x86/cpu: Convert printk(KERN_<LEVEL> ...) to pr_<level>(...)
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 .enabled = 1,
46 };
47
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
50 u64 __read_mostly hw_cache_event_ids
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58
59 /*
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
62 * Returns the delta events processed.
63 */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 struct hw_perf_event *hwc = &event->hw;
67 int shift = 64 - x86_pmu.cntval_bits;
68 u64 prev_raw_count, new_raw_count;
69 int idx = hwc->idx;
70 s64 delta;
71
72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 return 0;
74
75 /*
76 * Careful: an NMI might modify the previous event value.
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
80 * count to the generic event atomically:
81 */
82 again:
83 prev_raw_count = local64_read(&hwc->prev_count);
84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85
86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
93 * (event-)time and add that to the generic event.
94 *
95 * Careful, not all hw sign-extends above the physical width
96 * of the count.
97 */
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
100
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
103
104 return new_raw_count;
105 }
106
107 /*
108 * Find and validate any extra registers to set up.
109 */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 struct hw_perf_event_extra *reg;
113 struct extra_reg *er;
114
115 reg = &event->hw.extra_reg;
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
132 break;
133 }
134 return 0;
135 }
136
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140
141 #ifdef CONFIG_X86_LOCAL_APIC
142
143 static bool reserve_pmc_hardware(void)
144 {
145 int i;
146
147 for (i = 0; i < x86_pmu.num_counters; i++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 goto perfctr_fail;
150 }
151
152 for (i = 0; i < x86_pmu.num_counters; i++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 goto eventsel_fail;
155 }
156
157 return true;
158
159 eventsel_fail:
160 for (i--; i >= 0; i--)
161 release_evntsel_nmi(x86_pmu_config_addr(i));
162
163 i = x86_pmu.num_counters;
164
165 perfctr_fail:
166 for (i--; i >= 0; i--)
167 release_perfctr_nmi(x86_pmu_event_addr(i));
168
169 return false;
170 }
171
172 static void release_pmc_hardware(void)
173 {
174 int i;
175
176 for (i = 0; i < x86_pmu.num_counters; i++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
179 }
180 }
181
182 #else
183
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186
187 #endif
188
189 static bool check_hw_exists(void)
190 {
191 u64 val, val_fail, val_new= ~0;
192 int i, reg, reg_fail, ret = 0;
193 int bios_fail = 0;
194 int reg_safe = -1;
195
196 /*
197 * Check to see if the BIOS enabled any of the counters, if so
198 * complain and bail.
199 */
200 for (i = 0; i < x86_pmu.num_counters; i++) {
201 reg = x86_pmu_config_addr(i);
202 ret = rdmsrl_safe(reg, &val);
203 if (ret)
204 goto msr_fail;
205 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 bios_fail = 1;
207 val_fail = val;
208 reg_fail = reg;
209 } else {
210 reg_safe = i;
211 }
212 }
213
214 if (x86_pmu.num_counters_fixed) {
215 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 ret = rdmsrl_safe(reg, &val);
217 if (ret)
218 goto msr_fail;
219 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220 if (val & (0x03 << i*4)) {
221 bios_fail = 1;
222 val_fail = val;
223 reg_fail = reg;
224 }
225 }
226 }
227
228 /*
229 * If all the counters are enabled, the below test will always
230 * fail. The tools will also become useless in this scenario.
231 * Just fail and disable the hardware counters.
232 */
233
234 if (reg_safe == -1) {
235 reg = reg_safe;
236 goto msr_fail;
237 }
238
239 /*
240 * Read the current value, change it and read it back to see if it
241 * matches, this is needed to detect certain hardware emulators
242 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 */
244 reg = x86_pmu_event_addr(reg_safe);
245 if (rdmsrl_safe(reg, &val))
246 goto msr_fail;
247 val ^= 0xffffUL;
248 ret = wrmsrl_safe(reg, val);
249 ret |= rdmsrl_safe(reg, &val_new);
250 if (ret || val != val_new)
251 goto msr_fail;
252
253 /*
254 * We still allow the PMU driver to operate:
255 */
256 if (bios_fail) {
257 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
258 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
259 reg_fail, val_fail);
260 }
261
262 return true;
263
264 msr_fail:
265 pr_cont("Broken PMU hardware detected, using software events only.\n");
266 pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
267 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268 reg, val_new);
269
270 return false;
271 }
272
273 static void hw_perf_event_destroy(struct perf_event *event)
274 {
275 x86_release_hardware();
276 atomic_dec(&active_events);
277 }
278
279 void hw_perf_lbr_event_destroy(struct perf_event *event)
280 {
281 hw_perf_event_destroy(event);
282
283 /* undo the lbr/bts event accounting */
284 x86_del_exclusive(x86_lbr_exclusive_lbr);
285 }
286
287 static inline int x86_pmu_initialized(void)
288 {
289 return x86_pmu.handle_irq != NULL;
290 }
291
292 static inline int
293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
294 {
295 struct perf_event_attr *attr = &event->attr;
296 unsigned int cache_type, cache_op, cache_result;
297 u64 config, val;
298
299 config = attr->config;
300
301 cache_type = (config >> 0) & 0xff;
302 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303 return -EINVAL;
304
305 cache_op = (config >> 8) & 0xff;
306 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
307 return -EINVAL;
308
309 cache_result = (config >> 16) & 0xff;
310 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
311 return -EINVAL;
312
313 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
314
315 if (val == 0)
316 return -ENOENT;
317
318 if (val == -1)
319 return -EINVAL;
320
321 hwc->config |= val;
322 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
323 return x86_pmu_extra_regs(val, event);
324 }
325
326 int x86_reserve_hardware(void)
327 {
328 int err = 0;
329
330 if (!atomic_inc_not_zero(&pmc_refcount)) {
331 mutex_lock(&pmc_reserve_mutex);
332 if (atomic_read(&pmc_refcount) == 0) {
333 if (!reserve_pmc_hardware())
334 err = -EBUSY;
335 else
336 reserve_ds_buffers();
337 }
338 if (!err)
339 atomic_inc(&pmc_refcount);
340 mutex_unlock(&pmc_reserve_mutex);
341 }
342
343 return err;
344 }
345
346 void x86_release_hardware(void)
347 {
348 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
349 release_pmc_hardware();
350 release_ds_buffers();
351 mutex_unlock(&pmc_reserve_mutex);
352 }
353 }
354
355 /*
356 * Check if we can create event of a certain type (that no conflicting events
357 * are present).
