Merge tag 'timer' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/timer.h>
35
36 #include "perf_event.h"
37
38 struct x86_pmu x86_pmu __read_mostly;
39
40 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
41 .enabled = 1,
42 };
43
44 u64 __read_mostly hw_cache_event_ids
45 [PERF_COUNT_HW_CACHE_MAX]
46 [PERF_COUNT_HW_CACHE_OP_MAX]
47 [PERF_COUNT_HW_CACHE_RESULT_MAX];
48 u64 __read_mostly hw_cache_extra_regs
49 [PERF_COUNT_HW_CACHE_MAX]
50 [PERF_COUNT_HW_CACHE_OP_MAX]
51 [PERF_COUNT_HW_CACHE_RESULT_MAX];
52
53 /*
54 * Propagate event elapsed time into the generic event.
55 * Can only be executed on the CPU where the event is active.
56 * Returns the delta events processed.
57 */
58 u64 x86_perf_event_update(struct perf_event *event)
59 {
60 struct hw_perf_event *hwc = &event->hw;
61 int shift = 64 - x86_pmu.cntval_bits;
62 u64 prev_raw_count, new_raw_count;
63 int idx = hwc->idx;
64 s64 delta;
65
66 if (idx == INTEL_PMC_IDX_FIXED_BTS)
67 return 0;
68
69 /*
70 * Careful: an NMI might modify the previous event value.
71 *
72 * Our tactic to handle this is to first atomically read and
73 * exchange a new raw count - then add that new-prev delta
74 * count to the generic event atomically:
75 */
76 again:
77 prev_raw_count = local64_read(&hwc->prev_count);
78 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
79
80 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
81 new_raw_count) != prev_raw_count)
82 goto again;
83
84 /*
85 * Now we have the new raw value and have updated the prev
86 * timestamp already. We can now calculate the elapsed delta
87 * (event-)time and add that to the generic event.
88 *
89 * Careful, not all hw sign-extends above the physical width
90 * of the count.
91 */
92 delta = (new_raw_count << shift) - (prev_raw_count << shift);
93 delta >>= shift;
94
95 local64_add(delta, &event->count);
96 local64_sub(delta, &hwc->period_left);
97
98 return new_raw_count;
99 }
100
101 /*
102 * Find and validate any extra registers to set up.
103 */
104 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
105 {
106 struct hw_perf_event_extra *reg;
107 struct extra_reg *er;
108
109 reg = &event->hw.extra_reg;
110
111 if (!x86_pmu.extra_regs)
112 return 0;
113
114 for (er = x86_pmu.extra_regs; er->msr; er++) {
115 if (er->event != (config & er->config_mask))
116 continue;
117 if (event->attr.config1 & ~er->valid_mask)
118 return -EINVAL;
119
120 reg->idx = er->idx;
121 reg->config = event->attr.config1;
122 reg->reg = er->msr;
123 break;
124 }
125 return 0;
126 }
127
128 static atomic_t active_events;
129 static DEFINE_MUTEX(pmc_reserve_mutex);
130
131 #ifdef CONFIG_X86_LOCAL_APIC
132
133 static bool reserve_pmc_hardware(void)
134 {
135 int i;
136
137 for (i = 0; i < x86_pmu.num_counters; i++) {
138 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
139 goto perfctr_fail;
140 }
141
142 for (i = 0; i < x86_pmu.num_counters; i++) {
143 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
144 goto eventsel_fail;
145 }
146
147 return true;
148
149 eventsel_fail:
150 for (i--; i >= 0; i--)
151 release_evntsel_nmi(x86_pmu_config_addr(i));
152
153 i = x86_pmu.num_counters;
154
155 perfctr_fail:
156 for (i--; i >= 0; i--)
157 release_perfctr_nmi(x86_pmu_event_addr(i));
158
159 return false;
160 }
161
162 static void release_pmc_hardware(void)
163 {
164 int i;
165
166 for (i = 0; i < x86_pmu.num_counters; i++) {
167 release_perfctr_nmi(x86_pmu_event_addr(i));
168 release_evntsel_nmi(x86_pmu_config_addr(i));
169 }
170 }
171
172 #else
173
174 static bool reserve_pmc_hardware(void) { return true; }
175 static void release_pmc_hardware(void) {}
176
177 #endif
178
179 static bool check_hw_exists(void)
180 {
181 u64 val, val_new = ~0;
182 int i, reg, ret = 0;
183
184 /*
185 * Check to see if the BIOS enabled any of the counters, if so
186 * complain and bail.
187 */
188 for (i = 0; i < x86_pmu.num_counters; i++) {
189 reg = x86_pmu_config_addr(i);
190 ret = rdmsrl_safe(reg, &val);
191 if (ret)
192 goto msr_fail;
193 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
194 goto bios_fail;
195 }
196
197 if (x86_pmu.num_counters_fixed) {
198 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
199 ret = rdmsrl_safe(reg, &val);
200 if (ret)
201 goto msr_fail;
202 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
203 if (val & (0x03 << i*4))
204 goto bios_fail;
205 }
206 }
207
208 /*
209 * Now write a value and read it back to see if it matches,
210 * this is needed to detect certain hardware emulators (qemu/kvm)
211 * that don't trap on the MSR access and always return 0s.
