perf tools: Test -fstack-protector-all compiler option for inclusion in CFLAGS
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 *
11 * For licencing details see kernel-base/COPYING
12 */
13
14 #include <linux/perf_event.h>
15 #include <linux/capability.h>
16 #include <linux/notifier.h>
17 #include <linux/hardirq.h>
18 #include <linux/kprobes.h>
19 #include <linux/module.h>
20 #include <linux/kdebug.h>
21 #include <linux/sched.h>
22 #include <linux/uaccess.h>
23 #include <linux/highmem.h>
24 #include <linux/cpu.h>
25
26 #include <asm/apic.h>
27 #include <asm/stacktrace.h>
28 #include <asm/nmi.h>
29
30 static u64 perf_event_mask __read_mostly;
31
32 /* The maximal number of PEBS events: */
33 #define MAX_PEBS_EVENTS 4
34
35 /* The size of a BTS record in bytes: */
36 #define BTS_RECORD_SIZE 24
37
38 /* The size of a per-cpu BTS buffer in bytes: */
39 #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
40
41 /* The BTS overflow threshold in bytes from the end of the buffer: */
42 #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
43
44
45 /*
46 * Bits in the debugctlmsr controlling branch tracing.
47 */
48 #define X86_DEBUGCTL_TR (1 << 6)
49 #define X86_DEBUGCTL_BTS (1 << 7)
50 #define X86_DEBUGCTL_BTINT (1 << 8)
51 #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
52 #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
53
54 /*
55 * A debug store configuration.
56 *
57 * We only support architectures that use 64bit fields.
58 */
59 struct debug_store {
60 u64 bts_buffer_base;
61 u64 bts_index;
62 u64 bts_absolute_maximum;
63 u64 bts_interrupt_threshold;
64 u64 pebs_buffer_base;
65 u64 pebs_index;
66 u64 pebs_absolute_maximum;
67 u64 pebs_interrupt_threshold;
68 u64 pebs_event_reset[MAX_PEBS_EVENTS];
69 };
70
71 struct cpu_hw_events {
72 struct perf_event *events[X86_PMC_IDX_MAX];
73 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
74 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
75 unsigned long interrupts;
76 int enabled;
77 struct debug_store *ds;
78 };
79
80 struct event_constraint {
81 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
82 int code;
83 };
84
85 #define EVENT_CONSTRAINT(c, m) { .code = (c), .idxmsk[0] = (m) }
86 #define EVENT_CONSTRAINT_END { .code = 0, .idxmsk[0] = 0 }
87
88 #define for_each_event_constraint(e, c) \
89 for ((e) = (c); (e)->idxmsk[0]; (e)++)
90
91
92 /*
93 * struct x86_pmu - generic x86 pmu
94 */
95 struct x86_pmu {
96 const char *name;
97 int version;
98 int (*handle_irq)(struct pt_regs *);
99 void (*disable_all)(void);
100 void (*enable_all)(void);
101 void (*enable)(struct hw_perf_event *, int);
102 void (*disable)(struct hw_perf_event *, int);
103 unsigned eventsel;
104 unsigned perfctr;
105 u64 (*event_map)(int);
106 u64 (*raw_event)(u64);
107 int max_events;
108 int num_events;
109 int num_events_fixed;
110 int event_bits;
111 u64 event_mask;
112 int apic;
113 u64 max_period;
114 u64 intel_ctrl;
115 void (*enable_bts)(u64 config);
116 void (*disable_bts)(void);
117 int (*get_event_idx)(struct cpu_hw_events *cpuc,
118 struct hw_perf_event *hwc);
119 };
120
121 static struct x86_pmu x86_pmu __read_mostly;
122
123 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
124 .enabled = 1,
125 };
126
127 static const struct event_constraint *event_constraints;
128
129 /*
130 * Not sure about some of these
131 */
132 static const u64 p6_perfmon_event_map[] =
133 {
134 [PERF_COUNT_HW_CPU_CYCLES] = 0x0079,
135 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
136 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0f2e,
137 [PERF_COUNT_HW_CACHE_MISSES] = 0x012e,
138 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
139 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
140 [PERF_COUNT_HW_BUS_CYCLES] = 0x0062,
141 };
142
143 static u64 p6_pmu_event_map(int hw_event)
144 {
145 return p6_perfmon_event_map[hw_event];
146 }
147
148 /*
149 * Event setting that is specified not to count anything.
150 * We use this to effectively disable a counter.
151 *
152 * L2_RQSTS with 0 MESI unit mask.
153 */
154 #define P6_NOP_EVENT 0x0000002EULL
155
156 static u64 p6_pmu_raw_event(u64 hw_event)
157 {
158 #define P6_EVNTSEL_EVENT_MASK 0x000000FFULL
159 #define P6_EVNTSEL_UNIT_MASK 0x0000FF00ULL
160 #define P6_EVNTSEL_EDGE_MASK 0x00040000ULL
161 #define P6_EVNTSEL_INV_MASK 0x00800000ULL
162 #define P6_EVNTSEL_REG_MASK 0xFF000000ULL
163
164 #define P6_EVNTSEL_MASK \
165 (P6_EVNTSEL_EVENT_MASK | \
166 P6_EVNTSEL_UNIT_MASK | \
167 P6_EVNTSEL_EDGE_MASK | \
168 P6_EVNTSEL_INV_MASK | \
169 P6_EVNTSEL_REG_MASK)
170
171 return hw_event & P6_EVNTSEL_MASK;
172 }
173
174 static const struct event_constraint intel_p6_event_constraints[] =
175 {
176 EVENT_CONSTRAINT(0xc1, 0x1), /* FLOPS */
177 EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
178 EVENT_CONSTRAINT(0x11, 0x1), /* FP_ASSIST */
179 EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
180 EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
181 EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
182 EVENT_CONSTRAINT_END
183 };
184
185 /*
186 * Intel PerfMon v3. Used on Core2 and later.