358 */
359 int x86_add_exclusive(unsigned int what)
360 {
361 int i;
362
363 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
364 mutex_lock(&pmc_reserve_mutex);
365 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
366 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
367 goto fail_unlock;
368 }
369 atomic_inc(&x86_pmu.lbr_exclusive[what]);
370 mutex_unlock(&pmc_reserve_mutex);
371 }
372
373 atomic_inc(&active_events);
374 return 0;
375
376 fail_unlock:
377 mutex_unlock(&pmc_reserve_mutex);
378 return -EBUSY;
379 }
380
381 void x86_del_exclusive(unsigned int what)
382 {
383 atomic_dec(&x86_pmu.lbr_exclusive[what]);
384 atomic_dec(&active_events);
385 }
386
387 int x86_setup_perfctr(struct perf_event *event)
388 {
389 struct perf_event_attr *attr = &event->attr;
390 struct hw_perf_event *hwc = &event->hw;
391 u64 config;
392
393 if (!is_sampling_event(event)) {
394 hwc->sample_period = x86_pmu.max_period;
395 hwc->last_period = hwc->sample_period;
396 local64_set(&hwc->period_left, hwc->sample_period);
397 }
398
399 if (attr->type == PERF_TYPE_RAW)
400 return x86_pmu_extra_regs(event->attr.config, event);
401
402 if (attr->type == PERF_TYPE_HW_CACHE)
403 return set_ext_hw_attr(hwc, event);
404
405 if (attr->config >= x86_pmu.max_events)
406 return -EINVAL;
407
408 /*
409 * The generic map:
410 */
411 config = x86_pmu.event_map(attr->config);
412
413 if (config == 0)
414 return -ENOENT;
415
416 if (config == -1LL)
417 return -EINVAL;
418
419 /*
420 * Branch tracing:
421 */
422 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
423 !attr->freq && hwc->sample_period == 1) {
424 /* BTS is not supported by this architecture. */
425 if (!x86_pmu.bts_active)
426 return -EOPNOTSUPP;
427
428 /* BTS is currently only allowed for user-mode. */
429 if (!attr->exclude_kernel)
430 return -EOPNOTSUPP;
431
432 /* disallow bts if conflicting events are present */
433 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
434 return -EBUSY;
435
436 event->destroy = hw_perf_lbr_event_destroy;
437 }
438
439 hwc->config |= config;
440
441 return 0;
442 }
443
444 /*
445 * check that branch_sample_type is compatible with
446 * settings needed for precise_ip > 1 which implies
447 * using the LBR to capture ALL taken branches at the
448 * priv levels of the measurement
449 */
450 static inline int precise_br_compat(struct perf_event *event)
451 {
452 u64 m = event->attr.branch_sample_type;
453 u64 b = 0;
454
455 /* must capture all branches */
456 if (!(m & PERF_SAMPLE_BRANCH_ANY))
457 return 0;
458
459 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
460
461 if (!event->attr.exclude_user)
462 b |= PERF_SAMPLE_BRANCH_USER;
463
464 if (!event->attr.exclude_kernel)
465 b |= PERF_SAMPLE_BRANCH_KERNEL;
466
467 /*
468 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
469 */
470
471 return m == b;
472 }
473
474 int x86_pmu_hw_config(struct perf_event *event)
475 {
476 if (event->attr.precise_ip) {
477 int precise = 0;
478
479 /* Support for constant skid */
480 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
481 precise++;
482
483 /* Support for IP fixup */
484 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
485 precise++;
486
487 if (x86_pmu.pebs_prec_dist)
488 precise++;
489 }
490
491 if (event->attr.precise_ip > precise)
492 return -EOPNOTSUPP;
493 }
494 /*
495 * check that PEBS LBR correction does not conflict with
496 * whatever the user is asking with attr->branch_sample_type
497 */
498 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
499 u64 *br_type = &event->attr.branch_sample_type;
500
501 if (has_branch_stack(event)) {
502 if (!precise_br_compat(event))
503 return -EOPNOTSUPP;
504
505 /* branch_sample_type is compatible */
506
507 } else {
508 /*
509 * user did not specify branch_sample_type
510 *
511 * For PEBS fixups, we capture all
512 * the branches at the priv level of the
513 * event.
514 */
515 *br_type = PERF_SAMPLE_BRANCH_ANY;
516
517 if (!event->attr.exclude_user)
518 *br_type |= PERF_SAMPLE_BRANCH_USER;
519
520 if (!event->attr.exclude_kernel)
521 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
522 }
523 }
524
525 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
526 event->attach_state |= PERF_ATTACH_TASK_DATA;
527
528 /*
529 * Generate PMC IRQs:
530 * (keep 'enabled' bit clear for now)
531 */
532 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
533
534 /*
535 * Count user and OS events unless requested not to
536 */
537 if (!event->attr.exclude_user)
538 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
539 if (!event->attr.exclude_kernel)
540 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
541
542 if (event->attr.type == PERF_TYPE_RAW)
543 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
544
545 if (event->attr.sample_period && x86_pmu.limit_period) {
546 if (x86_pmu.limit_period(event, event->attr.sample_period) >
547 event->attr.sample_period)
548 return -EINVAL;
549 }
550
551 return x86_setup_perfctr(event);
552 }
553
554 /*
555 * Setup the hardware configuration for a given attr_type
556 */
557 static int __x86_pmu_event_init(struct perf_event *event)
558 {
559 int err;
560
561 if (!x86_pmu_initialized())
562 return -ENODEV;
563
564 err = x86_reserve_hardware();
565 if (err)
566 return err;
567
568 atomic_inc(&active_events);
569 event->destroy = hw_perf_event_destroy;
570
571 event->hw.idx = -1;
572 event->hw.last_cpu = -1;
573 event->hw.last_tag = ~0ULL;
574
575 /* mark unused */
576 event->hw.extra_reg.idx = EXTRA_REG_NONE;
577 event->hw.branch_reg.idx = EXTRA_REG_NONE;
578
579 return x86_pmu.hw_config(event);
580 }
581
582 void x86_pmu_disable_all(void)
583 {
584 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
585 int idx;
586
587 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
588 u64 val;
589
590 if (!test_bit(idx, cpuc->active_mask))
591 continue;
592 rdmsrl(x86_pmu_config_addr(idx), val);
593 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
594 continue;
595 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
596 wrmsrl(x86_pmu_config_addr(idx), val);
597 }
598 }
599
600 static void x86_pmu_disable(struct pmu *pmu)
601 {
602 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
603
604 if (!x86_pmu_initialized())
605 return;
606
607 if (!cpuc->enabled)
608 return;
609
610 cpuc->n_added = 0;
611 cpuc->enabled = 0;
612 barrier();
613
614 x86_pmu.disable_all();
615 }
616
617 void x86_pmu_enable_all(int added)
618 {
619 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
620 int idx;
621
622 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
623 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
624
625 if (!test_bit(idx, cpuc->active_mask))
626 continue;
627
628 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
629 }
630 }
631
632 static struct pmu pmu;
633
634 static inline int is_x86_event(struct perf_event *event)
635 {
636 return event->pmu == &pmu;
637 }
638
639 /*
640 * Event scheduler state:
641 *
642 * Assign events iterating over all events and counters, beginning
643 * with events with least weights first. Keep the current iterator
644 * state in struct sched_state.
645 */
646 struct sched_state {
647 int weight;
648 int event; /* event index */
649 int counter; /* counter index */
650 int unassigned; /* number of events to be assigned left */
651 int nr_gp; /* number of GP counters used */
652 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
653 };
654
655 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
656 #define SCHED_STATES_MAX 2
657
658 struct perf_sched {
659 int max_weight;
660 int max_events;
661 int max_gp;
662 int saved_states;
663 struct event_constraint **constraints;
664 struct sched_state state;
665 struct sched_state saved[SCHED_STATES_MAX];
666 };
667
668 /*
669 * Initialize interator that runs through all events and counters.
670 */
671 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
672 int num, int wmin, int wmax, int gpmax)
673 {
674 int idx;
675
676 memset(sched, 0, sizeof(*sched));
677 sched->max_events = num;
678 sched->max_weight = wmax;
679 sched->max_gp = gpmax;
680 sched->constraints = constraints;
681
682 for (idx = 0; idx < num; idx++) {
683 if (constraints[idx]->weight == wmin)
684 break;
685 }
686
687 sched->state.event = idx; /* start with min weight */
688 sched->state.weight = wmin;
689 sched->state.unassigned = num;
690 }
691
692 static void perf_sched_save_state(struct perf_sched *sched)
693 {
694 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
695 return;
696
697 sched->saved[sched->saved_states] = sched->state;
698 sched->saved_states++;
699 }
700
701 static bool perf_sched_restore_state(struct perf_sched *sched)
702 {
703 if (!sched->saved_states)
704 return false;
705
706 sched->saved_states--;
707 sched->state = sched->saved[sched->saved_states];
708
709 /* continue with next counter: */
710 clear_bit(sched->state.counter++, sched->state.used);
711
712 return true;
713 }
714
715 /*
716 * Select a counter for the current event to schedule. Return true on
717 * success.