212 */
213 val = 0xabcdUL;
214 reg = x86_pmu_event_addr(0);
215 ret = wrmsrl_safe(reg, val);
216 ret |= rdmsrl_safe(reg, &val_new);
217 if (ret || val != val_new)
218 goto msr_fail;
219
220 return true;
221
222 bios_fail:
223 /*
224 * We still allow the PMU driver to operate:
225 */
226 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
227 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
228
229 return true;
230
231 msr_fail:
232 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
233 printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
234
235 return false;
236 }
237
238 static void hw_perf_event_destroy(struct perf_event *event)
239 {
240 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
241 release_pmc_hardware();
242 release_ds_buffers();
243 mutex_unlock(&pmc_reserve_mutex);
244 }
245 }
246
247 static inline int x86_pmu_initialized(void)
248 {
249 return x86_pmu.handle_irq != NULL;
250 }
251
252 static inline int
253 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
254 {
255 struct perf_event_attr *attr = &event->attr;
256 unsigned int cache_type, cache_op, cache_result;
257 u64 config, val;
258
259 config = attr->config;
260
261 cache_type = (config >> 0) & 0xff;
262 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
263 return -EINVAL;
264
265 cache_op = (config >> 8) & 0xff;
266 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
267 return -EINVAL;
268
269 cache_result = (config >> 16) & 0xff;
270 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
271 return -EINVAL;
272
273 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
274
275 if (val == 0)
276 return -ENOENT;
277
278 if (val == -1)
279 return -EINVAL;
280
281 hwc->config |= val;
282 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
283 return x86_pmu_extra_regs(val, event);
284 }
285
286 int x86_setup_perfctr(struct perf_event *event)
287 {
288 struct perf_event_attr *attr = &event->attr;
289 struct hw_perf_event *hwc = &event->hw;
290 u64 config;
291
292 if (!is_sampling_event(event)) {
293 hwc->sample_period = x86_pmu.max_period;
294 hwc->last_period = hwc->sample_period;
295 local64_set(&hwc->period_left, hwc->sample_period);
296 } else {
297 /*
298 * If we have a PMU initialized but no APIC
299 * interrupts, we cannot sample hardware
300 * events (user-space has to fall back and
301 * sample via a hrtimer based software event):
302 */
303 if (!x86_pmu.apic)
304 return -EOPNOTSUPP;
305 }
306
307 if (attr->type == PERF_TYPE_RAW)
308 return x86_pmu_extra_regs(event->attr.config, event);
309
310 if (attr->type == PERF_TYPE_HW_CACHE)
311 return set_ext_hw_attr(hwc, event);
312
313 if (attr->config >= x86_pmu.max_events)
314 return -EINVAL;
315
316 /*
317 * The generic map:
318 */
319 config = x86_pmu.event_map(attr->config);
320
321 if (config == 0)
322 return -ENOENT;
323
324 if (config == -1LL)
325 return -EINVAL;
326
327 /*
328 * Branch tracing:
329 */
330 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
331 !attr->freq && hwc->sample_period == 1) {
332 /* BTS is not supported by this architecture. */
333 if (!x86_pmu.bts_active)
334 return -EOPNOTSUPP;
335
336 /* BTS is currently only allowed for user-mode. */
337 if (!attr->exclude_kernel)
338 return -EOPNOTSUPP;
339 }
340
341 hwc->config |= config;
342
343 return 0;
344 }
345
346 /*
347 * check that branch_sample_type is compatible with
348 * settings needed for precise_ip > 1 which implies
349 * using the LBR to capture ALL taken branches at the
350 * priv levels of the measurement
351 */
352 static inline int precise_br_compat(struct perf_event *event)
353 {
354 u64 m = event->attr.branch_sample_type;
355 u64 b = 0;
356
357 /* must capture all branches */
358 if (!(m & PERF_SAMPLE_BRANCH_ANY))
359 return 0;
360
361 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
362
363 if (!event->attr.exclude_user)
364 b |= PERF_SAMPLE_BRANCH_USER;
365
366 if (!event->attr.exclude_kernel)
367 b |= PERF_SAMPLE_BRANCH_KERNEL;
368
369 /*
370 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
371 */
372
373 return m == b;
374 }
375
376 int x86_pmu_hw_config(struct perf_event *event)
377 {
378 if (event->attr.precise_ip) {
379 int precise = 0;
380
381 /* Support for constant skid */
382 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
383 precise++;
384
385 /* Support for IP fixup */
386 if (x86_pmu.lbr_nr)
387 precise++;
388 }
389
390 if (event->attr.precise_ip > precise)
391 return -EOPNOTSUPP;
392 /*
393 * check that PEBS LBR correction does not conflict with
394 * whatever the user is asking with attr->branch_sample_type
395 */
396 if (event->attr.precise_ip > 1) {
397 u64 *br_type = &event->attr.branch_sample_type;
398
399 if (has_branch_stack(event)) {
400 if (!precise_br_compat(event))
401 return -EOPNOTSUPP;
402
403 /* branch_sample_type is compatible */
404
405 } else {
406 /*
407 * user did not specify branch_sample_type
408 *
409 * For PEBS fixups, we capture all
410 * the branches at the priv level of the
411 * event.
412 */
413 *br_type = PERF_SAMPLE_BRANCH_ANY;
414
415 if (!event->attr.exclude_user)
416 *br_type |= PERF_SAMPLE_BRANCH_USER;
417
418 if (!event->attr.exclude_kernel)
419 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
420 }
421 }
422 }
423
424 /*
425 * Generate PMC IRQs:
426 * (keep 'enabled' bit clear for now)
427 */
428 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
429
430 /*
431 * Count user and OS events unless requested not to
432 */
433 if (!event->attr.exclude_user)
434 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
435 if (!event->attr.exclude_kernel)
436 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
437
438 if (event->attr.type == PERF_TYPE_RAW)
439 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
440
441 return x86_setup_perfctr(event);
442 }
443
444 /*
445 * Setup the hardware configuration for a given attr_type
446 */
447 static int __x86_pmu_event_init(struct perf_event *event)
448 {
449 int err;
450
451 if (!x86_pmu_initialized())
452 return -ENODEV;
453
454 err = 0;
455 if (!atomic_inc_not_zero(&active_events)) {
456 mutex_lock(&pmc_reserve_mutex);
457 if (atomic_read(&active_events) == 0) {
458 if (!reserve_pmc_hardware())
459 err = -EBUSY;
460 else
461 reserve_ds_buffers();
462 }
463 if (!err)
464 atomic_inc(&active_events);
465 mutex_unlock(&pmc_reserve_mutex);
466 }
467 if (err)
468 return err;
469
470 event->destroy = hw_perf_event_destroy;
471
472 event->hw.idx = -1;
473 event->hw.last_cpu = -1;
474 event->hw.last_tag = ~0ULL;
475
476 /* mark unused */
477 event->hw.extra_reg.idx = EXTRA_REG_NONE;
478 event->hw.branch_reg.idx = EXTRA_REG_NONE;
479
480 return x86_pmu.hw_config(event);
481 }
482
483 void x86_pmu_disable_all(void)
484 {
485 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
486 int idx;
487
488 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
489 u64 val;
490
491 if (!test_bit(idx, cpuc->active_mask))
492 continue;
493 rdmsrl(x86_pmu_config_addr(idx), val);
494 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
495 continue;
496 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
497 wrmsrl(x86_pmu_config_addr(idx), val);
498 }
499 }
500
501 static void x86_pmu_disable(struct pmu *pmu)
502 {
503 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
504
505 if (!x86_pmu_initialized())
506 return;
507
508 if (!cpuc->enabled)
509 return;
510
511 cpuc->n_added = 0;
512 cpuc->enabled = 0;
513 barrier();
514
515 x86_pmu.disable_all();
516 }
517
518 void x86_pmu_enable_all(int added)
519 {
520 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
521 int idx;
522
523 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
524 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
525
526 if (!test_bit(idx, cpuc->active_mask))
527 continue;
528
529 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
530 }
531 }
532
533 static struct pmu pmu;
534
535 static inline int is_x86_event(struct perf_event *event)
536 {
537 return event->pmu == &pmu;
538 }
539
540 /*
541 * Event scheduler state:
542 *
543 * Assign events iterating over all events and counters, beginning
544 * with events with least weights first. Keep the current iterator
545 * state in struct sched_state.
