cpuc->n_events; i++) {
853 event = cpuc->event_list[i];
854 hwc = &event->hw;
855
856 if (!match_prev_assignment(hwc, cpuc, i))
857 x86_assign_hw_event(event, cpuc, i);
858 else if (i < n_running)
859 continue;
860
861 if (hwc->state & PERF_HES_ARCH)
862 continue;
863
864 x86_pmu_start(event, PERF_EF_RELOAD);
865 }
866 cpuc->n_added = 0;
867 perf_events_lapic_init();
868 }
869
870 cpuc->enabled = 1;
871 barrier();
872
873 x86_pmu.enable_all(added);
874 }
875
876 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
877 u64 enable_mask)
878 {
879 wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
880 }
881
882 static inline void x86_pmu_disable_event(struct perf_event *event)
883 {
884 struct hw_perf_event *hwc = &event->hw;
885
886 wrmsrl(hwc->config_base + hwc->idx, hwc->config);
887 }
888
889 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
890
891 /*
892 * Set the next IRQ period, based on the hwc->period_left value.
893 * To be called with the event disabled in hw:
894 */
895 static int
896 x86_perf_event_set_period(struct perf_event *event)
897 {
898 struct hw_perf_event *hwc = &event->hw;
899 s64 left = local64_read(&hwc->period_left);
900 s64 period = hwc->sample_period;
901 int ret = 0, idx = hwc->idx;
902
903 if (idx == X86_PMC_IDX_FIXED_BTS)
904 return 0;
905
906 /*
907 * If we are way outside a reasonable range then just skip forward:
908 */
909 if (unlikely(left <= -period)) {
910 left = period;
911 local64_set(&hwc->period_left, left);
912 hwc->last_period = period;
913 ret = 1;
914 }
915
916 if (unlikely(left <= 0)) {
917 left += period;
918 local64_set(&hwc->period_left, left);
919 hwc->last_period = period;
920 ret = 1;
921 }
922 /*
923 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
924 */
925 if (unlikely(left < 2))
926 left = 2;
927
928 if (left > x86_pmu.max_period)
929 left = x86_pmu.max_period;
930
931 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
932
933 /*
934 * The hw event starts counting from this event offset,
935 * mark it to be able to extra future deltas:
936 */
937 local64_set(&hwc->prev_count, (u64)-left);
938
939 wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
940
941 /*
942 * Due to erratum on certan cpu we need
943 * a second write to be sure the register
944 * is updated properly
945 */
946 if (x86_pmu.perfctr_second_write) {
947 wrmsrl(hwc->event_base + idx,
948 (u64)(-left) & x86_pmu.cntval_mask);
949 }
950
951 perf_event_update_userpage(event);
952
953 return ret;
954 }
955
956 static void x86_pmu_enable_event(struct perf_event *event)
957 {
958 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
959 if (cpuc->enabled)
960 __x86_pmu_enable_event(&event->hw,
961 ARCH_PERFMON_EVENTSEL_ENABLE);
962 }
963
964 /*
965 * Add a single event to the PMU.
966 *
967 * The event is added to the group of enabled events
968 * but only if it can be scehduled with existing events.