718 */
719 static bool __perf_sched_find_counter(struct perf_sched *sched)
720 {
721 struct event_constraint *c;
722 int idx;
723
724 if (!sched->state.unassigned)
725 return false;
726
727 if (sched->state.event >= sched->max_events)
728 return false;
729
730 c = sched->constraints[sched->state.event];
731 /* Prefer fixed purpose counters */
732 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
733 idx = INTEL_PMC_IDX_FIXED;
734 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
735 if (!__test_and_set_bit(idx, sched->state.used))
736 goto done;
737 }
738 }
739
740 /* Grab the first unused counter starting with idx */
741 idx = sched->state.counter;
742 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
743 if (!__test_and_set_bit(idx, sched->state.used)) {
744 if (sched->state.nr_gp++ >= sched->max_gp)
745 return false;
746
747 goto done;
748 }
749 }
750
751 return false;
752
753 done:
754 sched->state.counter = idx;
755
756 if (c->overlap)
757 perf_sched_save_state(sched);
758
759 return true;
760 }
761
762 static bool perf_sched_find_counter(struct perf_sched *sched)
763 {
764 while (!__perf_sched_find_counter(sched)) {
765 if (!perf_sched_restore_state(sched))
766 return false;
767 }
768
769 return true;
770 }
771
772 /*
773 * Go through all unassigned events and find the next one to schedule.
774 * Take events with the least weight first. Return true on success.
775 */
776 static bool perf_sched_next_event(struct perf_sched *sched)
777 {
778 struct event_constraint *c;
779
780 if (!sched->state.unassigned || !--sched->state.unassigned)
781 return false;
782
783 do {
784 /* next event */
785 sched->state.event++;
786 if (sched->state.event >= sched->max_events) {
787 /* next weight */
788 sched->state.event = 0;
789 sched->state.weight++;
790 if (sched->state.weight > sched->max_weight)
791 return false;
792 }
793 c = sched->constraints[sched->state.event];
794 } while (c->weight != sched->state.weight);
795
796 sched->state.counter = 0; /* start with first counter */
797
798 return true;
799 }
800
801 /*
802 * Assign a counter for each event.
803 */
804 int perf_assign_events(struct event_constraint **constraints, int n,
805 int wmin, int wmax, int gpmax, int *assign)
806 {
807 struct perf_sched sched;
808
809 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
810
811 do {
812 if (!perf_sched_find_counter(&sched))
813 break; /* failed */
814 if (assign)
815 assign[sched.state.event] = sched.state.counter;
816 } while (perf_sched_next_event(&sched));
817
818 return sched.state.unassigned;
819 }
820 EXPORT_SYMBOL_GPL(perf_assign_events);
821
822 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
823 {
824 struct event_constraint *c;
825 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
826 struct perf_event *e;
827 int i, wmin, wmax, unsched = 0;
828 struct hw_perf_event *hwc;
829
830 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
831
832 if (x86_pmu.start_scheduling)
833 x86_pmu.start_scheduling(cpuc);
834
835 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
836 cpuc->event_constraint[i] = NULL;
837 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
838 cpuc->event_constraint[i] = c;
839
840 wmin = min(wmin, c->weight);
841 wmax = max(wmax, c->weight);
842 }
843
844 /*
845 * fastpath, try to reuse previous register
846 */
847 for (i = 0; i < n; i++) {
848 hwc = &cpuc->event_list[i]->hw;
849 c = cpuc->event_constraint[i];
850
851 /* never assigned */
852 if (hwc->idx == -1)
853 break;
854
855 /* constraint still honored */
856 if (!test_bit(hwc->idx, c->idxmsk))
857 break;
858
859 /* not already used */
860 if (test_bit(hwc->idx, used_mask))
861 break;
862
863 __set_bit(hwc->idx, used_mask);
864 if (assign)
865 assign[i] = hwc->idx;
866 }
867
868 /* slow path */
869 if (i != n) {
870 int gpmax = x86_pmu.num_counters;
871
872 /*
873 * Do not allow scheduling of more than half the available
874 * generic counters.
875 *
876 * This helps avoid counter starvation of sibling thread by
877 * ensuring at most half the counters cannot be in exclusive
878 * mode. There is no designated counters for the limits. Any
879 * N/2 counters can be used. This helps with events with
880 * specific counter constraints.
881 */
882 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
883 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
884 gpmax /= 2;
885
886 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
887 wmax, gpmax, assign);
888 }
889
890 /*
891 * In case of success (unsched = 0), mark events as committed,
892 * so we do not put_constraint() in case new events are added
893 * and fail to be scheduled
894 *
895 * We invoke the lower level commit callback to lock the resource
896 *
897 * We do not need to do all of this in case we are called to
898 * validate an event group (assign == NULL)
899 */
900 if (!unsched && assign) {
901 for (i = 0; i < n; i++) {
902 e = cpuc->event_list[i];
903 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
904 if (x86_pmu.commit_scheduling)
905 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
906 }
907 } else {
908 for (i = 0; i < n; i++) {
909 e = cpuc->event_list[i];
910 /*
911 * do not put_constraint() on comitted events,
912 * because they are good to go
913 */
914 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
915 continue;
916
917 /*
918 * release events that failed scheduling
919 */
920 if (x86_pmu.put_event_constraints)
921 x86_pmu.put_event_constraints(cpuc, e);
922 }
923 }
924
925 if (x86_pmu.stop_scheduling)
926 x86_pmu.stop_scheduling(cpuc);
927
928 return unsched ? -EINVAL : 0;
929 }
930
931 /*
932 * dogrp: true if must collect siblings events (group)
933 * returns total number of events and error code
934 */
935 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
936 {
937 struct perf_event *event;
938 int n, max_count;
939
940 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
941
942 /* current number of events already accepted */
943 n = cpuc->n_events;
944
945 if (is_x86_event(leader)) {
946 if (n >= max_count)
947 return -EINVAL;
948 cpuc->event_list[n] = leader;
949 n++;
950 }
951 if (!dogrp)
952 return n;
953
954 list_for_each_entry(event, &leader->sibling_list, group_entry) {
955 if (!is_x86_event(event) ||
956 event->state <= PERF_EVENT_STATE_OFF)
957 continue;
958
959 if (n >= max_count)
960 return -EINVAL;
961
962 cpuc->event_list[n] = event;
963 n++;
964 }
965 return n;
966 }
967
968 static inline void x86_assign_hw_event(struct perf_event *event,
969 struct cpu_hw_events *cpuc, int i)
970 {
971 struct hw_perf_event *hwc = &event->hw;
972
973 hwc->idx = cpuc->assign[i];
974 hwc->last_cpu = smp_processor_id();
975 hwc->last_tag = ++cpuc->tags[i];
976
977 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
978 hwc->config_base = 0;
979 hwc->event_base = 0;
980 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
981 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
982 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
983 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
984 } else {
985 hwc->config_base = x86_pmu_config_addr(hwc->idx);
986 hwc->event_base = x86_pmu_event_addr(hwc->idx);
987 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
988 }
989 }
990
991 static inline int match_prev_assignment(struct hw_perf_event *hwc,
992 struct cpu_hw_events *cpuc,
993 int i)
994 {
995 return hwc->idx == cpuc->assign[i] &&
996 hwc->last_cpu == smp_processor_id() &&
997 hwc->last_tag == cpuc->tags[i];
998 }
999
1000 static void x86_pmu_start(struct perf_event *event, int flags);
1001
1002 static void x86_pmu_enable(struct pmu *pmu)
1003 {
1004 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1005 struct perf_event *event;
1006 struct hw_perf_event *hwc;
1007 int i, added = cpuc->n_added;
1008
1009 if (!x86_pmu_initialized())
1010 return;
1011
1012 if (cpuc->enabled)
1013 return;
1014
1015 if (cpuc->n_added) {
1016 int n_running = cpuc->n_events - cpuc->n_added;
1017 /*
1018 * apply assignment obtained either from
1019 * hw_perf_group_sched_in() or x86_pmu_enable()
1020 *
1021 * step1: save events moving to new counters
1022 */
1023 for (i = 0; i < n_running; i++) {
1024 event = cpuc->event_list[i];
1025 hwc = &event->hw;
1026
1027 /*
1028 * we can avoid reprogramming counter if:
1029 * - assigned same counter as last time
1030 * - running on same CPU as last time
1031 * - no other event has used the counter since
1032 */
1033 if (hwc->idx == -1 ||
1034 match_prev_assignment(hwc, cpuc, i))
1035 continue;
1036
1037 /*
1038 * Ensure we don't accidentally enable a stopped
1039 * counter simply because we rescheduled.