187 */
188 static const u64 intel_perfmon_event_map[] =
189 {
190 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
191 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
192 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
193 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
194 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
195 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
196 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
197 };
198
199 static const struct event_constraint intel_core_event_constraints[] =
200 {
201 EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
202 EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
203 EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
204 EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
205 EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
206 EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
207 EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
208 EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
209 EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
210 EVENT_CONSTRAINT_END
211 };
212
213 static const struct event_constraint intel_nehalem_event_constraints[] =
214 {
215 EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
216 EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
217 EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
218 EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
219 EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
220 EVENT_CONSTRAINT(0x4c, 0x3), /* LOAD_HIT_PRE */
221 EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
222 EVENT_CONSTRAINT(0x52, 0x3), /* L1D_CACHE_PREFETCH_LOCK_FB_HIT */
223 EVENT_CONSTRAINT(0x53, 0x3), /* L1D_CACHE_LOCK_FB_HIT */
224 EVENT_CONSTRAINT(0xc5, 0x3), /* CACHE_LOCK_CYCLES */
225 EVENT_CONSTRAINT_END
226 };
227
228 static u64 intel_pmu_event_map(int hw_event)
229 {
230 return intel_perfmon_event_map[hw_event];
231 }
232
233 /*
234 * Generalized hw caching related hw_event table, filled
235 * in on a per model basis. A value of 0 means
236 * 'not supported', -1 means 'hw_event makes no sense on
237 * this CPU', any other value means the raw hw_event
238 * ID.
239 */
240
241 #define C(x) PERF_COUNT_HW_CACHE_##x
242
243 static u64 __read_mostly hw_cache_event_ids
244 [PERF_COUNT_HW_CACHE_MAX]
245 [PERF_COUNT_HW_CACHE_OP_MAX]
246 [PERF_COUNT_HW_CACHE_RESULT_MAX];
247
248 static const u64 nehalem_hw_cache_event_ids
249 [PERF_COUNT_HW_CACHE_MAX]
250 [PERF_COUNT_HW_CACHE_OP_MAX]
251 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
252 {
253 [ C(L1D) ] = {
254 [ C(OP_READ) ] = {
255 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
256 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
257 },
258 [ C(OP_WRITE) ] = {
259 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
260 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
261 },
262 [ C(OP_PREFETCH) ] = {
263 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
264 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
265 },
266 },
267 [ C(L1I ) ] = {
268 [ C(OP_READ) ] = {
269 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
270 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
271 },
272 [ C(OP_WRITE) ] = {
273 [ C(RESULT_ACCESS) ] = -1,
274 [ C(RESULT_MISS) ] = -1,
275 },
276 [ C(OP_PREFETCH) ] = {
277 [ C(RESULT_ACCESS) ] = 0x0,
278 [ C(RESULT_MISS) ] = 0x0,
279 },
280 },
281 [ C(LL ) ] = {
282 [ C(OP_READ) ] = {
283 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
284 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
285 },
286 [ C(OP_WRITE) ] = {
287 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
288 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
289 },
290 [ C(OP_PREFETCH) ] = {
291 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
292 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
293 },
294 },
295 [ C(DTLB) ] = {
296 [ C(OP_READ) ] = {
297 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
298 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
299 },
300 [ C(OP_WRITE) ] = {
301 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
302 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
303 },
304 [ C(OP_PREFETCH) ] = {
305 [ C(RESULT_ACCESS) ] = 0x0,
306 [ C(RESULT_MISS) ] = 0x0,
307 },
308 },
309 [ C(ITLB) ] = {
310 [ C(OP_READ) ] = {
311 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
312 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
313 },
314 [ C(OP_WRITE) ] = {
315 [ C(RESULT_ACCESS) ] = -1,
316 [ C(RESULT_MISS) ] = -1,
317 },
318 [ C(OP_PREFETCH) ] = {
319 [ C(RESULT_ACCESS) ] = -1,
320 [ C(RESULT_MISS) ] = -1,
321 },
322 },
323 [ C(BPU ) ] = {
324 [ C(OP_READ) ] = {
325 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
326 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
327 },
328 [ C(OP_WRITE) ] = {
329 [ C(RESULT_ACCESS) ] = -1,
330 [ C(RESULT_MISS) ] = -1,
331 },
332 [ C(OP_PREFETCH) ] = {
333 [ C(RESULT_ACCESS) ] = -1,
334 [ C(RESULT_MISS) ] = -1,
335 },
336 },
337 };
338
339 static const u64 core2_hw_cache_event_ids
340 [PERF_COUNT_HW_CACHE_MAX]
341 [PERF_COUNT_HW_CACHE_OP_MAX]
342 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
343 {
344 [ C(L1D) ] = {
345 [ C(OP_READ) ] = {
346 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
347 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
348 },
349 [ C(OP_WRITE) ] = {
350 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
351 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
352 },
353 [ C(OP_PREFETCH) ] = {
354 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
355 [ C(RESULT_MISS) ] = 0,
356 },
357 },
358 [ C(L1I ) ] = {
359 [ C(OP_READ) ] = {
360 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
361 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
362 },
363 [ C(OP_WRITE) ] = {
364 [ C(RESULT_ACCESS) ] = -1,
365 [ C(RESULT_MISS) ] = -1,
366 },
367 [ C(OP_PREFETCH) ] = {
368 [ C(RESULT_ACCESS) ] = 0,
369 [ C(RESULT_MISS) ] = 0,
370 },
371 },
372 [ C(LL ) ] = {
373 [ C(OP_READ) ] = {
374 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
375 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
376 },
377 [ C(OP_WRITE) ] = {
378 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
379 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
380 },
381 [ C(OP_PREFETCH) ] = {
382 [ C(RESULT_ACCESS) ] = 0,
383 [ C(RESULT_MISS) ] = 0,
384 },
385 },
386 [ C(DTLB) ] = {
387 [ C(OP_READ) ] = {
388 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