969 */
970 static int x86_pmu_add(struct perf_event *event, int flags)
971 {
972 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
973 struct hw_perf_event *hwc;
974 int assign[X86_PMC_IDX_MAX];
975 int n, n0, ret;
976
977 hwc = &event->hw;
978
979 perf_pmu_disable(event->pmu);
980 n0 = cpuc->n_events;
981 ret = n = collect_events(cpuc, event, false);
982 if (ret < 0)
983 goto out;
984
985 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
986 if (!(flags & PERF_EF_START))
987 hwc->state |= PERF_HES_ARCH;
988
989 /*
990 * If group events scheduling transaction was started,
991 * skip the schedulability test here, it will be peformed
992 * at commit time (->commit_txn) as a whole
993 */
994 if (cpuc->group_flag & PERF_EVENT_TXN)
995 goto done_collect;
996
997 ret = x86_pmu.schedule_events(cpuc, n, assign);
998 if (ret)
999 goto out;
1000 /*
1001 * copy new assignment, now we know it is possible
1002 * will be used by hw_perf_enable()
1003 */
1004 memcpy(cpuc->assign, assign, n*sizeof(int));
1005
1006 done_collect:
1007 cpuc->n_events = n;
1008 cpuc->n_added += n - n0;
1009 cpuc->n_txn += n - n0;
1010
1011 ret = 0;
1012 out:
1013 perf_pmu_enable(event->pmu);
1014 return ret;
1015 }
1016
1017 static void x86_pmu_start(struct perf_event *event, int flags)
1018 {
1019 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1020 int idx = event->hw.idx;
1021
1022 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1023 return;
1024
1025 if (WARN_ON_ONCE(idx == -1))
1026 return;
1027
1028 if (flags & PERF_EF_RELOAD) {
1029 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1030 x86_perf_event_set_period(event);
1031 }
1032
1033 event->hw.state = 0;
1034
1035 cpuc->events[idx] = event;
1036 __set_bit(idx, cpuc->active_mask);
1037 x86_pmu.enable(event);
1038 perf_event_update_userpage(event);
1039 }
1040
1041 void perf_event_print_debug(void)
1042 {
1043 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1044 u64 pebs;
1045 struct cpu_hw_events *cpuc;
1046 unsigned long flags;
1047 int cpu, idx;
1048
1049 if (!x86_pmu.num_counters)
1050 return;
1051
1052 local_irq_save(flags);
1053
1054 cpu = smp_processor_id();
1055 cpuc = &per_cpu(cpu_hw_events, cpu);
1056
1057 if (x86_pmu.version >= 2) {
1058 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1059 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1060 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1061 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1062 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1063
1064 pr_info("\n");
1065 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1066 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1067 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1068 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1069 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1070 }
1071 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1072
1073 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1074 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1075 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1076
1077 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1078
1079 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1080 cpu, idx, pmc_ctrl);
1081 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1082 cpu, idx, pmc_count);
1083 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1084 cpu, idx, prev_left);
1085 }
1086 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1087 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1088
1089 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1090 cpu, idx, pmc_count);
1091 }
1092 local_irq_restore(flags);
1093 }
1094
1095 static void x86_pmu_stop(struct perf_event *event, int flags)
1096 {
1097 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1098 struct hw_perf_event *hwc = &event->hw;
1099
1100 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1101 x86_pmu.disable(event);
1102 cpuc->events[hwc->idx] = NULL;
1103 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1104 hwc->state |= PERF_HES_STOPPED;
1105 }
1106
1107 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1108 /*
1109 * Drain the remaining delta count out of a event
1110 * that we are disabling:
1111 */
1112 x86_perf_event_update(event);