1040 */
1041 if (hwc->state & PERF_HES_STOPPED)
1042 hwc->state |= PERF_HES_ARCH;
1043
1044 x86_pmu_stop(event, PERF_EF_UPDATE);
1045 }
1046
1047 /*
1048 * step2: reprogram moved events into new counters
1049 */
1050 for (i = 0; i < cpuc->n_events; i++) {
1051 event = cpuc->event_list[i];
1052 hwc = &event->hw;
1053
1054 if (!match_prev_assignment(hwc, cpuc, i))
1055 x86_assign_hw_event(event, cpuc, i);
1056 else if (i < n_running)
1057 continue;
1058
1059 if (hwc->state & PERF_HES_ARCH)
1060 continue;
1061
1062 x86_pmu_start(event, PERF_EF_RELOAD);
1063 }
1064 cpuc->n_added = 0;
1065 perf_events_lapic_init();
1066 }
1067
1068 cpuc->enabled = 1;
1069 barrier();
1070
1071 x86_pmu.enable_all(added);
1072 }
1073
1074 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1075
1076 /*
1077 * Set the next IRQ period, based on the hwc->period_left value.
1078 * To be called with the event disabled in hw:
1079 */
1080 int x86_perf_event_set_period(struct perf_event *event)
1081 {
1082 struct hw_perf_event *hwc = &event->hw;
1083 s64 left = local64_read(&hwc->period_left);
1084 s64 period = hwc->sample_period;
1085 int ret = 0, idx = hwc->idx;
1086
1087 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1088 return 0;
1089
1090 /*
1091 * If we are way outside a reasonable range then just skip forward:
1092 */
1093 if (unlikely(left <= -period)) {
1094 left = period;
1095 local64_set(&hwc->period_left, left);
1096 hwc->last_period = period;
1097 ret = 1;
1098 }
1099
1100 if (unlikely(left <= 0)) {
1101 left += period;
1102 local64_set(&hwc->period_left, left);
1103 hwc->last_period = period;
1104 ret = 1;
1105 }
1106 /*
1107 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1108 */
1109 if (unlikely(left < 2))
1110 left = 2;
1111
1112 if (left > x86_pmu.max_period)
1113 left = x86_pmu.max_period;
1114
1115 if (x86_pmu.limit_period)
1116 left = x86_pmu.limit_period(event, left);
1117
1118 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1119
1120 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1121 local64_read(&hwc->prev_count) != (u64)-left) {
1122 /*
1123 * The hw event starts counting from this event offset,
1124 * mark it to be able to extra future deltas:
1125 */
1126 local64_set(&hwc->prev_count, (u64)-left);
1127
1128 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1129 }
1130
1131 /*
1132 * Due to erratum on certan cpu we need
1133 * a second write to be sure the register
1134 * is updated properly
1135 */
1136 if (x86_pmu.perfctr_second_write) {
1137 wrmsrl(hwc->event_base,
1138 (u64)(-left) & x86_pmu.cntval_mask);
1139 }
1140
1141 perf_event_update_userpage(event);
1142
1143 return ret;
1144 }
1145
1146 void x86_pmu_enable_event(struct perf_event *event)
1147 {
1148 if (__this_cpu_read(cpu_hw_events.enabled))
1149 __x86_pmu_enable_event(&event->hw,
1150 ARCH_PERFMON_EVENTSEL_ENABLE);
1151 }
1152
1153 /*
1154 * Add a single event to the PMU.
1155 *
1156 * The event is added to the group of enabled events
1157 * but only if it can be scehduled with existing events.
1158 */
1159 static int x86_pmu_add(struct perf_event *event, int flags)
1160 {
1161 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1162 struct hw_perf_event *hwc;
1163 int assign[X86_PMC_IDX_MAX];
1164 int n, n0, ret;
1165
1166 hwc = &event->hw;
1167
1168 n0 = cpuc->n_events;
1169 ret = n = collect_events(cpuc, event, false);
1170 if (ret < 0)
1171 goto out;
1172
1173 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1174 if (!(flags & PERF_EF_START))
1175 hwc->state |= PERF_HES_ARCH;
1176
1177 /*
1178 * If group events scheduling transaction was started,
1179 * skip the schedulability test here, it will be performed
1180 * at commit time (->commit_txn) as a whole.
1181 */
1182 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1183 goto done_collect;
1184
1185 ret = x86_pmu.schedule_events(cpuc, n, assign);
1186 if (ret)
1187 goto out;
1188 /*
1189 * copy new assignment, now we know it is possible
1190 * will be used by hw_perf_enable()
1191 */
1192 memcpy(cpuc->assign, assign, n*sizeof(int));
1193
1194 done_collect:
1195 /*
1196 * Commit the collect_events() state. See x86_pmu_del() and
1197 * x86_pmu_*_txn().
1198 */
1199 cpuc->n_events = n;
1200 cpuc->n_added += n - n0;
1201 cpuc->n_txn += n - n0;
1202
1203 ret = 0;
1204 out:
1205 return ret;
1206 }
1207
1208 static void x86_pmu_start(struct perf_event *event, int flags)
1209 {
1210 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1211 int idx = event->hw.idx;
1212
1213 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1214 return;
1215
1216 if (WARN_ON_ONCE(idx == -1))
1217 return;
1218
1219 if (flags & PERF_EF_RELOAD) {
1220 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1221 x86_perf_event_set_period(event);
1222 }
1223
1224 event->hw.state = 0;
1225
1226 cpuc->events[idx] = event;
1227 __set_bit(idx, cpuc->active_mask);
1228 __set_bit(idx, cpuc->running);
1229 x86_pmu.enable(event);
1230 perf_event_update_userpage(event);
1231 }
1232
1233 void perf_event_print_debug(void)
1234 {
1235 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1236 u64 pebs, debugctl;
1237 struct cpu_hw_events *cpuc;
1238 unsigned long flags;
1239 int cpu, idx;
1240
1241 if (!x86_pmu.num_counters)
1242 return;
1243
1244 local_irq_save(flags);
1245
1246 cpu = smp_processor_id();
1247 cpuc = &per_cpu(cpu_hw_events, cpu);
1248
1249 if (x86_pmu.version >= 2) {
1250 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1251 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1252 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1253 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1254
1255 pr_info("\n");
1256 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1257 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1258 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1259 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1260 if (x86_pmu.pebs_constraints) {
1261 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1262 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1263 }
1264 if (x86_pmu.lbr_nr) {
1265 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1266 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1267 }
1268 }
1269 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1270
1271 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1272 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1273 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1274
1275 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1276
1277 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1278 cpu, idx, pmc_ctrl);
1279 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1280 cpu, idx, pmc_count);
1281 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1282 cpu, idx, prev_left);
1283 }
1284 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1285 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1286
1287 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1288 cpu, idx, pmc_count);
1289 }
1290 local_irq_restore(flags);
1291 }
1292
1293 void x86_pmu_stop(struct perf_event *event, int flags)
1294 {
1295 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1296 struct hw_perf_event *hwc = &event->hw;
1297
1298 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1299 x86_pmu.disable(event);
1300 cpuc->events[hwc->idx] = NULL;
1301 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1302 hwc->state |= PERF_HES_STOPPED;
1303 }
1304
1305 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1306 /*
1307 * Drain the remaining delta count out of a event
1308 * that we are disabling:
1309 */
1310 x86_perf_event_update(event);
1311 hwc->state |= PERF_HES_UPTODATE;
1312 }
1313 }
1314
1315 static void x86_pmu_del(struct perf_event *event, int flags)
1316 {
1317 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1318 int i;
1319
1320 /*
1321 * event is descheduled
1322 */
1323 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1324
1325 /*
1326 * If we're called during a txn, we don't need to do anything.