389 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
390 },
391 [ C(OP_WRITE) ] = {
392 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
393 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
394 },
395 [ C(OP_PREFETCH) ] = {
396 [ C(RESULT_ACCESS) ] = 0,
397 [ C(RESULT_MISS) ] = 0,
398 },
399 },
400 [ C(ITLB) ] = {
401 [ C(OP_READ) ] = {
402 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
403 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
404 },
405 [ C(OP_WRITE) ] = {
406 [ C(RESULT_ACCESS) ] = -1,
407 [ C(RESULT_MISS) ] = -1,
408 },
409 [ C(OP_PREFETCH) ] = {
410 [ C(RESULT_ACCESS) ] = -1,
411 [ C(RESULT_MISS) ] = -1,
412 },
413 },
414 [ C(BPU ) ] = {
415 [ C(OP_READ) ] = {
416 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
417 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
418 },
419 [ C(OP_WRITE) ] = {
420 [ C(RESULT_ACCESS) ] = -1,
421 [ C(RESULT_MISS) ] = -1,
422 },
423 [ C(OP_PREFETCH) ] = {
424 [ C(RESULT_ACCESS) ] = -1,
425 [ C(RESULT_MISS) ] = -1,
426 },
427 },
428 };
429
430 static const u64 atom_hw_cache_event_ids
431 [PERF_COUNT_HW_CACHE_MAX]
432 [PERF_COUNT_HW_CACHE_OP_MAX]
433 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
434 {
435 [ C(L1D) ] = {
436 [ C(OP_READ) ] = {
437 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
438 [ C(RESULT_MISS) ] = 0,
439 },
440 [ C(OP_WRITE) ] = {
441 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
442 [ C(RESULT_MISS) ] = 0,
443 },
444 [ C(OP_PREFETCH) ] = {
445 [ C(RESULT_ACCESS) ] = 0x0,
446 [ C(RESULT_MISS) ] = 0,
447 },
448 },
449 [ C(L1I ) ] = {
450 [ C(OP_READ) ] = {
451 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
452 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
453 },
454 [ C(OP_WRITE) ] = {
455 [ C(RESULT_ACCESS) ] = -1,
456 [ C(RESULT_MISS) ] = -1,
457 },
458 [ C(OP_PREFETCH) ] = {
459 [ C(RESULT_ACCESS) ] = 0,
460 [ C(RESULT_MISS) ] = 0,
461 },
462 },
463 [ C(LL ) ] = {
464 [ C(OP_READ) ] = {
465 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
466 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
467 },
468 [ C(OP_WRITE) ] = {
469 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
470 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
471 },
472 [ C(OP_PREFETCH) ] = {
473 [ C(RESULT_ACCESS) ] = 0,
474 [ C(RESULT_MISS) ] = 0,
475 },
476 },
477 [ C(DTLB) ] = {
478 [ C(OP_READ) ] = {
479 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
480 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
481 },
482 [ C(OP_WRITE) ] = {
483 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
484 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
485 },
486 [ C(OP_PREFETCH) ] = {
487 [ C(RESULT_ACCESS) ] = 0,
488 [ C(RESULT_MISS) ] = 0,
489 },
490 },
491 [ C(ITLB) ] = {
492 [ C(OP_READ) ] = {
493 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
494 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
495 },
496 [ C(OP_WRITE) ] = {
497 [ C(RESULT_ACCESS) ] = -1,
498 [ C(RESULT_MISS) ] = -1,
499 },
500 [ C(OP_PREFETCH) ] = {
501 [ C(RESULT_ACCESS) ] = -1,
502 [ C(RESULT_MISS) ] = -1,
503 },
504 },
505 [ C(BPU ) ] = {
506 [ C(OP_READ) ] = {
507 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
508 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
509 },
510 [ C(OP_WRITE) ] = {
511 [ C(RESULT_ACCESS) ] = -1,
512 [ C(RESULT_MISS) ] = -1,
513 },
514 [ C(OP_PREFETCH) ] = {
515 [ C(RESULT_ACCESS) ] = -1,
516 [ C(RESULT_MISS) ] = -1,
517 },
518 },
519 };
520
521 static u64 intel_pmu_raw_event(u64 hw_event)
522 {
523 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
524 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
525 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
526 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
527 #define CORE_EVNTSEL_REG_MASK 0xFF000000ULL
528
529 #define CORE_EVNTSEL_MASK \
530 (CORE_EVNTSEL_EVENT_MASK | \
531 CORE_EVNTSEL_UNIT_MASK | \
532 CORE_EVNTSEL_EDGE_MASK | \
533 CORE_EVNTSEL_INV_MASK | \
534 CORE_EVNTSEL_REG_MASK)
535
536 return hw_event & CORE_EVNTSEL_MASK;
537 }
538
539 static const u64 amd_hw_cache_event_ids
540 [PERF_COUNT_HW_CACHE_MAX]
541 [PERF_COUNT_HW_CACHE_OP_MAX]
542 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
543 {
544 [ C(L1D) ] = {
545 [ C(OP_READ) ] = {
546 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
547 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
548 },
549 [ C(OP_WRITE) ] = {
550 [ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
551 [ C(RESULT_MISS) ] = 0,
552 },
553 [ C(OP_PREFETCH) ] = {
554 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
555 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
556 },
557 },
558 [ C(L1I ) ] = {
559 [ C(OP_READ) ] = {
560 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
561 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
562 },
563 [ C(OP_WRITE) ] = {
564 [ C(RESULT_ACCESS) ] = -1,
565 [ C(RESULT_MISS) ] = -1,
566 },
567 [ C(OP_PREFETCH) ] = {
568 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
569 [ C(RESULT_MISS) ] = 0,
570 },
571 },
572 [ C(LL ) ] = {
573 [ C(OP_READ) ] = {
574 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
575 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
576 },
577 [ C(OP_WRITE) ] = {
578 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
579 [ C(RESULT_MISS) ] = 0,
580 },
581 [ C(OP_PREFETCH) ] = {
582 [ C(RESULT_ACCESS) ] = 0,
583 [ C(RESULT_MISS) ] = 0,
584 },
585 },
586 [ C(DTLB) ] = {
587 [ C(OP_READ) ] = {
588 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
589 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
590 },
591 [ C(OP_WRITE) ] = {
592 [ C(RESULT_ACCESS) ] = 0,
593 [ C(RESULT_MISS) ] = 0,
594 },
595 [ C(OP_PREFETCH) ] = {
596 [ C(RESULT_ACCESS) ] = 0,
597 [ C(RESULT_MISS) ] = 0,
598 },
599 },
600 [ C(ITLB) ] = {
601 [ C(OP_READ) ] = {
602 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
603 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
604 },
605 [ C(OP_WRITE) ] = {
606 [ C(RESULT_ACCESS) ] = -1,
607 [ C(RESULT_MISS) ] = -1,
608 },
609 [ C(OP_PREFETCH) ] = {
610 [ C(RESULT_ACCESS) ] = -1,
611 [ C(RESULT_MISS) ] = -1,
612 },
613 },
614 [ C(BPU ) ] = {
615 [ C(OP_READ) ] = {
616 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
617 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
618 },
619 [ C(OP_WRITE) ] = {
620 [ C(RESULT_ACCESS) ] = -1,
621 [ C(RESULT_MISS) ] = -1,
622 },
623 [ C(OP_PREFETCH) ] = {
624 [ C(RESULT_ACCESS) ] = -1,
625 [ C(RESULT_MISS) ] = -1,
626 },
627 },
628 };
629
630 /*
631 * AMD Performance Monitor K7 and later.