546 */
547 struct sched_state {
548 int weight;
549 int event; /* event index */
550 int counter; /* counter index */
551 int unassigned; /* number of events to be assigned left */
552 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
553 };
554
555 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
556 #define SCHED_STATES_MAX 2
557
558 struct perf_sched {
559 int max_weight;
560 int max_events;
561 struct event_constraint **constraints;
562 struct sched_state state;
563 int saved_states;
564 struct sched_state saved[SCHED_STATES_MAX];
565 };
566
567 /*
568 * Initialize interator that runs through all events and counters.
569 */
570 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
571 int num, int wmin, int wmax)
572 {
573 int idx;
574
575 memset(sched, 0, sizeof(*sched));
576 sched->max_events = num;
577 sched->max_weight = wmax;
578 sched->constraints = c;
579
580 for (idx = 0; idx < num; idx++) {
581 if (c[idx]->weight == wmin)
582 break;
583 }
584
585 sched->state.event = idx; /* start with min weight */
586 sched->state.weight = wmin;
587 sched->state.unassigned = num;
588 }
589
590 static void perf_sched_save_state(struct perf_sched *sched)
591 {
592 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
593 return;
594
595 sched->saved[sched->saved_states] = sched->state;
596 sched->saved_states++;
597 }
598
599 static bool perf_sched_restore_state(struct perf_sched *sched)
600 {
601 if (!sched->saved_states)
602 return false;
603
604 sched->saved_states--;
605 sched->state = sched->saved[sched->saved_states];
606
607 /* continue with next counter: */
608 clear_bit(sched->state.counter++, sched->state.used);
609
610 return true;
611 }
612
613 /*
614 * Select a counter for the current event to schedule. Return true on
615 * success.
616 */
617 static bool __perf_sched_find_counter(struct perf_sched *sched)
618 {
619 struct event_constraint *c;
620 int idx;
621
622 if (!sched->state.unassigned)
623 return false;
624
625 if (sched->state.event >= sched->max_events)
626 return false;
627
628 c = sched->constraints[sched->state.event];
629
630 /* Prefer fixed purpose counters */
631 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
632 idx = INTEL_PMC_IDX_FIXED;
633 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
634 if (!__test_and_set_bit(idx, sched->state.used))
635 goto done;
636 }
637 }
638 /* Grab the first unused counter starting with idx */
639 idx = sched->state.counter;
640 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
641 if (!__test_and_set_bit(idx, sched->state.used))
642 goto done;
643 }
644
645 return false;
646
647 done:
648 sched->state.counter = idx;
649
650 if (c->overlap)
651 perf_sched_save_state(sched);
652
653 return true;
654 }
655
656 static bool perf_sched_find_counter(struct perf_sched *sched)
657 {
658 while (!__perf_sched_find_counter(sched)) {
659 if (!perf_sched_restore_state(sched))
660 return false;
661 }
662
663 return true;
664 }
665
666 /*
667 * Go through all unassigned events and find the next one to schedule.
668 * Take events with the least weight first. Return true on success.
669 */
670 static bool perf_sched_next_event(struct perf_sched *sched)
671 {
672 struct event_constraint *c;
673
674 if (!sched->state.unassigned || !--sched->state.unassigned)
675 return false;
676
677 do {
678 /* next event */
679 sched->state.event++;
680 if (sched->state.event >= sched->max_events) {
681 /* next weight */
682 sched->state.event = 0;
683 sched->state.weight++;
684 if (sched->state.weight > sched->max_weight)
685 return false;
686 }
687 c = sched->constraints[sched->state.event];
688 } while (c->weight != sched->state.weight);
689
690 sched->state.counter = 0; /* start with first counter */
691
692 return true;
693 }
694
695 /*
696 * Assign a counter for each event.