1327 * The events never got scheduled and ->cancel_txn will truncate
1328 * the event_list.
1329 *
1330 * XXX assumes any ->del() called during a TXN will only be on
1331 * an event added during that same TXN.
1332 */
1333 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1334 return;
1335
1336 /*
1337 * Not a TXN, therefore cleanup properly.
1338 */
1339 x86_pmu_stop(event, PERF_EF_UPDATE);
1340
1341 for (i = 0; i < cpuc->n_events; i++) {
1342 if (event == cpuc->event_list[i])
1343 break;
1344 }
1345
1346 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1347 return;
1348
1349 /* If we have a newly added event; make sure to decrease n_added. */
1350 if (i >= cpuc->n_events - cpuc->n_added)
1351 --cpuc->n_added;
1352
1353 if (x86_pmu.put_event_constraints)
1354 x86_pmu.put_event_constraints(cpuc, event);
1355
1356 /* Delete the array entry. */
1357 while (++i < cpuc->n_events) {
1358 cpuc->event_list[i-1] = cpuc->event_list[i];
1359 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1360 }
1361 --cpuc->n_events;
1362
1363 perf_event_update_userpage(event);
1364 }
1365
1366 int x86_pmu_handle_irq(struct pt_regs *regs)
1367 {
1368 struct perf_sample_data data;
1369 struct cpu_hw_events *cpuc;
1370 struct perf_event *event;
1371 int idx, handled = 0;
1372 u64 val;
1373
1374 cpuc = this_cpu_ptr(&cpu_hw_events);
1375
1376 /*
1377 * Some chipsets need to unmask the LVTPC in a particular spot
1378 * inside the nmi handler. As a result, the unmasking was pushed
1379 * into all the nmi handlers.
1380 *
1381 * This generic handler doesn't seem to have any issues where the
1382 * unmasking occurs so it was left at the top.
1383 */
1384 apic_write(APIC_LVTPC, APIC_DM_NMI);
1385
1386 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1387 if (!test_bit(idx, cpuc->active_mask)) {
1388 /*
1389 * Though we deactivated the counter some cpus
1390 * might still deliver spurious interrupts still
1391 * in flight. Catch them:
1392 */
1393 if (__test_and_clear_bit(idx, cpuc->running))
1394 handled++;
1395 continue;
1396 }
1397
1398 event = cpuc->events[idx];
1399
1400 val = x86_perf_event_update(event);
1401 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1402 continue;
1403
1404 /*
1405 * event overflow
1406 */
1407 handled++;
1408 perf_sample_data_init(&data, 0, event->hw.last_period);
1409
1410 if (!x86_perf_event_set_period(event))
1411 continue;
1412
1413 if (perf_event_overflow(event, &data, regs))
1414 x86_pmu_stop(event, 0);
1415 }
1416
1417 if (handled)
1418 inc_irq_stat(apic_perf_irqs);
1419
1420 return handled;
1421 }
1422
1423 void perf_events_lapic_init(void)
1424 {
1425 if (!x86_pmu.apic || !x86_pmu_initialized())
1426 return;
1427
1428 /*
1429 * Always use NMI for PMU
1430 */
1431 apic_write(APIC_LVTPC, APIC_DM_NMI);
1432 }
1433
1434 static int
1435 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1436 {
1437 u64 start_clock;
1438 u64 finish_clock;
1439 int ret;
1440
1441 /*
1442 * All PMUs/events that share this PMI handler should make sure to
1443 * increment active_events for their events.
1444 */
1445 if (!atomic_read(&active_events))
1446 return NMI_DONE;
1447
1448 start_clock = sched_clock();
1449 ret = x86_pmu.handle_irq(regs);
1450 finish_clock = sched_clock();
1451
1452 perf_sample_event_took(finish_clock - start_clock);
1453
1454 return ret;
1455 }
1456 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1457
1458 struct event_constraint emptyconstraint;
1459 struct event_constraint unconstrained;
1460
1461 static int
1462 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1463 {
1464 unsigned int cpu = (long)hcpu;
1465 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1466 int i, ret = NOTIFY_OK;
1467
1468 switch (action & ~CPU_TASKS_FROZEN) {
1469 case CPU_UP_PREPARE:
1470 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1471 cpuc->kfree_on_online[i] = NULL;
1472 if (x86_pmu.cpu_prepare)
1473 ret = x86_pmu.cpu_prepare(cpu);
1474 break;
1475
1476 case CPU_STARTING:
1477 if (x86_pmu.cpu_starting)
1478 x86_pmu.cpu_starting(cpu);
1479 break;
1480
1481 case CPU_ONLINE:
1482 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1483 kfree(cpuc->kfree_on_online[i]);
1484 cpuc->kfree_on_online[i] = NULL;
1485 }
1486 break;
1487
1488 case CPU_DYING:
1489 if (x86_pmu.cpu_dying)
1490 x86_pmu.cpu_dying(cpu);
1491 break;
1492
1493 case CPU_UP_CANCELED:
1494 case CPU_DEAD:
1495 if (x86_pmu.cpu_dead)
1496 x86_pmu.cpu_dead(cpu);
1497 break;
1498
1499 default:
1500 break;
1501 }
1502
1503 return ret;
1504 }
1505
1506 static void __init pmu_check_apic(void)
1507 {
1508 if (cpu_has_apic)
1509 return;
1510
1511 x86_pmu.apic = 0;
1512 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1513 pr_info("no hardware sampling interrupt available.\n");
1514
1515 /*
1516 * If we have a PMU initialized but no APIC
1517 * interrupts, we cannot sample hardware
1518 * events (user-space has to fall back and
1519 * sample via a hrtimer based software event):
1520 */
1521 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1522
1523 }
1524
1525 static struct attribute_group x86_pmu_format_group = {
1526 .name = "format",
1527 .attrs = NULL,
1528 };
1529
1530 /*
1531 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1532 * out of events_attr attributes.