632 */
633 static const u64 amd_perfmon_event_map[] =
634 {
635 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
636 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
637 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
638 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
639 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
640 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
641 };
642
643 static u64 amd_pmu_event_map(int hw_event)
644 {
645 return amd_perfmon_event_map[hw_event];
646 }
647
648 static u64 amd_pmu_raw_event(u64 hw_event)
649 {
650 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
651 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
652 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
653 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
654 #define K7_EVNTSEL_REG_MASK 0x0FF000000ULL
655
656 #define K7_EVNTSEL_MASK \
657 (K7_EVNTSEL_EVENT_MASK | \
658 K7_EVNTSEL_UNIT_MASK | \
659 K7_EVNTSEL_EDGE_MASK | \
660 K7_EVNTSEL_INV_MASK | \
661 K7_EVNTSEL_REG_MASK)
662
663 return hw_event & K7_EVNTSEL_MASK;
664 }
665
666 /*
667 * Propagate event elapsed time into the generic event.
668 * Can only be executed on the CPU where the event is active.
669 * Returns the delta events processed.
670 */
671 static u64
672 x86_perf_event_update(struct perf_event *event,
673 struct hw_perf_event *hwc, int idx)
674 {
675 int shift = 64 - x86_pmu.event_bits;
676 u64 prev_raw_count, new_raw_count;
677 s64 delta;
678
679 if (idx == X86_PMC_IDX_FIXED_BTS)
680 return 0;
681
682 /*
683 * Careful: an NMI might modify the previous event value.
684 *
685 * Our tactic to handle this is to first atomically read and
686 * exchange a new raw count - then add that new-prev delta
687 * count to the generic event atomically:
688 */
689 again:
690 prev_raw_count = atomic64_read(&hwc->prev_count);
691 rdmsrl(hwc->event_base + idx, new_raw_count);
692
693 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
694 new_raw_count) != prev_raw_count)
695 goto again;
696
697 /*
698 * Now we have the new raw value and have updated the prev
699 * timestamp already. We can now calculate the elapsed delta
700 * (event-)time and add that to the generic event.
701 *
702 * Careful, not all hw sign-extends above the physical width
703 * of the count.
704 */
705 delta = (new_raw_count << shift) - (prev_raw_count << shift);
706 delta >>= shift;
707
708 atomic64_add(delta, &event->count);
709 atomic64_sub(delta, &hwc->period_left);
710
711 return new_raw_count;
712 }
713
714 static atomic_t active_events;
715 static DEFINE_MUTEX(pmc_reserve_mutex);
716
717 static bool reserve_pmc_hardware(void)
718 {
719 #ifdef CONFIG_X86_LOCAL_APIC
720 int i;
721
722 if (nmi_watchdog == NMI_LOCAL_APIC)
723 disable_lapic_nmi_watchdog();
724
725 for (i = 0; i < x86_pmu.num_events; i++) {
726 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
727 goto perfctr_fail;
728 }
729
730 for (i = 0; i < x86_pmu.num_events; i++) {
731 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
732 goto eventsel_fail;
733 }
734 #endif
735
736 return true;
737
738 #ifdef CONFIG_X86_LOCAL_APIC
739 eventsel_fail:
740 for (i--; i >= 0; i--)
741 release_evntsel_nmi(x86_pmu.eventsel + i);
742
743 i = x86_pmu.num_events;
744
745 perfctr_fail:
746 for (i--; i >= 0; i--)
747 release_perfctr_nmi(x86_pmu.perfctr + i);
748
749 if (nmi_watchdog == NMI_LOCAL_APIC)
750 enable_lapic_nmi_watchdog();
751
752 return false;
753 #endif
754 }
755
756 static void release_pmc_hardware(void)
757 {
758 #ifdef CONFIG_X86_LOCAL_APIC
759 int i;
760
761 for (i = 0; i < x86_pmu.num_events; i++) {
762 release_perfctr_nmi(x86_pmu.perfctr + i);
763 release_evntsel_nmi(x86_pmu.eventsel + i);
764 }
765
766 if (nmi_watchdog == NMI_LOCAL_APIC)
767 enable_lapic_nmi_watchdog();
768 #endif
769 }
770
771 static inline bool bts_available(void)
772 {
773 return x86_pmu.enable_bts != NULL;
774 }
775
776 static inline void init_debug_store_on_cpu(int cpu)
777 {
778 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
779
780 if (!ds)
781 return;
782
783 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
784 (u32)((u64)(unsigned long)ds),
785 (u32)((u64)(unsigned long)ds >> 32));
786 }
787
788 static inline void fini_debug_store_on_cpu(int cpu)
789 {
790 if (!per_cpu(cpu_hw_events, cpu).ds)
791 return;
792
793 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
794 }
795
796 static void release_bts_hardware(void)