697 */
698 int perf_assign_events(struct event_constraint **constraints, int n,
699 int wmin, int wmax, int *assign)
700 {
701 struct perf_sched sched;
702
703 perf_sched_init(&sched, constraints, n, wmin, wmax);
704
705 do {
706 if (!perf_sched_find_counter(&sched))
707 break; /* failed */
708 if (assign)
709 assign[sched.state.event] = sched.state.counter;
710 } while (perf_sched_next_event(&sched));
711
712 return sched.state.unassigned;
713 }
714
715 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
716 {
717 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
718 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
719 int i, wmin, wmax, num = 0;
720 struct hw_perf_event *hwc;
721
722 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
723
724 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
725 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
726 constraints[i] = c;
727 wmin = min(wmin, c->weight);
728 wmax = max(wmax, c->weight);
729 }
730
731 /*
732 * fastpath, try to reuse previous register
733 */
734 for (i = 0; i < n; i++) {
735 hwc = &cpuc->event_list[i]->hw;
736 c = constraints[i];
737
738 /* never assigned */
739 if (hwc->idx == -1)
740 break;
741
742 /* constraint still honored */
743 if (!test_bit(hwc->idx, c->idxmsk))
744 break;
745
746 /* not already used */
747 if (test_bit(hwc->idx, used_mask))
748 break;
749
750 __set_bit(hwc->idx, used_mask);
751 if (assign)
752 assign[i] = hwc->idx;
753 }
754
755 /* slow path */
756 if (i != n)
757 num = perf_assign_events(constraints, n, wmin, wmax, assign);
758
759 /*
760 * scheduling failed or is just a simulation,
761 * free resources if necessary
762 */
763 if (!assign || num) {
764 for (i = 0; i < n; i++) {
765 if (x86_pmu.put_event_constraints)
766 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
767 }
768 }
769 return num ? -EINVAL : 0;
770 }
771
772 /*
773 * dogrp: true if must collect siblings events (group)
774 * returns total number of events and error code
775 */
776 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
777 {
778 struct perf_event *event;
779 int n, max_count;
780
781 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
782
783 /* current number of events already accepted */
784 n = cpuc->n_events;
785
786 if (is_x86_event(leader)) {
787 if (n >= max_count)
788 return -EINVAL;
789 cpuc->event_list[n] = leader;
790 n++;
791 }
792 if (!dogrp)
793 return n;
794
795 list_for_each_entry(event, &leader->sibling_list, group_entry) {
796 if (!is_x86_event(event) ||
797 event->state <= PERF_EVENT_STATE_OFF)
798 continue;
799
800 if (n >= max_count)
801 return -EINVAL;
802
803 cpuc->event_list[n] = event;
804 n++;
805 }
806 return n;
807 }
808
809 static inline void x86_assign_hw_event(struct perf_event *event,
810 struct cpu_hw_events *cpuc, int i)
811 {
812 struct hw_perf_event *hwc = &event->hw;
813
814 hwc->idx = cpuc->assign[i];
815 hwc->last_cpu = smp_processor_id();
816 hwc->last_tag = ++cpuc->tags[i];
817
818 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
819 hwc->config_base = 0;
820 hwc->event_base = 0;
821 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
822 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
823 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
824 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
825 } else {
826 hwc->config_base = x86_pmu_config_addr(hwc->idx);
827 hwc->event_base = x86_pmu_event_addr(hwc->idx);
828 hwc->event_base_rdpmc = hwc->idx;
829 }
830 }
831
832 static inline int match_prev_assignment(struct hw_perf_event *hwc,
833 struct cpu_hw_events *cpuc,
834 int i)
835 {
836 return hwc->idx == cpuc->assign[i] &&
837 hwc->last_cpu == smp_processor_id() &&
838 hwc->last_tag == cpuc->tags[i];
839 }
840
841 static void x86_pmu_start(struct perf_event *event, int flags);
842
843 static void x86_pmu_enable(struct pmu *pmu)
844 {
845 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
846 struct perf_event *event;
847 struct hw_perf_event *hwc;
848 int i, added = cpuc->n_added;
849
850 if (!x86_pmu_initialized())
851 return;
852
853 if (cpuc->enabled)
854 return;
855
856 if (cpuc->n_added) {
857 int n_running = cpuc->n_events - cpuc->n_added;
858 /*
859 * apply assignment obtained either from
860 * hw_perf_group_sched_in() or x86_pmu_enable()
861 *
862 * step1: save events moving to new counters
863 * step2: reprogram moved events into new counters
864 */
865 for (i = 0; i < n_running; i++) {
866 event = cpuc->event_list[i];
867 hwc = &event->hw;
868
869 /*
870 * we can avoid reprogramming counter if:
871 * - assigned same counter as last time
872 * - running on same CPU as last time
873 * - no other event has used the counter since
874 */
875 if (hwc->idx == -1 ||
876 match_prev_assignment(hwc, cpuc, i))
877 continue;
878
879 /*
880 * Ensure we don't accidentally enable a stopped
881 * counter simply because we rescheduled.
882 */
883 if (hwc->state & PERF_HES_STOPPED)
884 hwc->state |= PERF_HES_ARCH;
885
886 x86_pmu_stop(event, PERF_EF_UPDATE);
887 }
888
889 for (i = 0; i < cpuc->n_events; i++) {
890 event = cpuc->event_list[i];
891 hwc = &event->hw;
892
893 if (!match_prev_assignment(hwc, cpuc, i))
894 x86_assign_hw_event(event, cpuc, i);
895 else if (i < n_running)
896 continue;
897
898 if (hwc->state & PERF_HES_ARCH)
899 continue;
900
901 x86_pmu_start(event, PERF_EF_RELOAD);
902 }
903 cpuc->n_added = 0;
904 perf_events_lapic_init();
905 }
906
907 cpuc->enabled = 1;
908 barrier();
909
910 x86_pmu.enable_all(added);
911 }
912
913 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
914
915 /*
916 * Set the next IRQ period, based on the hwc->period_left value.
917 * To be called with the event disabled in hw:
918 */
919 int x86_perf_event_set_period(struct perf_event *event)
920 {
921 struct hw_perf_event *hwc = &event->hw;
922 s64 left = local64_read(&hwc->period_left);
923 s64 period = hwc->sample_period;
924 int ret = 0, idx = hwc->idx;
925
926 if (idx == INTEL_PMC_IDX_FIXED_BTS)
927 return 0;
928
929 /*
930 * If we are way outside a reasonable range then just skip forward:
931 */
932 if (unlikely(left <= -period)) {
933 left = period;
934 local64_set(&hwc->period_left, left);
935 hwc->last_period = period;
936 ret = 1;
937 }
938
939 if (unlikely(left <= 0)) {
940 left += period;
941 local64_set(&hwc->period_left, left);
942 hwc->last_period = period;
943 ret = 1;
944 }
945 /*
946 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
947 */
948 if (unlikely(left < 2))
949 left = 2;
950
951 if (left > x86_pmu.max_period)
952 left = x86_pmu.max_period;
953
954 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
955
956 /*
957 * The hw event starts counting from this event offset,
958 * mark it to be able to extra future deltas:
959 */
960 local64_set(&hwc->prev_count, (u64)-left);
961
962 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
963
964 /*
965 * Due to erratum on certan cpu we need
966 * a second write to be sure the register
967 * is updated properly
968 */
969 if (x86_pmu.perfctr_second_write) {
970 wrmsrl(hwc->event_base,
971 (u64)(-left) & x86_pmu.cntval_mask);
972 }
973
974 perf_event_update_userpage(event);
975
976 return ret;
977 }
978
979 void x86_pmu_enable_event(struct perf_event *event)
980 {
981 if (__this_cpu_read(cpu_hw_events.enabled))
982 __x86_pmu_enable_event(&event->hw,
983 ARCH_PERFMON_EVENTSEL_ENABLE);
984 }
985
986 /*
987 * Add a single event to the PMU.