1533 */
1534 static void __init filter_events(struct attribute **attrs)
1535 {
1536 struct device_attribute *d;
1537 struct perf_pmu_events_attr *pmu_attr;
1538 int offset = 0;
1539 int i, j;
1540
1541 for (i = 0; attrs[i]; i++) {
1542 d = (struct device_attribute *)attrs[i];
1543 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1544 /* str trumps id */
1545 if (pmu_attr->event_str)
1546 continue;
1547 if (x86_pmu.event_map(i + offset))
1548 continue;
1549
1550 for (j = i; attrs[j]; j++)
1551 attrs[j] = attrs[j + 1];
1552
1553 /* Check the shifted attr. */
1554 i--;
1555
1556 /*
1557 * event_map() is index based, the attrs array is organized
1558 * by increasing event index. If we shift the events, then
1559 * we need to compensate for the event_map(), otherwise
1560 * we are looking up the wrong event in the map
1561 */
1562 offset++;
1563 }
1564 }
1565
1566 /* Merge two pointer arrays */
1567 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1568 {
1569 struct attribute **new;
1570 int j, i;
1571
1572 for (j = 0; a[j]; j++)
1573 ;
1574 for (i = 0; b[i]; i++)
1575 j++;
1576 j++;
1577
1578 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1579 if (!new)
1580 return NULL;
1581
1582 j = 0;
1583 for (i = 0; a[i]; i++)
1584 new[j++] = a[i];
1585 for (i = 0; b[i]; i++)
1586 new[j++] = b[i];
1587 new[j] = NULL;
1588
1589 return new;
1590 }
1591
1592 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1593 char *page)
1594 {
1595 struct perf_pmu_events_attr *pmu_attr = \
1596 container_of(attr, struct perf_pmu_events_attr, attr);
1597 u64 config = x86_pmu.event_map(pmu_attr->id);
1598
1599 /* string trumps id */
1600 if (pmu_attr->event_str)
1601 return sprintf(page, "%s", pmu_attr->event_str);
1602
1603 return x86_pmu.events_sysfs_show(page, config);
1604 }
1605
1606 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1607 EVENT_ATTR(instructions, INSTRUCTIONS );
1608 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1609 EVENT_ATTR(cache-misses, CACHE_MISSES );
1610 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1611 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1612 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1613 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1614 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1615 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1616
1617 static struct attribute *empty_attrs;
1618
1619 static struct attribute *events_attr[] = {
1620 EVENT_PTR(CPU_CYCLES),
1621 EVENT_PTR(INSTRUCTIONS),
1622 EVENT_PTR(CACHE_REFERENCES),
1623 EVENT_PTR(CACHE_MISSES),
1624 EVENT_PTR(BRANCH_INSTRUCTIONS),
1625 EVENT_PTR(BRANCH_MISSES),
1626 EVENT_PTR(BUS_CYCLES),
1627 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1628 EVENT_PTR(STALLED_CYCLES_BACKEND),
1629 EVENT_PTR(REF_CPU_CYCLES),
1630 NULL,
1631 };
1632
1633 static struct attribute_group x86_pmu_events_group = {
1634 .name = "events",
1635 .attrs = events_attr,
1636 };
1637
1638 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1639 {
1640 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1641 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1642 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1643 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1644 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1645 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1646 ssize_t ret;
1647
1648 /*
1649 * We have whole page size to spend and just little data
1650 * to write, so we can safely use sprintf.
1651 */
1652 ret = sprintf(page, "event=0x%02llx", event);
1653
1654 if (umask)
1655 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1656
1657 if (edge)
1658 ret += sprintf(page + ret, ",edge");
1659
1660 if (pc)
1661 ret += sprintf(page + ret, ",pc");
1662
1663 if (any)
1664 ret += sprintf(page + ret, ",any");
1665
1666 if (inv)
1667 ret += sprintf(page + ret, ",inv");
1668
1669 if (cmask)
1670 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1671
1672 ret += sprintf(page + ret, "\n");
1673
1674 return ret;
1675 }
1676
1677 static int __init init_hw_perf_events(void)
1678 {
1679 struct x86_pmu_quirk *quirk;
1680 int err;
1681
1682 pr_info("Performance Events: ");
1683
1684 switch (boot_cpu_data.x86_vendor) {
1685 case X86_VENDOR_INTEL:
1686 err = intel_pmu_init();
1687 break;
1688 case X86_VENDOR_AMD:
1689 err = amd_pmu_init();
1690 break;
1691 default:
1692 err = -ENOTSUPP;
1693 }
1694 if (err != 0) {
1695 pr_cont("no PMU driver, software events only.\n");
1696 return 0;
1697 }
1698
1699 pmu_check_apic();
1700
1701 /* sanity check that the hardware exists or is emulated */
1702 if (!check_hw_exists())
1703 return 0;
1704
1705 pr_cont("%s PMU driver.\n", x86_pmu.name);
1706
1707 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1708
1709 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1710 quirk->func();
1711
1712 if (!x86_pmu.intel_ctrl)
1713 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1714
1715 perf_events_lapic_init();
1716 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1717
1718 unconstrained = (struct event_constraint)
1719 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1720 0, x86_pmu.num_counters, 0, 0);
1721
1722 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1723
1724 if (x86_pmu.event_attrs)
1725 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1726
1727 if (!x86_pmu.events_sysfs_show)
1728 x86_pmu_events_group.attrs = &empty_attrs;
1729 else
1730 filter_events(x86_pmu_events_group.attrs);
1731
1732 if (x86_pmu.cpu_events) {
1733 struct attribute **tmp;
1734
1735 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1736 if (!WARN_ON(!tmp))
1737 x86_pmu_events_group.attrs = tmp;
1738 }
1739
1740 pr_info("... version: %d\n", x86_pmu.version);
1741 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1742 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1743 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1744 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1745 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1746 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1747
1748 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1749 perf_cpu_notifier(x86_pmu_notifier);
1750
1751 return 0;
1752 }
1753 early_initcall(init_hw_perf_events);
1754
1755 static inline void x86_pmu_read(struct perf_event *event)
1756 {
1757 x86_perf_event_update(event);
1758 }
1759
1760 /*
1761 * Start group events scheduling transaction
1762 * Set the flag to make pmu::enable() not perform the
1763 * schedulability test, it will be performed at commit time
1764 *
1765 * We only support PERF_PMU_TXN_ADD transactions. Save the
1766 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1767 * transactions.
1768 */
1769 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1770 {
1771 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1772
1773 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1774
1775 cpuc->txn_flags = txn_flags;
1776 if (txn_flags & ~PERF_PMU_TXN_ADD)
1777 return;
1778
1779 perf_pmu_disable(pmu);
1780 __this_cpu_write(cpu_hw_events.n_txn, 0);
1781 }
1782
1783 /*
1784 * Stop group events scheduling transaction
1785 * Clear the flag and pmu::enable() will perform the
1786 * schedulability test.
1787 */
1788 static void x86_pmu_cancel_txn(struct pmu *pmu)
1789 {
1790 unsigned int txn_flags;
1791 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1792
1793 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1794
1795 txn_flags = cpuc->txn_flags;
1796 cpuc->txn_flags = 0;
1797 if (txn_flags & ~PERF_PMU_TXN_ADD)
1798 return;
1799
1800 /*
1801 * Truncate collected array by the number of events added in this
1802 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1803 */
1804 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1805 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1806 perf_pmu_enable(pmu);
1807 }
1808
1809 /*
1810 * Commit group events scheduling transaction
1811 * Perform the group schedulability test as a whole
1812 * Return 0 if success
1813 *
1814 * Does not cancel the transaction on failure; expects the caller to do this.
1815 */
1816 static int x86_pmu_commit_txn(struct pmu *pmu)
1817 {
1818 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1819 int assign[X86_PMC_IDX_MAX];
1820 int n, ret;
1821
1822 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1823
1824 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1825 cpuc->txn_flags = 0;
1826 return 0;
1827 }
1828
1829 n = cpuc->n_events;
1830
1831 if (!x86_pmu_initialized())
1832 return -EAGAIN;
1833
1834 ret = x86_pmu.schedule_events(cpuc, n, assign);
1835 if (ret)
1836 return ret;
1837
1838 /*
1839 * copy new assignment, now we know it is possible
1840 * will be used by hw_perf_enable()
1841 */
1842 memcpy(cpuc->assign, assign, n*sizeof(int));
1843
1844 cpuc->txn_flags = 0;
1845 perf_pmu_enable(pmu);
1846 return 0;
1847 }
1848 /*
1849 * a fake_cpuc is used to validate event groups. Due to
1850 * the extra reg logic, we need to also allocate a fake
1851 * per_core and per_cpu structure. Otherwise, group events
1852 * using extra reg may conflict without the kernel being
1853 * able to catch this when the last event gets added to
1854 * the group.