797 {
798 int cpu;
799
800 if (!bts_available())
801 return;
802
803 get_online_cpus();
804
805 for_each_online_cpu(cpu)
806 fini_debug_store_on_cpu(cpu);
807
808 for_each_possible_cpu(cpu) {
809 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
810
811 if (!ds)
812 continue;
813
814 per_cpu(cpu_hw_events, cpu).ds = NULL;
815
816 kfree((void *)(unsigned long)ds->bts_buffer_base);
817 kfree(ds);
818 }
819
820 put_online_cpus();
821 }
822
823 static int reserve_bts_hardware(void)
824 {
825 int cpu, err = 0;
826
827 if (!bts_available())
828 return 0;
829
830 get_online_cpus();
831
832 for_each_possible_cpu(cpu) {
833 struct debug_store *ds;
834 void *buffer;
835
836 err = -ENOMEM;
837 buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
838 if (unlikely(!buffer))
839 break;
840
841 ds = kzalloc(sizeof(*ds), GFP_KERNEL);
842 if (unlikely(!ds)) {
843 kfree(buffer);
844 break;
845 }
846
847 ds->bts_buffer_base = (u64)(unsigned long)buffer;
848 ds->bts_index = ds->bts_buffer_base;
849 ds->bts_absolute_maximum =
850 ds->bts_buffer_base + BTS_BUFFER_SIZE;
851 ds->bts_interrupt_threshold =
852 ds->bts_absolute_maximum - BTS_OVFL_TH;
853
854 per_cpu(cpu_hw_events, cpu).ds = ds;
855 err = 0;
856 }
857
858 if (err)
859 release_bts_hardware();
860 else {
861 for_each_online_cpu(cpu)
862 init_debug_store_on_cpu(cpu);
863 }
864
865 put_online_cpus();
866
867 return err;
868 }
869
870 static void hw_perf_event_destroy(struct perf_event *event)
871 {
872 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
873 release_pmc_hardware();
874 release_bts_hardware();
875 mutex_unlock(&pmc_reserve_mutex);
876 }
877 }
878
879 static inline int x86_pmu_initialized(void)
880 {
881 return x86_pmu.handle_irq != NULL;
882 }
883
884 static inline int
885 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
886 {
887 unsigned int cache_type, cache_op, cache_result;
888 u64 config, val;
889
890 config = attr->config;
891
892 cache_type = (config >> 0) & 0xff;
893 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
894 return -EINVAL;
895
896 cache_op = (config >> 8) & 0xff;
897 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
898 return -EINVAL;
899
900 cache_result = (config >> 16) & 0xff;
901 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
902 return -EINVAL;
903
904 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
905
906 if (val == 0)
907 return -ENOENT;
908
909 if (val == -1)
910 return -EINVAL;
911
912 hwc->config |= val;
913
914 return 0;
915 }
916
917 static void intel_pmu_enable_bts(u64 config)
918 {
919 unsigned long debugctlmsr;
920
921 debugctlmsr = get_debugctlmsr();
922
923 debugctlmsr |= X86_DEBUGCTL_TR;
924 debugctlmsr |= X86_DEBUGCTL_BTS;
925 debugctlmsr |= X86_DEBUGCTL_BTINT;
926
927 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
928 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_OS;
929
930 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
931 debugctlmsr |= X86_DEBUGCTL_BTS_OFF_USR;
932
933 update_debugctlmsr(debugctlmsr);
934 }
935
936 static void intel_pmu_disable_bts(void)
937 {
938 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
939 unsigned long debugctlmsr;
940
941 if (!cpuc->ds)
942 return;
943
944 debugctlmsr = get_debugctlmsr();
945
946 debugctlmsr &=
947 ~(X86_DEBUGCTL_TR | X86_DEBUGCTL_BTS | X86_DEBUGCTL_BTINT |
948 X86_DEBUGCTL_BTS_OFF_OS | X86_DEBUGCTL_BTS_OFF_USR);
949
950 update_debugctlmsr(debugctlmsr);
951 }
952
953 /*
954 * Setup the hardware configuration for a given attr_type
955 */
956 static int __hw_perf_event_init(struct perf_event *event)
957 {
958 struct perf_event_attr *attr = &event->attr;
959 struct hw_perf_event *hwc = &event->hw;
960 u64 config;
961 int err;
962
963 if (!x86_pmu_initialized())
964 return -ENODEV;
965
966 err = 0;
967 if (!atomic_inc_not_zero(&active_events)) {
968 mutex_lock(&pmc_reserve_mutex);
969 if (atomic_read(&active_events) == 0) {
970 if (!reserve_pmc_hardware())
971 err = -EBUSY;
972 else
973 err = reserve_bts_hardware();
974 }
975 if (!err)
976 atomic_inc(&active_events);
977 mutex_unlock(&pmc_reserve_mutex);
978 }
979 if (err)
980 return err;
981
982 event->destroy = hw_perf_event_destroy;
983
984 /*
985 * Generate PMC IRQs:
986 * (keep 'enabled' bit clear for now)
987 */
988 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
989
990 hwc->idx = -1;
991
992 /*
993 * Count user and OS events unless requested not to.