988 *
989 * The event is added to the group of enabled events
990 * but only if it can be scehduled with existing events.
991 */
992 static int x86_pmu_add(struct perf_event *event, int flags)
993 {
994 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
995 struct hw_perf_event *hwc;
996 int assign[X86_PMC_IDX_MAX];
997 int n, n0, ret;
998
999 hwc = &event->hw;
1000
1001 perf_pmu_disable(event->pmu);
1002 n0 = cpuc->n_events;
1003 ret = n = collect_events(cpuc, event, false);
1004 if (ret < 0)
1005 goto out;
1006
1007 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1008 if (!(flags & PERF_EF_START))
1009 hwc->state |= PERF_HES_ARCH;
1010
1011 /*
1012 * If group events scheduling transaction was started,
1013 * skip the schedulability test here, it will be performed
1014 * at commit time (->commit_txn) as a whole
1015 */
1016 if (cpuc->group_flag & PERF_EVENT_TXN)
1017 goto done_collect;
1018
1019 ret = x86_pmu.schedule_events(cpuc, n, assign);
1020 if (ret)
1021 goto out;
1022 /*
1023 * copy new assignment, now we know it is possible
1024 * will be used by hw_perf_enable()
1025 */
1026 memcpy(cpuc->assign, assign, n*sizeof(int));
1027
1028 done_collect:
1029 cpuc->n_events = n;
1030 cpuc->n_added += n - n0;
1031 cpuc->n_txn += n - n0;
1032
1033 ret = 0;
1034 out:
1035 perf_pmu_enable(event->pmu);
1036 return ret;
1037 }
1038
1039 static void x86_pmu_start(struct perf_event *event, int flags)
1040 {
1041 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1042 int idx = event->hw.idx;
1043
1044 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1045 return;
1046
1047 if (WARN_ON_ONCE(idx == -1))
1048 return;
1049
1050 if (flags & PERF_EF_RELOAD) {
1051 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1052 x86_perf_event_set_period(event);
1053 }
1054
1055 event->hw.state = 0;
1056
1057 cpuc->events[idx] = event;
1058 __set_bit(idx, cpuc->active_mask);
1059 __set_bit(idx, cpuc->running);
1060 x86_pmu.enable(event);
1061 perf_event_update_userpage(event);
1062 }
1063
1064 void perf_event_print_debug(void)
1065 {
1066 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1067 u64 pebs;
1068 struct cpu_hw_events *cpuc;
1069 unsigned long flags;
1070 int cpu, idx;
1071
1072 if (!x86_pmu.num_counters)
1073 return;
1074
1075 local_irq_save(flags);
1076
1077 cpu = smp_processor_id();
1078 cpuc = &per_cpu(cpu_hw_events, cpu);
1079
1080 if (x86_pmu.version >= 2) {
1081 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1082 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1083 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1084 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1085 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1086
1087 pr_info("\n");
1088 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1089 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1090 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1091 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1092 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1093 }
1094 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1095
1096 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1097 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1098 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1099
1100 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1101
1102 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1103 cpu, idx, pmc_ctrl);
1104 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1105 cpu, idx, pmc_count);
1106 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1107 cpu, idx, prev_left);
1108 }
1109 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1110 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1111
1112 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1113 cpu, idx, pmc_count);
1114 }
1115 local_irq_restore(flags);
1116 }
1117
1118 void x86_pmu_stop(struct perf_event *event, int flags)
1119 {
1120 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1121 struct hw_perf_event *hwc = &event->hw;
1122
1123 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1124 x86_pmu.disable(event);
1125 cpuc->events[hwc->idx] = NULL;
1126 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1127 hwc->state |= PERF_HES_STOPPED;
1128 }
1129
1130 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1131 /*
1132 * Drain the remaining delta count out of a event
1133 * that we are disabling:
1134 */
1135 x86_perf_event_update(event);
1136 hwc->state |= PERF_HES_UPTODATE;
1137 }
1138 }
1139
1140 static void x86_pmu_del(struct perf_event *event, int flags)
1141 {
1142 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1143 int i;
1144
1145 /*
1146 * If we're called during a txn, we don't need to do anything.
1147 * The events never got scheduled and ->cancel_txn will truncate
1148 * the event_list.
1149 */
1150 if (cpuc->group_flag & PERF_EVENT_TXN)
1151 return;
1152
1153 x86_pmu_stop(event, PERF_EF_UPDATE);
1154
1155 for (i = 0; i < cpuc->n_events; i++) {
1156 if (event == cpuc->event_list[i]) {
1157
1158 if (x86_pmu.put_event_constraints)
1159 x86_pmu.put_event_constraints(cpuc, event);
1160
1161 while (++i < cpuc->n_events)
1162 cpuc->event_list[i-1] = cpuc->event_list[i];
1163
1164 --cpuc->n_events;
1165 break;
1166 }
1167 }
1168 perf_event_update_userpage(event);
1169 }
1170
1171 int x86_pmu_handle_irq(struct pt_regs *regs)
1172 {
1173 struct perf_sample_data data;
1174 struct cpu_hw_events *cpuc;
1175 struct perf_event *event;
1176 int idx, handled = 0;
1177 u64 val;
1178
1179 cpuc = &__get_cpu_var(cpu_hw_events);
1180
1181 /*
1182 * Some chipsets need to unmask the LVTPC in a particular spot
1183 * inside the nmi handler. As a result, the unmasking was pushed
1184 * into all the nmi handlers.
1185 *
1186 * This generic handler doesn't seem to have any issues where the
1187 * unmasking occurs so it was left at the top.