1113 hwc->state |= PERF_HES_UPTODATE;
1114 }
1115 }
1116
1117 static void x86_pmu_del(struct perf_event *event, int flags)
1118 {
1119 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1120 int i;
1121
1122 /*
1123 * If we're called during a txn, we don't need to do anything.
1124 * The events never got scheduled and ->cancel_txn will truncate
1125 * the event_list.
1126 */
1127 if (cpuc->group_flag & PERF_EVENT_TXN)
1128 return;
1129
1130 x86_pmu_stop(event, PERF_EF_UPDATE);
1131
1132 for (i = 0; i < cpuc->n_events; i++) {
1133 if (event == cpuc->event_list[i]) {
1134
1135 if (x86_pmu.put_event_constraints)
1136 x86_pmu.put_event_constraints(cpuc, event);
1137
1138 while (++i < cpuc->n_events)
1139 cpuc->event_list[i-1] = cpuc->event_list[i];
1140
1141 --cpuc->n_events;
1142 break;
1143 }
1144 }
1145 perf_event_update_userpage(event);
1146 }
1147
1148 static int x86_pmu_handle_irq(struct pt_regs *regs)
1149 {
1150 struct perf_sample_data data;
1151 struct cpu_hw_events *cpuc;
1152 struct perf_event *event;
1153 struct hw_perf_event *hwc;
1154 int idx, handled = 0;
1155 u64 val;
1156
1157 perf_sample_data_init(&data, 0);
1158
1159 cpuc = &__get_cpu_var(cpu_hw_events);
1160
1161 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1162 if (!test_bit(idx, cpuc->active_mask))
1163 continue;
1164
1165 event = cpuc->events[idx];
1166 hwc = &event->hw;
1167
1168 val = x86_perf_event_update(event);
1169 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1170 continue;
1171
1172 /*
1173 * event overflow
1174 */
1175 handled++;
1176 data.period = event->hw.last_period;
1177
1178 if (!x86_perf_event_set_period(event))
1179 continue;
1180
1181 if (perf_event_overflow(event, 1, &data, regs))
1182 x86_pmu_stop(event, 0);
1183 }
1184
1185 if (handled)
1186 inc_irq_stat(apic_perf_irqs);
1187
1188 return handled;
1189 }
1190
1191 void smp_perf_pending_interrupt(struct pt_regs *regs)
1192 {
1193 irq_enter();
1194 ack_APIC_irq();
1195 inc_irq_stat(apic_pending_irqs);
1196 perf_event_do_pending();
1197 irq_exit();
1198 }
1199
1200 void set_perf_event_pending(void)
1201 {
1202 #ifdef CONFIG_X86_LOCAL_APIC
1203 if (!x86_pmu.apic || !x86_pmu_initialized())
1204 return;
1205
1206 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1207 #endif
1208 }
1209
1210 void perf_events_lapic_init(void)
1211 {
1212 if (!x86_pmu.apic || !x86_pmu_initialized())
1213 return;
1214
1215 /*
1216 * Always use NMI for PMU
1217 */
1218 apic_write(APIC_LVTPC, APIC_DM_NMI);
1219 }
1220
1221 struct pmu_nmi_state {
1222 unsigned int marked;
1223 int handled;
1224 };
1225
1226 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1227
1228 static int __kprobes
1229 perf_event_nmi_handler(struct notifier_block *self,
1230 unsigned long cmd, void *__args)
1231 {
1232 struct die_args *args = __args;
1233 unsigned int this_nmi;
1234 int handled;
1235
1236 if (!atomic_read(&active_events))
1237 return NOTIFY_DONE;
1238
1239 switch (cmd) {
1240 case DIE_NMI:
1241 case DIE_NMI_IPI:
1242 break;
1243 case DIE_NMIUNKNOWN:
1244 this_nmi = percpu_read(irq_stat.__nmi_count);
1245 if (this_nmi != __get_cpu_var(pmu_nmi).marked)
1246 /* let the kernel handle the unknown nmi */
1247 return NOTIFY_DONE;
1248 /*
1249 * This one is a PMU back-to-back nmi. Two events
1250 * trigger 'simultaneously' raising two back-to-back
1251 * NMIs. If the first NMI handles both, the latter
1252 * will be empty and daze the CPU. So, we drop it to
1253 * avoid false-positive 'unknown nmi' messages.
1254 */
1255 return NOTIFY_STOP;
1256 default:
1257 return NOTIFY_DONE;
1258 }
1259
1260 apic_write(APIC_LVTPC, APIC_DM_NMI);
1261
1262 handled = x86_pmu.handle_irq(args->regs);
1263 if (!handled)
1264 return NOTIFY_DONE;
1265
1266 this_nmi = percpu_read(irq_stat.__nmi_count);
1267 if ((handled > 1) ||
1268 /* the next nmi could be a back-to-back nmi */
1269 ((__get_cpu_var(pmu_nmi).marked == this_nmi) &&
1270 (__get_cpu_var(pmu_nmi).handled > 1))) {
1271 /*
1272 * We could have two subsequent back-to-back nmis: The
1273 * first handles more than one counter, the 2nd
1274 * handles only one counter and the 3rd handles no
1275 * counter.
1276 *
1277 * This is the 2nd nmi because the previous was
1278 * handling more than one counter. We will mark the
1279 * next (3rd) and then drop it if unhandled.