994 */
995 if (!attr->exclude_user)
996 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
997 if (!attr->exclude_kernel)
998 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
999
1000 if (!hwc->sample_period) {
1001 hwc->sample_period = x86_pmu.max_period;
1002 hwc->last_period = hwc->sample_period;
1003 atomic64_set(&hwc->period_left, hwc->sample_period);
1004 } else {
1005 /*
1006 * If we have a PMU initialized but no APIC
1007 * interrupts, we cannot sample hardware
1008 * events (user-space has to fall back and
1009 * sample via a hrtimer based software event):
1010 */
1011 if (!x86_pmu.apic)
1012 return -EOPNOTSUPP;
1013 }
1014
1015 /*
1016 * Raw hw_event type provide the config in the hw_event structure
1017 */
1018 if (attr->type == PERF_TYPE_RAW) {
1019 hwc->config |= x86_pmu.raw_event(attr->config);
1020 return 0;
1021 }
1022
1023 if (attr->type == PERF_TYPE_HW_CACHE)
1024 return set_ext_hw_attr(hwc, attr);
1025
1026 if (attr->config >= x86_pmu.max_events)
1027 return -EINVAL;
1028
1029 /*
1030 * The generic map:
1031 */
1032 config = x86_pmu.event_map(attr->config);
1033
1034 if (config == 0)
1035 return -ENOENT;
1036
1037 if (config == -1LL)
1038 return -EINVAL;
1039
1040 /*
1041 * Branch tracing:
1042 */
1043 if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
1044 (hwc->sample_period == 1)) {
1045 /* BTS is not supported by this architecture. */
1046 if (!bts_available())
1047 return -EOPNOTSUPP;
1048
1049 /* BTS is currently only allowed for user-mode. */
1050 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1051 return -EOPNOTSUPP;
1052 }
1053
1054 hwc->config |= config;
1055
1056 return 0;
1057 }
1058
1059 static void p6_pmu_disable_all(void)
1060 {
1061 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1062 u64 val;
1063
1064 if (!cpuc->enabled)
1065 return;
1066
1067 cpuc->enabled = 0;
1068 barrier();
1069
1070 /* p6 only has one enable register */
1071 rdmsrl(MSR_P6_EVNTSEL0, val);
1072 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1073 wrmsrl(MSR_P6_EVNTSEL0, val);
1074 }
1075
1076 static void intel_pmu_disable_all(void)
1077 {
1078 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1079
1080 if (!cpuc->enabled)
1081 return;
1082
1083 cpuc->enabled = 0;
1084 barrier();
1085
1086 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1087
1088 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1089 intel_pmu_disable_bts();
1090 }
1091
1092 static void amd_pmu_disable_all(void)
1093 {
1094 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1095 int idx;
1096
1097 if (!cpuc->enabled)
1098 return;
1099
1100 cpuc->enabled = 0;
1101 /*
1102 * ensure we write the disable before we start disabling the
1103 * events proper, so that amd_pmu_enable_event() does the
1104 * right thing.
1105 */
1106 barrier();
1107
1108 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1109 u64 val;
1110
1111 if (!test_bit(idx, cpuc->active_mask))
1112 continue;
1113 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
1114 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
1115 continue;
1116 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
1117 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
1118 }
1119 }
1120
1121 void hw_perf_disable(void)
1122 {
1123 if (!x86_pmu_initialized())
1124 return;
1125 return x86_pmu.disable_all();
1126 }
1127
1128 static void p6_pmu_enable_all(void)
1129 {
1130 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1131 unsigned long val;
1132
1133 if (cpuc->enabled)
1134 return;
1135
1136 cpuc->enabled = 1;
1137 barrier();
1138
1139 /* p6 only has one enable register */
1140 rdmsrl(MSR_P6_EVNTSEL0, val);
1141 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1142 wrmsrl(MSR_P6_EVNTSEL0, val);
1143 }
1144
1145 static void intel_pmu_enable_all(void)
1146 {
1147 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1148
1149 if (cpuc->enabled)
1150 return;
1151
1152 cpuc->enabled = 1;
1153 barrier();
1154
1155 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1156
1157 if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1158 struct perf_event *event =
1159 cpuc->events[X86_PMC_IDX_FIXED_BTS];
1160
1161 if (WARN_ON_ONCE(!event))
1162 return;
1163
1164 intel_pmu_enable_bts(event->hw.config);
1165 }
1166 }
1167
1168 static void amd_pmu_enable_all(void)
1169 {
1170 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1171 int idx;
1172
1173 if (cpuc->enabled)
1174 return;
1175
1176 cpuc->enabled = 1;
1177 barrier();
1178
1179 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1180 struct perf_event *event = cpuc->events[idx];
1181 u64 val;
1182
1183 if (!test_bit(idx, cpuc->active_mask))
1184 continue;
1185
1186 val = event->hw.config;
1187 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1188 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
1189 }
1190 }
1191
1192 void hw_perf_enable(void)
1193 {
1194 if (!x86_pmu_initialized())
1195 return;
1196 x86_pmu.enable_all();
1197 }
1198
1199 static inline u64 intel_pmu_get_status(void)
1200 {
1201 u64 status;
1202
1203 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1204
1205 return status;
1206 }
1207
1208 static inline void intel_pmu_ack_status(u64 ack)
1209 {
1210 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1211 }
1212
1213 static inline void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1214 {
1215 (void)checking_wrmsrl(hwc->config_base + idx,
1216 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
1217 }
1218
1219 static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
1220 {
1221 (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
1222 }
1223
1224 static inline void
1225 intel_pmu_disable_fixed(struct hw_perf_event *hwc, int __idx)
1226 {
1227 int idx = __idx - X86_PMC_IDX_FIXED;
1228 u64 ctrl_val, mask;
1229
1230 mask = 0xfULL << (idx * 4);
1231
1232 rdmsrl(hwc->config_base, ctrl_val);
1233 ctrl_val &= ~mask;
1234 (void)checking_wrmsrl(hwc->config_base, ctrl_val);
1235 }
1236
1237 static inline void
1238 p6_pmu_disable_event(struct hw_perf_event *hwc, int idx)
1239 {
1240 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1241 u64 val = P6_NOP_EVENT;
1242
1243 if (cpuc->enabled)
1244 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1245
1246 (void)checking_wrmsrl(hwc->config_base + idx, val);
1247 }
1248
1249 static inline void
1250 intel_pmu_disable_event(struct hw_perf_event *hwc, int idx)
1251 {
1252 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1253 intel_pmu_disable_bts();
1254 return;
1255 }
1256
1257 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1258 intel_pmu_disable_fixed(hwc, idx);
1259 return;
1260 }
1261
1262 x86_pmu_disable_event(hwc, idx);
1263 }
1264
1265 static inline void
1266 amd_pmu_disable_event(struct hw_perf_event *hwc, int idx)
1267 {
1268 x86_pmu_disable_event(hwc, idx);
1269 }
1270
1271 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1272
1273 /*
1274 * Set the next IRQ period, based on the hwc->period_left value.