1188 */
1189 apic_write(APIC_LVTPC, APIC_DM_NMI);
1190
1191 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1192 if (!test_bit(idx, cpuc->active_mask)) {
1193 /*
1194 * Though we deactivated the counter some cpus
1195 * might still deliver spurious interrupts still
1196 * in flight. Catch them:
1197 */
1198 if (__test_and_clear_bit(idx, cpuc->running))
1199 handled++;
1200 continue;
1201 }
1202
1203 event = cpuc->events[idx];
1204
1205 val = x86_perf_event_update(event);
1206 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1207 continue;
1208
1209 /*
1210 * event overflow
1211 */
1212 handled++;
1213 perf_sample_data_init(&data, 0, event->hw.last_period);
1214
1215 if (!x86_perf_event_set_period(event))
1216 continue;
1217
1218 if (perf_event_overflow(event, &data, regs))
1219 x86_pmu_stop(event, 0);
1220 }
1221
1222 if (handled)
1223 inc_irq_stat(apic_perf_irqs);
1224
1225 return handled;
1226 }
1227
1228 void perf_events_lapic_init(void)
1229 {
1230 if (!x86_pmu.apic || !x86_pmu_initialized())
1231 return;
1232
1233 /*
1234 * Always use NMI for PMU
1235 */
1236 apic_write(APIC_LVTPC, APIC_DM_NMI);
1237 }
1238
1239 static int __kprobes
1240 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1241 {
1242 if (!atomic_read(&active_events))
1243 return NMI_DONE;
1244
1245 return x86_pmu.handle_irq(regs);
1246 }
1247
1248 struct event_constraint emptyconstraint;
1249 struct event_constraint unconstrained;
1250
1251 static int __cpuinit
1252 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1253 {
1254 unsigned int cpu = (long)hcpu;
1255 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1256 int ret = NOTIFY_OK;
1257
1258 switch (action & ~CPU_TASKS_FROZEN) {
1259 case CPU_UP_PREPARE:
1260 cpuc->kfree_on_online = NULL;
1261 if (x86_pmu.cpu_prepare)
1262 ret = x86_pmu.cpu_prepare(cpu);
1263 break;
1264
1265 case CPU_STARTING:
1266 if (x86_pmu.attr_rdpmc)
1267 set_in_cr4(X86_CR4_PCE);
1268 if (x86_pmu.cpu_starting)
1269 x86_pmu.cpu_starting(cpu);
1270 break;
1271
1272 case CPU_ONLINE:
1273 kfree(cpuc->kfree_on_online);
1274 break;
1275
1276 case CPU_DYING:
1277 if (x86_pmu.cpu_dying)
1278 x86_pmu.cpu_dying(cpu);
1279 break;
1280
1281 case CPU_UP_CANCELED:
1282 case CPU_DEAD:
1283 if (x86_pmu.cpu_dead)
1284 x86_pmu.cpu_dead(cpu);
1285 break;
1286
1287 default:
1288 break;
1289 }
1290
1291 return ret;
1292 }
1293
1294 static void __init pmu_check_apic(void)
1295 {
1296 if (cpu_has_apic)
1297 return;
1298
1299 x86_pmu.apic = 0;
1300 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1301 pr_info("no hardware sampling interrupt available.\n");
1302 }
1303
1304 static struct attribute_group x86_pmu_format_group = {
1305 .name = "format",
1306 .attrs = NULL,
1307 };
1308
1309 static int __init init_hw_perf_events(void)
1310 {
1311 struct x86_pmu_quirk *quirk;
1312 int err;
1313
1314 pr_info("Performance Events: ");
1315
1316 switch (boot_cpu_data.x86_vendor) {
1317 case X86_VENDOR_INTEL:
1318 err = intel_pmu_init();
1319 break;
1320 case X86_VENDOR_AMD:
1321 err = amd_pmu_init();
1322 break;
1323 default:
1324 return 0;
1325 }
1326 if (err != 0) {
1327 pr_cont("no PMU driver, software events only.\n");
1328 return 0;
1329 }
1330
1331 pmu_check_apic();
1332
1333 /* sanity check that the hardware exists or is emulated */
1334 if (!check_hw_exists())
1335 return 0;
1336
1337 pr_cont("%s PMU driver.\n", x86_pmu.name);
1338
1339 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1340 quirk->func();
1341
1342 if (!x86_pmu.intel_ctrl)
1343 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1344
1345 perf_events_lapic_init();
1346 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1347
1348 unconstrained = (struct event_constraint)
1349 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1350 0, x86_pmu.num_counters, 0);
1351
1352 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1353 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1354
1355 pr_info("... version: %d\n", x86_pmu.version);
1356 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1357 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1358 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1359 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1360 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1361 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1362
1363 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1364 perf_cpu_notifier(x86_pmu_notifier);
1365
1366 return 0;
1367 }
1368 early_initcall(init_hw_perf_events);
1369
1370 static inline void x86_pmu_read(struct perf_event *event)
1371 {
1372 x86_perf_event_update(event);
1373 }
1374
1375 /*
1376 * Start group events scheduling transaction
1377 * Set the flag to make pmu::enable() not perform the
1378 * schedulability test, it will be performed at commit time
1379 */
1380 static void x86_pmu_start_txn(struct pmu *pmu)
1381 {
1382 perf_pmu_disable(pmu);
1383 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1384 __this_cpu_write(cpu_hw_events.n_txn, 0);
1385 }
1386
1387 /*
1388 * Stop group events scheduling transaction
1389 * Clear the flag and pmu::enable() will perform the
1390 * schedulability test.
1391 */
1392 static void x86_pmu_cancel_txn(struct pmu *pmu)
1393 {
1394 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1395 /*
1396 * Truncate the collected events.
1397 */
1398 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1399 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1400 perf_pmu_enable(pmu);
1401 }
1402
1403 /*
1404 * Commit group events scheduling transaction
1405 * Perform the group schedulability test as a whole
1406 * Return 0 if success
1407 */
1408 static int x86_pmu_commit_txn(struct pmu *pmu)
1409 {
1410 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1411 int assign[X86_PMC_IDX_MAX];
1412 int n, ret;
1413
1414 n = cpuc->n_events;
1415
1416 if (!x86_pmu_initialized())
1417 return -EAGAIN;
1418
1419 ret = x86_pmu.schedule_events(cpuc, n, assign);
1420 if (ret)
1421 return ret;
1422
1423 /*
1424 * copy new assignment, now we know it is possible
1425 * will be used by hw_perf_enable()
1426 */
1427 memcpy(cpuc->assign, assign, n*sizeof(int));
1428
1429 cpuc->group_flag &= ~PERF_EVENT_TXN;
1430 perf_pmu_enable(pmu);
1431 return 0;
1432 }
1433 /*
1434 * a fake_cpuc is used to validate event groups. Due to
1435 * the extra reg logic, we need to also allocate a fake
1436 * per_core and per_cpu structure. Otherwise, group events
1437 * using extra reg may conflict without the kernel being
1438 * able to catch this when the last event gets added to
1439 * the group.