1855 */
1856 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1857 {
1858 kfree(cpuc->shared_regs);
1859 kfree(cpuc);
1860 }
1861
1862 static struct cpu_hw_events *allocate_fake_cpuc(void)
1863 {
1864 struct cpu_hw_events *cpuc;
1865 int cpu = raw_smp_processor_id();
1866
1867 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1868 if (!cpuc)
1869 return ERR_PTR(-ENOMEM);
1870
1871 /* only needed, if we have extra_regs */
1872 if (x86_pmu.extra_regs) {
1873 cpuc->shared_regs = allocate_shared_regs(cpu);
1874 if (!cpuc->shared_regs)
1875 goto error;
1876 }
1877 cpuc->is_fake = 1;
1878 return cpuc;
1879 error:
1880 free_fake_cpuc(cpuc);
1881 return ERR_PTR(-ENOMEM);
1882 }
1883
1884 /*
1885 * validate that we can schedule this event
1886 */
1887 static int validate_event(struct perf_event *event)
1888 {
1889 struct cpu_hw_events *fake_cpuc;
1890 struct event_constraint *c;
1891 int ret = 0;
1892
1893 fake_cpuc = allocate_fake_cpuc();
1894 if (IS_ERR(fake_cpuc))
1895 return PTR_ERR(fake_cpuc);
1896
1897 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1898
1899 if (!c || !c->weight)
1900 ret = -EINVAL;
1901
1902 if (x86_pmu.put_event_constraints)
1903 x86_pmu.put_event_constraints(fake_cpuc, event);
1904
1905 free_fake_cpuc(fake_cpuc);
1906
1907 return ret;
1908 }
1909
1910 /*
1911 * validate a single event group
1912 *
1913 * validation include:
1914 * - check events are compatible which each other
1915 * - events do not compete for the same counter
1916 * - number of events <= number of counters
1917 *
1918 * validation ensures the group can be loaded onto the
1919 * PMU if it was the only group available.
1920 */
1921 static int validate_group(struct perf_event *event)
1922 {
1923 struct perf_event *leader = event->group_leader;
1924 struct cpu_hw_events *fake_cpuc;
1925 int ret = -EINVAL, n;
1926
1927 fake_cpuc = allocate_fake_cpuc();
1928 if (IS_ERR(fake_cpuc))
1929 return PTR_ERR(fake_cpuc);
1930 /*
1931 * the event is not yet connected with its
1932 * siblings therefore we must first collect
1933 * existing siblings, then add the new event
1934 * before we can simulate the scheduling
1935 */
1936 n = collect_events(fake_cpuc, leader, true);
1937 if (n < 0)
1938 goto out;
1939
1940 fake_cpuc->n_events = n;
1941 n = collect_events(fake_cpuc, event, false);
1942 if (n < 0)
1943 goto out;
1944
1945 fake_cpuc->n_events = n;
1946
1947 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1948
1949 out:
1950 free_fake_cpuc(fake_cpuc);
1951 return ret;
1952 }
1953
1954 static int x86_pmu_event_init(struct perf_event *event)
1955 {
1956 struct pmu *tmp;
1957 int err;
1958
1959 switch (event->attr.type) {
1960 case PERF_TYPE_RAW:
1961 case PERF_TYPE_HARDWARE:
1962 case PERF_TYPE_HW_CACHE:
1963 break;
1964
1965 default:
1966 return -ENOENT;
1967 }
1968
1969 err = __x86_pmu_event_init(event);
1970 if (!err) {
1971 /*
1972 * we temporarily connect event to its pmu
1973 * such that validate_group() can classify
1974 * it as an x86 event using is_x86_event()
1975 */
1976 tmp = event->pmu;
1977 event->pmu = &pmu;
1978
1979 if (event->group_leader != event)
1980 err = validate_group(event);
1981 else
1982 err = validate_event(event);
1983
1984 event->pmu = tmp;
1985 }
1986 if (err) {
1987 if (event->destroy)
1988 event->destroy(event);
1989 }
1990
1991 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1992 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1993
1994 return err;
1995 }
1996
1997 static void refresh_pce(void *ignored)
1998 {
1999 if (current->mm)
2000 load_mm_cr4(current->mm);
2001 }
2002
2003 static void x86_pmu_event_mapped(struct perf_event *event)
2004 {
2005 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2006 return;
2007
2008 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2009 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2010 }
2011
2012 static void x86_pmu_event_unmapped(struct perf_event *event)
2013 {
2014 if (!current->mm)
2015 return;
2016
2017 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2018 return;
2019
2020 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2021 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2022 }
2023
2024 static int x86_pmu_event_idx(struct perf_event *event)
2025 {
2026 int idx = event->hw.idx;
2027
2028 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2029 return 0;
2030
2031 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2032 idx -= INTEL_PMC_IDX_FIXED;
2033 idx |= 1 << 30;
2034 }
2035
2036 return idx + 1;
2037 }
2038
2039 static ssize_t get_attr_rdpmc(struct device *cdev,
2040 struct device_attribute *attr,
2041 char *buf)
2042 {
2043 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2044 }
2045
2046 static ssize_t set_attr_rdpmc(struct device *cdev,
2047 struct device_attribute *attr,
2048 const char *buf, size_t count)
2049 {
2050 unsigned long val;
2051 ssize_t ret;
2052
2053 ret = kstrtoul(buf, 0, &val);
2054 if (ret)
2055 return ret;
2056
2057 if (val > 2)
2058 return -EINVAL;
2059
2060 if (x86_pmu.attr_rdpmc_broken)
2061 return -ENOTSUPP;
2062
2063 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2064 /*
2065 * Changing into or out of always available, aka
2066 * perf-event-bypassing mode. This path is extremely slow,
2067 * but only root can trigger it, so it's okay.
2068 */
2069 if (val == 2)
2070 static_key_slow_inc(&rdpmc_always_available);
2071 else
2072 static_key_slow_dec(&rdpmc_always_available);
2073 on_each_cpu(refresh_pce, NULL, 1);
2074 }
2075
2076 x86_pmu.attr_rdpmc = val;
2077
2078 return count;
2079 }
2080
2081 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2082
2083 static struct attribute *x86_pmu_attrs[] = {
2084 &dev_attr_rdpmc.attr,
2085 NULL,
2086 };
2087
2088 static struct attribute_group x86_pmu_attr_group = {
2089 .attrs = x86_pmu_attrs,
2090 };
2091
2092 static const struct attribute_group *x86_pmu_attr_groups[] = {
2093 &x86_pmu_attr_group,
2094 &x86_pmu_format_group,
2095 &x86_pmu_events_group,
2096 NULL,
2097 };
2098
2099 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2100 {
2101 if (x86_pmu.sched_task)
2102 x86_pmu.sched_task(ctx, sched_in);
2103 }
2104
2105 void perf_check_microcode(void)
2106 {
2107 if (x86_pmu.check_microcode)
2108 x86_pmu.check_microcode();
2109 }
2110 EXPORT_SYMBOL_GPL(perf_check_microcode);
2111
2112 static struct pmu pmu = {
2113 .pmu_enable = x86_pmu_enable,
2114 .pmu_disable = x86_pmu_disable,
2115
2116 .attr_groups = x86_pmu_attr_groups,
2117
2118 .event_init = x86_pmu_event_init,
2119
2120 .event_mapped = x86_pmu_event_mapped,
2121 .event_unmapped = x86_pmu_event_unmapped,
2122
2123 .add = x86_pmu_add,
2124 .del = x86_pmu_del,
2125 .start = x86_pmu_start,
2126 .stop = x86_pmu_stop,
2127 .read = x86_pmu_read,
2128
2129 .start_txn = x86_pmu_start_txn,
2130 .cancel_txn = x86_pmu_cancel_txn,
2131 .commit_txn = x86_pmu_commit_txn,
2132
2133 .event_idx = x86_pmu_event_idx,
2134 .sched_task = x86_pmu_sched_task,
2135 .task_ctx_size = sizeof(struct x86_perf_task_context),
2136 };
2137
2138 void arch_perf_update_userpage(struct perf_event *event,
2139 struct perf_event_mmap_page *userpg, u64 now)
2140 {
2141 struct cyc2ns_data *data;
2142
2143 userpg->cap_user_time = 0;
2144 userpg->cap_user_time_zero = 0;
2145 userpg->cap_user_rdpmc =
2146 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2147 userpg->pmc_width = x86_pmu.cntval_bits;
2148
2149 if (!sched_clock_stable())
2150 return;
2151
2152 data = cyc2ns_read_begin();
2153
2154 /*
2155 * Internal timekeeping for enabled/running/stopped times
2156 * is always in the local_clock domain.