1275 * To be called with the event disabled in hw:
1276 */
1277 static int
1278 x86_perf_event_set_period(struct perf_event *event,
1279 struct hw_perf_event *hwc, int idx)
1280 {
1281 s64 left = atomic64_read(&hwc->period_left);
1282 s64 period = hwc->sample_period;
1283 int err, ret = 0;
1284
1285 if (idx == X86_PMC_IDX_FIXED_BTS)
1286 return 0;
1287
1288 /*
1289 * If we are way outside a reasoable range then just skip forward:
1290 */
1291 if (unlikely(left <= -period)) {
1292 left = period;
1293 atomic64_set(&hwc->period_left, left);
1294 hwc->last_period = period;
1295 ret = 1;
1296 }
1297
1298 if (unlikely(left <= 0)) {
1299 left += period;
1300 atomic64_set(&hwc->period_left, left);
1301 hwc->last_period = period;
1302 ret = 1;
1303 }
1304 /*
1305 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1306 */
1307 if (unlikely(left < 2))
1308 left = 2;
1309
1310 if (left > x86_pmu.max_period)
1311 left = x86_pmu.max_period;
1312
1313 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1314
1315 /*
1316 * The hw event starts counting from this event offset,
1317 * mark it to be able to extra future deltas:
1318 */
1319 atomic64_set(&hwc->prev_count, (u64)-left);
1320
1321 err = checking_wrmsrl(hwc->event_base + idx,
1322 (u64)(-left) & x86_pmu.event_mask);
1323
1324 perf_event_update_userpage(event);
1325
1326 return ret;
1327 }
1328
1329 static inline void
1330 intel_pmu_enable_fixed(struct hw_perf_event *hwc, int __idx)
1331 {
1332 int idx = __idx - X86_PMC_IDX_FIXED;
1333 u64 ctrl_val, bits, mask;
1334 int err;
1335
1336 /*
1337 * Enable IRQ generation (0x8),
1338 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1339 * if requested:
1340 */
1341 bits = 0x8ULL;
1342 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1343 bits |= 0x2;
1344 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1345 bits |= 0x1;
1346 bits <<= (idx * 4);
1347 mask = 0xfULL << (idx * 4);
1348
1349 rdmsrl(hwc->config_base, ctrl_val);
1350 ctrl_val &= ~mask;
1351 ctrl_val |= bits;
1352 err = checking_wrmsrl(hwc->config_base, ctrl_val);
1353 }
1354
1355 static void p6_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1356 {
1357 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1358 u64 val;
1359
1360 val = hwc->config;
1361 if (cpuc->enabled)
1362 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
1363
1364 (void)checking_wrmsrl(hwc->config_base + idx, val);
1365 }
1366
1367
1368 static void intel_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1369 {
1370 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS)) {
1371 if (!__get_cpu_var(cpu_hw_events).enabled)
1372 return;
1373
1374 intel_pmu_enable_bts(hwc->config);
1375 return;
1376 }
1377
1378 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1379 intel_pmu_enable_fixed(hwc, idx);
1380 return;
1381 }
1382
1383 x86_pmu_enable_event(hwc, idx);
1384 }
1385
1386 static void amd_pmu_enable_event(struct hw_perf_event *hwc, int idx)
1387 {
1388 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1389
1390 if (cpuc->enabled)
1391 x86_pmu_enable_event(hwc, idx);
1392 }
1393
1394 static int fixed_mode_idx(struct hw_perf_event *hwc)
1395 {
1396 unsigned int hw_event;
1397
1398 hw_event = hwc->config & ARCH_PERFMON_EVENT_MASK;
1399
1400 if (unlikely((hw_event ==
1401 x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS)) &&
1402 (hwc->sample_period == 1)))
1403 return X86_PMC_IDX_FIXED_BTS;
1404
1405 if (!x86_pmu.num_events_fixed)
1406 return -1;
1407
1408 /*
1409 * fixed counters do not take all possible filters
1410 */
1411 if (hwc->config & ARCH_PERFMON_EVENT_FILTER_MASK)
1412 return -1;
1413
1414 if (unlikely(hw_event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
1415 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
1416 if (unlikely(hw_event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
1417 return X86_PMC_IDX_FIXED_CPU_CYCLES;
1418 if (unlikely(hw_event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
1419 return X86_PMC_IDX_FIXED_BUS_CYCLES;
1420
1421 return -1;
1422 }
1423
1424 /*
1425 * generic counter allocator: get next free counter
1426 */
1427 static int
1428 gen_get_event_idx(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc)
1429 {
1430 int idx;
1431
1432 idx = find_first_zero_bit(cpuc->used_mask, x86_pmu.num_events);
1433 return idx == x86_pmu.num_events ? -1 : idx;
1434 }
1435
1436 /*
1437 * intel-specific counter allocator: check event constraints
1438 */
1439 static int
1440 intel_get_event_idx(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc)
1441 {
1442 const struct event_constraint *event_constraint;
1443 int i, code;
1444
1445 if (!event_constraints)
1446 goto skip;
1447
1448 code = hwc->config & CORE_EVNTSEL_EVENT_MASK;
1449
1450 for_each_event_constraint(event_constraint, event_constraints) {
1451 if (code == event_constraint->code) {
1452 for_each_bit(i, event_constraint->idxmsk, X86_PMC_IDX_MAX) {
1453 if (!test_and_set_bit(i, cpuc->used_mask))
1454 return i;
1455 }
1456 return -1;
1457 }
1458 }
1459 skip:
1460 return gen_get_event_idx(cpuc, hwc);
1461 }
1462
1463 static int
1464 x86_schedule_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc)
1465 {
1466 int idx;
1467
1468 idx = fixed_mode_idx(hwc);
1469 if (idx == X86_PMC_IDX_FIXED_BTS) {
1470 /* BTS is already occupied. */
1471 if (test_and_set_bit(idx, cpuc->used_mask))
1472 return -EAGAIN;
1473
1474 hwc->config_base = 0;
1475 hwc->event_base = 0;
1476 hwc->idx = idx;
1477 } else if (idx >= 0) {
1478 /*
1479 * Try to get the fixed event, if that is already taken
1480 * then try to get a generic event:
1481 */
1482 if (test_and_set_bit(idx, cpuc->used_mask))
1483 goto try_generic;
1484
1485 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1486 /*
1487 * We set it so that event_base + idx in wrmsr/rdmsr maps to
1488 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1489 */
1490 hwc->event_base =
1491 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1492 hwc->idx = idx;