1440 */
1441 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1442 {
1443 kfree(cpuc->shared_regs);
1444 kfree(cpuc);
1445 }
1446
1447 static struct cpu_hw_events *allocate_fake_cpuc(void)
1448 {
1449 struct cpu_hw_events *cpuc;
1450 int cpu = raw_smp_processor_id();
1451
1452 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1453 if (!cpuc)
1454 return ERR_PTR(-ENOMEM);
1455
1456 /* only needed, if we have extra_regs */
1457 if (x86_pmu.extra_regs) {
1458 cpuc->shared_regs = allocate_shared_regs(cpu);
1459 if (!cpuc->shared_regs)
1460 goto error;
1461 }
1462 cpuc->is_fake = 1;
1463 return cpuc;
1464 error:
1465 free_fake_cpuc(cpuc);
1466 return ERR_PTR(-ENOMEM);
1467 }
1468
1469 /*
1470 * validate that we can schedule this event
1471 */
1472 static int validate_event(struct perf_event *event)
1473 {
1474 struct cpu_hw_events *fake_cpuc;
1475 struct event_constraint *c;
1476 int ret = 0;
1477
1478 fake_cpuc = allocate_fake_cpuc();
1479 if (IS_ERR(fake_cpuc))
1480 return PTR_ERR(fake_cpuc);
1481
1482 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1483
1484 if (!c || !c->weight)
1485 ret = -EINVAL;
1486
1487 if (x86_pmu.put_event_constraints)
1488 x86_pmu.put_event_constraints(fake_cpuc, event);
1489
1490 free_fake_cpuc(fake_cpuc);
1491
1492 return ret;
1493 }
1494
1495 /*
1496 * validate a single event group
1497 *
1498 * validation include:
1499 * - check events are compatible which each other
1500 * - events do not compete for the same counter
1501 * - number of events <= number of counters
1502 *
1503 * validation ensures the group can be loaded onto the
1504 * PMU if it was the only group available.
1505 */
1506 static int validate_group(struct perf_event *event)
1507 {
1508 struct perf_event *leader = event->group_leader;
1509 struct cpu_hw_events *fake_cpuc;
1510 int ret = -EINVAL, n;
1511
1512 fake_cpuc = allocate_fake_cpuc();
1513 if (IS_ERR(fake_cpuc))
1514 return PTR_ERR(fake_cpuc);
1515 /*
1516 * the event is not yet connected with its
1517 * siblings therefore we must first collect
1518 * existing siblings, then add the new event
1519 * before we can simulate the scheduling
1520 */
1521 n = collect_events(fake_cpuc, leader, true);
1522 if (n < 0)
1523 goto out;
1524
1525 fake_cpuc->n_events = n;
1526 n = collect_events(fake_cpuc, event, false);
1527 if (n < 0)
1528 goto out;
1529
1530 fake_cpuc->n_events = n;
1531
1532 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1533
1534 out:
1535 free_fake_cpuc(fake_cpuc);
1536 return ret;
1537 }
1538
1539 static int x86_pmu_event_init(struct perf_event *event)
1540 {
1541 struct pmu *tmp;
1542 int err;
1543
1544 switch (event->attr.type) {
1545 case PERF_TYPE_RAW:
1546 case PERF_TYPE_HARDWARE:
1547 case PERF_TYPE_HW_CACHE:
1548 break;
1549
1550 default:
1551 return -ENOENT;
1552 }
1553
1554 err = __x86_pmu_event_init(event);
1555 if (!err) {
1556 /*
1557 * we temporarily connect event to its pmu
1558 * such that validate_group() can classify
1559 * it as an x86 event using is_x86_event()
1560 */
1561 tmp = event->pmu;
1562 event->pmu = &pmu;
1563
1564 if (event->group_leader != event)
1565 err = validate_group(event);
1566 else
1567 err = validate_event(event);
1568
1569 event->pmu = tmp;
1570 }
1571 if (err) {
1572 if (event->destroy)
1573 event->destroy(event);
1574 }
1575
1576 return err;
1577 }
1578
1579 static int x86_pmu_event_idx(struct perf_event *event)
1580 {
1581 int idx = event->hw.idx;
1582
1583 if (!x86_pmu.attr_rdpmc)
1584 return 0;
1585
1586 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1587 idx -= INTEL_PMC_IDX_FIXED;
1588 idx |= 1 << 30;
1589 }
1590
1591 return idx + 1;
1592 }
1593
1594 static ssize_t get_attr_rdpmc(struct device *cdev,
1595 struct device_attribute *attr,
1596 char *buf)
1597 {
1598 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1599 }
1600
1601 static void change_rdpmc(void *info)
1602 {
1603 bool enable = !!(unsigned long)info;
1604
1605 if (enable)
1606 set_in_cr4(X86_CR4_PCE);
1607 else
1608 clear_in_cr4(X86_CR4_PCE);
1609 }
1610
1611 static ssize_t set_attr_rdpmc(struct device *cdev,
1612 struct device_attribute *attr,
1613 const char *buf, size_t count)
1614 {
1615 unsigned long val;
1616 ssize_t ret;
1617
1618 ret = kstrtoul(buf, 0, &val);
1619 if (ret)
1620 return ret;
1621
1622 if (!!val != !!x86_pmu.attr_rdpmc) {
1623 x86_pmu.attr_rdpmc = !!val;
1624 smp_call_function(change_rdpmc, (void *)val, 1);
1625 }
1626
1627 return count;
1628 }
1629
1630 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1631
1632 static struct attribute *x86_pmu_attrs[] = {
1633 &dev_attr_rdpmc.attr,
1634 NULL,
1635 };
1636
1637 static struct attribute_group x86_pmu_attr_group = {
1638 .attrs = x86_pmu_attrs,
1639 };
1640
1641 static const struct attribute_group *x86_pmu_attr_groups[] = {
1642 &x86_pmu_attr_group,
1643 &x86_pmu_format_group,
1644 NULL,
1645 };
1646
1647 static void x86_pmu_flush_branch_stack(void)
1648 {
1649 if (x86_pmu.flush_branch_stack)
1650 x86_pmu.flush_branch_stack();
1651 }
1652
1653 void perf_check_microcode(void)
1654 {
1655 if (x86_pmu.check_microcode)
1656 x86_pmu.check_microcode();
1657 }
1658 EXPORT_SYMBOL_GPL(perf_check_microcode);
1659
1660 static struct pmu pmu = {
1661 .pmu_enable = x86_pmu_enable,