1280 */
1281 __get_cpu_var(pmu_nmi).marked = this_nmi + 1;
1282 __get_cpu_var(pmu_nmi).handled = handled;
1283 }
1284
1285 return NOTIFY_STOP;
1286 }
1287
1288 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1289 .notifier_call = perf_event_nmi_handler,
1290 .next = NULL,
1291 .priority = 1
1292 };
1293
1294 static struct event_constraint unconstrained;
1295 static struct event_constraint emptyconstraint;
1296
1297 static struct event_constraint *
1298 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1299 {
1300 struct event_constraint *c;
1301
1302 if (x86_pmu.event_constraints) {
1303 for_each_event_constraint(c, x86_pmu.event_constraints) {
1304 if ((event->hw.config & c->cmask) == c->code)
1305 return c;
1306 }
1307 }
1308
1309 return &unconstrained;
1310 }
1311
1312 #include "perf_event_amd.c"
1313 #include "perf_event_p6.c"
1314 #include "perf_event_p4.c"
1315 #include "perf_event_intel_lbr.c"
1316 #include "perf_event_intel_ds.c"
1317 #include "perf_event_intel.c"
1318
1319 static int __cpuinit
1320 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1321 {
1322 unsigned int cpu = (long)hcpu;
1323 int ret = NOTIFY_OK;
1324
1325 switch (action & ~CPU_TASKS_FROZEN) {
1326 case CPU_UP_PREPARE:
1327 if (x86_pmu.cpu_prepare)
1328 ret = x86_pmu.cpu_prepare(cpu);
1329 break;
1330
1331 case CPU_STARTING:
1332 if (x86_pmu.cpu_starting)
1333 x86_pmu.cpu_starting(cpu);
1334 break;
1335
1336 case CPU_DYING:
1337 if (x86_pmu.cpu_dying)
1338 x86_pmu.cpu_dying(cpu);
1339 break;
1340
1341 case CPU_UP_CANCELED:
1342 case CPU_DEAD:
1343 if (x86_pmu.cpu_dead)
1344 x86_pmu.cpu_dead(cpu);
1345 break;
1346
1347 default:
1348 break;
1349 }
1350
1351 return ret;
1352 }
1353
1354 static void __init pmu_check_apic(void)
1355 {
1356 if (cpu_has_apic)
1357 return;
1358
1359 x86_pmu.apic = 0;
1360 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1361 pr_info("no hardware sampling interrupt available.\n");
1362 }
1363
1364 void __init init_hw_perf_events(void)
1365 {
1366 struct event_constraint *c;
1367 int err;
1368
1369 pr_info("Performance Events: ");
1370
1371 switch (boot_cpu_data.x86_vendor) {
1372 case X86_VENDOR_INTEL:
1373 err = intel_pmu_init();
1374 break;
1375 case X86_VENDOR_AMD:
1376 err = amd_pmu_init();
1377 break;
1378 default:
1379 return;
1380 }
1381 if (err != 0) {
1382 pr_cont("no PMU driver, software events only.\n");
1383 return;
1384 }
1385
1386 pmu_check_apic();
1387
1388 pr_cont("%s PMU driver.\n", x86_pmu.name);
1389
1390 if (x86_pmu.quirks)
1391 x86_pmu.quirks();
1392
1393 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1394 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1395 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1396 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1397 }
1398 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1399
1400 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1401 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1402 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1403 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1404 }
1405
1406 x86_pmu.intel_ctrl |=
1407 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1408
1409 perf_events_lapic_init();
1410 register_die_notifier(&perf_event_nmi_notifier);
1411
1412 unconstrained = (struct event_constraint)
1413 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1414 0, x86_pmu.num_counters);
1415
1416 if (x86_pmu.event_constraints) {
1417 for_each_event_constraint(c, x86_pmu.event_constraints) {
1418 if (c->cmask != X86_RAW_EVENT_MASK)
1419 continue;
1420
1421 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1422 c->weight += x86_pmu.num_counters;
1423 }
1424 }
1425
1426 pr_info("... version: %d\n", x86_pmu.version);
1427 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1428 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1429 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1430 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1431 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1432 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1433
1434 perf_pmu_register(&pmu);
1435 perf_cpu_notifier(x86_pmu_notifier);
1436 }
1437
1438 static inline void x86_pmu_read(struct perf_event *event)
1439 {
1440 x86_perf_event_update(event);
1441 }
1442
1443 /*
1444 * Start group events scheduling transaction
1445 * Set the flag to make pmu::enable() not perform the
1446 * schedulability test, it will be performed at commit time
1447 */
1448 static void x86_pmu_start_txn(struct pmu *pmu)
1449 {
1450 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1451
1452 perf_pmu_disable(pmu);
1453 cpuc->group_flag |= PERF_EVENT_TXN;
1454 cpuc->n_txn = 0;
1455 }
1456
1457 /*
1458 * Stop group events scheduling transaction
1459 * Clear the flag and pmu::enable() will perform the
1460 * schedulability test.
1461 */
1462 static void x86_pmu_cancel_txn(struct pmu *pmu)
1463 {
1464 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1465
1466 cpuc->group_flag &= ~PERF_EVENT_TXN;
1467 /*
1468 * Truncate the collected events.