2157 */
2158 userpg->cap_user_time = 1;
2159 userpg->time_mult = data->cyc2ns_mul;
2160 userpg->time_shift = data->cyc2ns_shift;
2161 userpg->time_offset = data->cyc2ns_offset - now;
2162
2163 /*
2164 * cap_user_time_zero doesn't make sense when we're using a different
2165 * time base for the records.
2166 */
2167 if (event->clock == &local_clock) {
2168 userpg->cap_user_time_zero = 1;
2169 userpg->time_zero = data->cyc2ns_offset;
2170 }
2171
2172 cyc2ns_read_end(data);
2173 }
2174
2175 /*
2176 * callchain support
2177 */
2178
2179 static int backtrace_stack(void *data, char *name)
2180 {
2181 return 0;
2182 }
2183
2184 static void backtrace_address(void *data, unsigned long addr, int reliable)
2185 {
2186 struct perf_callchain_entry *entry = data;
2187
2188 perf_callchain_store(entry, addr);
2189 }
2190
2191 static const struct stacktrace_ops backtrace_ops = {
2192 .stack = backtrace_stack,
2193 .address = backtrace_address,
2194 .walk_stack = print_context_stack_bp,
2195 };
2196
2197 void
2198 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2199 {
2200 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2201 /* TODO: We don't support guest os callchain now */
2202 return;
2203 }
2204
2205 perf_callchain_store(entry, regs->ip);
2206
2207 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2208 }
2209
2210 static inline int
2211 valid_user_frame(const void __user *fp, unsigned long size)
2212 {
2213 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2214 }
2215
2216 static unsigned long get_segment_base(unsigned int segment)
2217 {
2218 struct desc_struct *desc;
2219 int idx = segment >> 3;
2220
2221 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2222 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2223 struct ldt_struct *ldt;
2224
2225 if (idx > LDT_ENTRIES)
2226 return 0;
2227
2228 /* IRQs are off, so this synchronizes with smp_store_release */
2229 ldt = lockless_dereference(current->active_mm->context.ldt);
2230 if (!ldt || idx > ldt->size)
2231 return 0;
2232
2233 desc = &ldt->entries[idx];
2234 #else
2235 return 0;
2236 #endif
2237 } else {
2238 if (idx > GDT_ENTRIES)
2239 return 0;
2240
2241 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2242 }
2243
2244 return get_desc_base(desc);
2245 }
2246
2247 #ifdef CONFIG_IA32_EMULATION
2248
2249 #include <asm/compat.h>
2250
2251 static inline int
2252 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2253 {
2254 /* 32-bit process in 64-bit kernel. */
2255 unsigned long ss_base, cs_base;
2256 struct stack_frame_ia32 frame;
2257 const void __user *fp;
2258
2259 if (!test_thread_flag(TIF_IA32))
2260 return 0;
2261
2262 cs_base = get_segment_base(regs->cs);
2263 ss_base = get_segment_base(regs->ss);
2264
2265 fp = compat_ptr(ss_base + regs->bp);
2266 pagefault_disable();
2267 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2268 unsigned long bytes;
2269 frame.next_frame = 0;
2270 frame.return_address = 0;
2271
2272 if (!access_ok(VERIFY_READ, fp, 8))
2273 break;
2274
2275 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2276 if (bytes != 0)
2277 break;
2278 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2279 if (bytes != 0)
2280 break;
2281
2282 if (!valid_user_frame(fp, sizeof(frame)))
2283 break;
2284
2285 perf_callchain_store(entry, cs_base + frame.return_address);
2286 fp = compat_ptr(ss_base + frame.next_frame);
2287 }
2288 pagefault_enable();
2289 return 1;
2290 }
2291 #else
2292 static inline int
2293 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2294 {
2295 return 0;
2296 }
2297 #endif
2298
2299 void
2300 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2301 {
2302 struct stack_frame frame;
2303 const void __user *fp;
2304
2305 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2306 /* TODO: We don't support guest os callchain now */
2307 return;
2308 }
2309
2310 /*
2311 * We don't know what to do with VM86 stacks.. ignore them for now.
2312 */
2313 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2314 return;
2315
2316 fp = (void __user *)regs->bp;
2317
2318 perf_callchain_store(entry, regs->ip);
2319
2320 if (!current->mm)
2321 return;
2322
2323 if (perf_callchain_user32(regs, entry))
2324 return;
2325
2326 pagefault_disable();
2327 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2328 unsigned long bytes;
2329 frame.next_frame = NULL;
2330 frame.return_address = 0;
2331
2332 if (!access_ok(VERIFY_READ, fp, 16))
2333 break;
2334
2335 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2336 if (bytes != 0)
2337 break;
2338 bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
2339 if (bytes != 0)
2340 break;
2341
2342 if (!valid_user_frame(fp, sizeof(frame)))
2343 break;
2344
2345 perf_callchain_store(entry, frame.return_address);
2346 fp = (void __user *)frame.next_frame;
2347 }
2348 pagefault_enable();
2349 }
2350
2351 /*
2352 * Deal with code segment offsets for the various execution modes:
2353 *
2354 * VM86 - the good olde 16 bit days, where the linear address is
2355 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2356 *
2357 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2358 * to figure out what the 32bit base address is.
2359 *
2360 * X32 - has TIF_X32 set, but is running in x86_64
2361 *
2362 * X86_64 - CS,DS,SS,ES are all zero based.
2363 */
2364 static unsigned long code_segment_base(struct pt_regs *regs)
2365 {
2366 /*
2367 * For IA32 we look at the GDT/LDT segment base to convert the
2368 * effective IP to a linear address.
2369 */
2370
2371 #ifdef CONFIG_X86_32
2372 /*
2373 * If we are in VM86 mode, add the segment offset to convert to a
2374 * linear address.
2375 */
2376 if (regs->flags & X86_VM_MASK)
2377 return 0x10 * regs->cs;
2378
2379 if (user_mode(regs) && regs->cs != __USER_CS)
2380 return get_segment_base(regs->cs);
2381 #else
2382 if (user_mode(regs) && !user_64bit_mode(regs) &&
2383 regs->cs != __USER32_CS)
2384 return get_segment_base(regs->cs);
2385 #endif
2386 return 0;
2387 }
2388
2389 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2390 {
2391 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2392 return perf_guest_cbs->get_guest_ip();
2393
2394 return regs->ip + code_segment_base(regs);
2395 }
2396
2397 unsigned long perf_misc_flags(struct pt_regs *regs)
2398 {
2399 int misc = 0;
2400
2401 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2402 if (perf_guest_cbs->is_user_mode())
2403 misc |= PERF_RECORD_MISC_GUEST_USER;
2404 else
2405 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2406 } else {
2407 if (user_mode(regs))
2408 misc |= PERF_RECORD_MISC_USER;
2409 else
2410 misc |= PERF_RECORD_MISC_KERNEL;
2411 }
2412
2413 if (regs->flags & PERF_EFLAGS_EXACT)
2414 misc |= PERF_RECORD_MISC_EXACT_IP;
2415
2416 return misc;
2417 }
2418
2419 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2420 {
2421 cap->version = x86_pmu.version;
2422 cap->num_counters_gp = x86_pmu.num_counters;
2423 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2424 cap->bit_width_gp = x86_pmu.cntval_bits;
2425 cap->bit_width_fixed = x86_pmu.cntval_bits;
2426 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2427 cap->events_mask_len = x86_pmu.events_mask_len;
2428 }
2429 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.08091 seconds and 5 git commands to generate.