1662 .pmu_disable = x86_pmu_disable,
1663
1664 .attr_groups = x86_pmu_attr_groups,
1665
1666 .event_init = x86_pmu_event_init,
1667
1668 .add = x86_pmu_add,
1669 .del = x86_pmu_del,
1670 .start = x86_pmu_start,
1671 .stop = x86_pmu_stop,
1672 .read = x86_pmu_read,
1673
1674 .start_txn = x86_pmu_start_txn,
1675 .cancel_txn = x86_pmu_cancel_txn,
1676 .commit_txn = x86_pmu_commit_txn,
1677
1678 .event_idx = x86_pmu_event_idx,
1679 .flush_branch_stack = x86_pmu_flush_branch_stack,
1680 };
1681
1682 void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1683 {
1684 userpg->cap_usr_time = 0;
1685 userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
1686 userpg->pmc_width = x86_pmu.cntval_bits;
1687
1688 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1689 return;
1690
1691 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1692 return;
1693
1694 userpg->cap_usr_time = 1;
1695 userpg->time_mult = this_cpu_read(cyc2ns);
1696 userpg->time_shift = CYC2NS_SCALE_FACTOR;
1697 userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
1698 }
1699
1700 /*
1701 * callchain support
1702 */
1703
1704 static int backtrace_stack(void *data, char *name)
1705 {
1706 return 0;
1707 }
1708
1709 static void backtrace_address(void *data, unsigned long addr, int reliable)
1710 {
1711 struct perf_callchain_entry *entry = data;
1712
1713 perf_callchain_store(entry, addr);
1714 }
1715
1716 static const struct stacktrace_ops backtrace_ops = {
1717 .stack = backtrace_stack,
1718 .address = backtrace_address,
1719 .walk_stack = print_context_stack_bp,
1720 };
1721
1722 void
1723 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1724 {
1725 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1726 /* TODO: We don't support guest os callchain now */
1727 return;
1728 }
1729
1730 perf_callchain_store(entry, regs->ip);
1731
1732 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1733 }
1734
1735 static inline int
1736 valid_user_frame(const void __user *fp, unsigned long size)
1737 {
1738 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1739 }
1740
1741 #ifdef CONFIG_COMPAT
1742
1743 #include <asm/compat.h>
1744
1745 static inline int
1746 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1747 {
1748 /* 32-bit process in 64-bit kernel. */
1749 struct stack_frame_ia32 frame;
1750 const void __user *fp;
1751
1752 if (!test_thread_flag(TIF_IA32))
1753 return 0;
1754
1755 fp = compat_ptr(regs->bp);
1756 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1757 unsigned long bytes;
1758 frame.next_frame = 0;
1759 frame.return_address = 0;
1760
1761 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1762 if (bytes != sizeof(frame))
1763 break;
1764
1765 if (!valid_user_frame(fp, sizeof(frame)))
1766 break;
1767
1768 perf_callchain_store(entry, frame.return_address);
1769 fp = compat_ptr(frame.next_frame);
1770 }
1771 return 1;
1772 }
1773 #else
1774 static inline int
1775 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1776 {
1777 return 0;
1778 }
1779 #endif
1780
1781 void
1782 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1783 {
1784 struct stack_frame frame;
1785 const void __user *fp;
1786
1787 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1788 /* TODO: We don't support guest os callchain now */
1789 return;
1790 }
1791
1792 fp = (void __user *)regs->bp;
1793
1794 perf_callchain_store(entry, regs->ip);
1795
1796 if (!current->mm)
1797 return;
1798
1799 if (perf_callchain_user32(regs, entry))
1800 return;
1801
1802 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1803 unsigned long bytes;
1804 frame.next_frame = NULL;
1805 frame.return_address = 0;
1806
1807 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1808 if (bytes != sizeof(frame))
1809 break;
1810
1811 if (!valid_user_frame(fp, sizeof(frame)))
1812 break;
1813
1814 perf_callchain_store(entry, frame.return_address);
1815 fp = frame.next_frame;
1816 }
1817 }
1818
1819 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1820 {
1821 unsigned long ip;
1822
1823 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1824 ip = perf_guest_cbs->get_guest_ip();
1825 else
1826 ip = instruction_pointer(regs);
1827
1828 return ip;
1829 }
1830
1831 unsigned long perf_misc_flags(struct pt_regs *regs)
1832 {
1833 int misc = 0;
1834
1835 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1836 if (perf_guest_cbs->is_user_mode())
1837 misc |= PERF_RECORD_MISC_GUEST_USER;
1838 else
1839 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1840 } else {
1841 if (!kernel_ip(regs->ip))
1842 misc |= PERF_RECORD_MISC_USER;
1843 else
1844 misc |= PERF_RECORD_MISC_KERNEL;
1845 }
1846
1847 if (regs->flags & PERF_EFLAGS_EXACT)
1848 misc |= PERF_RECORD_MISC_EXACT_IP;
1849
1850 return misc;
1851 }
1852
1853 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
1854 {
1855 cap->version = x86_pmu.version;
1856 cap->num_counters_gp = x86_pmu.num_counters;
1857 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
1858 cap->bit_width_gp = x86_pmu.cntval_bits;
1859 cap->bit_width_fixed = x86_pmu.cntval_bits;
1860 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
1861 cap->events_mask_len = x86_pmu.events_mask_len;
1862 }
1863 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.067842 seconds and 5 git commands to generate.