1469 */
1470 cpuc->n_added -= cpuc->n_txn;
1471 cpuc->n_events -= cpuc->n_txn;
1472 perf_pmu_enable(pmu);
1473 }
1474
1475 /*
1476 * Commit group events scheduling transaction
1477 * Perform the group schedulability test as a whole
1478 * Return 0 if success
1479 */
1480 static int x86_pmu_commit_txn(struct pmu *pmu)
1481 {
1482 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1483 int assign[X86_PMC_IDX_MAX];
1484 int n, ret;
1485
1486 n = cpuc->n_events;
1487
1488 if (!x86_pmu_initialized())
1489 return -EAGAIN;
1490
1491 ret = x86_pmu.schedule_events(cpuc, n, assign);
1492 if (ret)
1493 return ret;
1494
1495 /*
1496 * copy new assignment, now we know it is possible
1497 * will be used by hw_perf_enable()
1498 */
1499 memcpy(cpuc->assign, assign, n*sizeof(int));
1500
1501 cpuc->group_flag &= ~PERF_EVENT_TXN;
1502 perf_pmu_enable(pmu);
1503 return 0;
1504 }
1505
1506 /*
1507 * validate that we can schedule this event
1508 */
1509 static int validate_event(struct perf_event *event)
1510 {
1511 struct cpu_hw_events *fake_cpuc;
1512 struct event_constraint *c;
1513 int ret = 0;
1514
1515 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1516 if (!fake_cpuc)
1517 return -ENOMEM;
1518
1519 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1520
1521 if (!c || !c->weight)
1522 ret = -ENOSPC;
1523
1524 if (x86_pmu.put_event_constraints)
1525 x86_pmu.put_event_constraints(fake_cpuc, event);
1526
1527 kfree(fake_cpuc);
1528
1529 return ret;
1530 }
1531
1532 /*
1533 * validate a single event group
1534 *
1535 * validation include:
1536 * - check events are compatible which each other
1537 * - events do not compete for the same counter
1538 * - number of events <= number of counters
1539 *
1540 * validation ensures the group can be loaded onto the
1541 * PMU if it was the only group available.
1542 */
1543 static int validate_group(struct perf_event *event)
1544 {
1545 struct perf_event *leader = event->group_leader;
1546 struct cpu_hw_events *fake_cpuc;
1547 int ret, n;
1548
1549 ret = -ENOMEM;
1550 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1551 if (!fake_cpuc)
1552 goto out;
1553
1554 /*
1555 * the event is not yet connected with its
1556 * siblings therefore we must first collect
1557 * existing siblings, then add the new event
1558 * before we can simulate the scheduling
1559 */
1560 ret = -ENOSPC;
1561 n = collect_events(fake_cpuc, leader, true);
1562 if (n < 0)
1563 goto out_free;
1564
1565 fake_cpuc->n_events = n;
1566 n = collect_events(fake_cpuc, event, false);
1567 if (n < 0)
1568 goto out_free;
1569
1570 fake_cpuc->n_events = n;
1571
1572 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1573
1574 out_free:
1575 kfree(fake_cpuc);
1576 out:
1577 return ret;
1578 }
1579
1580 int x86_pmu_event_init(struct perf_event *event)
1581 {
1582 struct pmu *tmp;
1583 int err;
1584
1585 switch (event->attr.type) {
1586 case PERF_TYPE_RAW:
1587 case PERF_TYPE_HARDWARE:
1588 case PERF_TYPE_HW_CACHE:
1589 break;
1590
1591 default:
1592 return -ENOENT;
1593 }
1594
1595 err = __x86_pmu_event_init(event);
1596 if (!err) {
1597 /*
1598 * we temporarily connect event to its pmu
1599 * such that validate_group() can classify
1600 * it as an x86 event using is_x86_event()
1601 */
1602 tmp = event->pmu;
1603 event->pmu = &pmu;
1604
1605 if (event->group_leader != event)
1606 err = validate_group(event);
1607 else
1608 err = validate_event(event);
1609
1610 event->pmu = tmp;
1611 }
1612 if (err) {
1613 if (event->destroy)
1614 event->destroy(event);
1615 }
1616
1617 return err;
1618 }
1619
1620 static struct pmu pmu = {
1621 .pmu_enable = x86_pmu_enable,
1622 .pmu_disable = x86_pmu_disable,
1623
1624 .event_init = x86_pmu_event_init,
1625
1626 .add = x86_pmu_add,
1627 .del = x86_pmu_del,
1628 .start = x86_pmu_start,
1629 .stop = x86_pmu_stop,
1630 .read = x86_pmu_read,
1631
1632 .start_txn = x86_pmu_start_txn,
1633 .cancel_txn = x86_pmu_cancel_txn,
1634 .commit_txn = x86_pmu_commit_txn,
1635 };
1636
1637 /*
1638 * callchain support
1639 */
1640
1641 static void
1642 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1643 {
1644 /* Ignore warnings */
1645 }
1646
1647 static void backtrace_warning(void *data, char *msg)
1648 {
1649 /* Ignore warnings */
1650 }
1651
1652 static int backtrace_stack(void *data, char *name)
1653 {
1654 return 0;
1655 }
1656
1657 static void backtrace_address(void *data, unsigned long addr, int reliable)
1658 {
1659 struct perf_callchain_entry *entry = data;
1660
1661 perf_callchain_store(entry, addr);
1662 }
1663
1664 static const struct stacktrace_ops backtrace_ops = {
1665 .warning = backtrace_warning,
1666 .warning_symbol = backtrace_warning_symbol,
1667 .stack = backtrace_stack,
1668 .address = backtrace_address,
1669 .walk_stack = print_context_stack_bp,
1670 };
1671
1672 void
1673 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1674 {
1675 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1676 /* TODO: We don't support guest os callchain now */
1677 return;
1678 }
1679
1680 perf_callchain_store(entry, regs->ip);
1681
1682 dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
1683 }
1684
1685 #ifdef CONFIG_COMPAT
1686 static inline int
1687 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1688 {
1689 /* 32-bit process in 64-bit kernel. */
1690 struct stack_frame_ia32 frame;
1691 const void __user *fp;
1692
1693 if (!test_thread_flag(TIF_IA32))
1694 return 0;
1695
1696 fp = compat_ptr(regs->bp);
1697 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1698 unsigned long bytes;
1699 frame.next_frame = 0;
1700 frame.return_address = 0;
1701
1702 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1703 if (bytes != sizeof(frame))
1704 break;
1705
1706 if (fp < compat_ptr(regs->sp))
1707 break;
1708
1709 perf_callchain_store(entry, frame.return_address);
1710 fp = compat_ptr(frame.next_frame);
1711 }
1712 return 1;
1713 }
1714 #else
1715 static inline int
1716 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1717 {
1718 return 0;
1719 }
1720 #endif
1721
1722 void
1723 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1724 {
1725 struct stack_frame frame;
1726 const void __user *fp;
1727
1728 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1729 /* TODO: We don't support guest os callchain now */
1730 return;
1731 }
1732
1733 fp = (void __user *)regs->bp;
1734
1735 perf_callchain_store(entry, regs->ip);
1736
1737 if (perf_callchain_user32(regs, entry))
1738 return;
1739
1740 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1741 unsigned long bytes;
1742 frame.next_frame = NULL;
1743 frame.return_address = 0;
1744
1745 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1746 if (bytes != sizeof(frame))
1747 break;
1748
1749 if ((unsigned long)fp < regs->sp)
1750 break;
1751
1752 perf_callchain_store(entry, frame.return_address);
1753 fp = frame.next_frame;
1754 }
1755 }
1756
1757 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1758 {
1759 unsigned long ip;
1760
1761 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1762 ip = perf_guest_cbs->get_guest_ip();
1763 else
1764 ip = instruction_pointer(regs);
1765
1766 return ip;
1767 }
1768
1769 unsigned long perf_misc_flags(struct pt_regs *regs)
1770 {
1771 int misc = 0;
1772
1773 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1774 if (perf_guest_cbs->is_user_mode())
1775 misc |= PERF_RECORD_MISC_GUEST_USER;
1776 else
1777 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1778 } else {
1779 if (user_mode(regs))
1780 misc |= PERF_RECORD_MISC_USER;
1781 else
1782 misc |= PERF_RECORD_MISC_KERNEL;
1783 }
1784
1785 if (regs->flags & PERF_EFLAGS_EXACT)
1786 misc |= PERF_RECORD_MISC_EXACT_IP;
1787
1788 return misc;
1789 }
This page took 0.151647 seconds and 5 git commands to generate.