1493 } else {
1494 idx = hwc->idx;
1495 /* Try to get the previous generic event again */
1496 if (idx == -1 || test_and_set_bit(idx, cpuc->used_mask)) {
1497 try_generic:
1498 idx = x86_pmu.get_event_idx(cpuc, hwc);
1499 if (idx == -1)
1500 return -EAGAIN;
1501
1502 set_bit(idx, cpuc->used_mask);
1503 hwc->idx = idx;
1504 }
1505 hwc->config_base = x86_pmu.eventsel;
1506 hwc->event_base = x86_pmu.perfctr;
1507 }
1508
1509 return idx;
1510 }
1511
1512 /*
1513 * Find a PMC slot for the freshly enabled / scheduled in event:
1514 */
1515 static int x86_pmu_enable(struct perf_event *event)
1516 {
1517 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1518 struct hw_perf_event *hwc = &event->hw;
1519 int idx;
1520
1521 idx = x86_schedule_event(cpuc, hwc);
1522 if (idx < 0)
1523 return idx;
1524
1525 perf_events_lapic_init();
1526
1527 x86_pmu.disable(hwc, idx);
1528
1529 cpuc->events[idx] = event;
1530 set_bit(idx, cpuc->active_mask);
1531
1532 x86_perf_event_set_period(event, hwc, idx);
1533 x86_pmu.enable(hwc, idx);
1534
1535 perf_event_update_userpage(event);
1536
1537 return 0;
1538 }
1539
1540 static void x86_pmu_unthrottle(struct perf_event *event)
1541 {
1542 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1543 struct hw_perf_event *hwc = &event->hw;
1544
1545 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1546 cpuc->events[hwc->idx] != event))
1547 return;
1548
1549 x86_pmu.enable(hwc, hwc->idx);
1550 }
1551
1552 void perf_event_print_debug(void)
1553 {
1554 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1555 struct cpu_hw_events *cpuc;
1556 unsigned long flags;
1557 int cpu, idx;
1558
1559 if (!x86_pmu.num_events)
1560 return;
1561
1562 local_irq_save(flags);
1563
1564 cpu = smp_processor_id();
1565 cpuc = &per_cpu(cpu_hw_events, cpu);
1566
1567 if (x86_pmu.version >= 2) {
1568 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1569 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1570 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1571 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1572
1573 pr_info("\n");
1574 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1575 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1576 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1577 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1578 }
1579 pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1580
1581 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1582 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1583 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1584
1585 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1586
1587 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1588 cpu, idx, pmc_ctrl);
1589 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1590 cpu, idx, pmc_count);
1591 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1592 cpu, idx, prev_left);
1593 }
1594 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1595 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1596
1597 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1598 cpu, idx, pmc_count);
1599 }
1600 local_irq_restore(flags);
1601 }
1602
1603 static void intel_pmu_drain_bts_buffer(struct cpu_hw_events *cpuc)
1604 {
1605 struct debug_store *ds = cpuc->ds;
1606 struct bts_record {
1607 u64 from;
1608 u64 to;
1609 u64 flags;
1610 };
1611 struct perf_event *event = cpuc->events[X86_PMC_IDX_FIXED_BTS];
1612 struct bts_record *at, *top;
1613 struct perf_output_handle handle;
1614 struct perf_event_header header;
1615 struct perf_sample_data data;
1616 struct pt_regs regs;
1617
1618 if (!event)
1619 return;
1620
1621 if (!ds)
1622 return;
1623
1624 at = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
1625 top = (struct bts_record *)(unsigned long)ds->bts_index;
1626
1627 if (top <= at)
1628 return;
1629
1630 ds->bts_index = ds->bts_buffer_base;
1631
1632
1633 data.period = event->hw.last_period;
1634 data.addr = 0;
1635 regs.ip = 0;
1636
1637 /*
1638 * Prepare a generic sample, i.e. fill in the invariant fields.
1639 * We will overwrite the from and to address before we output
1640 * the sample.
1641 */
1642 perf_prepare_sample(&header, &data, event, &regs);
1643
1644 if (perf_output_begin(&handle, event,
1645 header.size * (top - at), 1, 1))
1646 return;
1647
1648 for (; at < top; at++) {
1649 data.ip = at->from;
1650 data.addr = at->to;
1651
1652 perf_output_sample(&handle, &header, &data, event);
1653 }
1654
1655 perf_output_end(&handle);
1656
1657 /* There's new data available. */
1658 event->hw.interrupts++;
1659 event->pending_kill = POLL_IN;
1660 }
1661
1662 static void x86_pmu_disable(struct perf_event *event)
1663 {
1664 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1665 struct hw_perf_event *hwc = &event->hw;
1666 int idx = hwc->idx;
1667
1668 /*
1669 * Must be done before we disable, otherwise the nmi handler
1670 * could reenable again:
1671 */
1672 clear_bit(idx, cpuc->active_mask);
1673 x86_pmu.disable(hwc, idx);
1674
1675 /*
1676 * Make sure the cleared pointer becomes visible before we
1677 * (potentially) free the event:
1678 */
1679 barrier();
1680
1681 /*
1682 * Drain the remaining delta count out of a event
1683 * that we are disabling:
1684 */
1685 x86_perf_event_update(event, hwc, idx);
1686
1687 /* Drain the remaining BTS records. */
1688 if (unlikely(idx == X86_PMC_IDX_FIXED_BTS))
1689 intel_pmu_drain_bts_buffer(cpuc);
1690
1691 cpuc->events[idx] = NULL;
1692 clear_bit(idx, cpuc->used_mask);
1693
1694 perf_event_update_userpage(event);
1695 }
1696
1697 /*
1698 * Save and restart an expired event. Called by NMI contexts,
1699 * so it has to be careful about preempting normal event ops:
1700 */
1701 static int intel_pmu_save_and_restart(struct perf_event *event)
1702 {
1703 struct hw_perf_event *hwc = &event->hw;
1704 int idx = hwc->idx;
1705 int ret;
1706
1707 x86_perf_event_update(event, hwc, idx);
1708 ret = x86_perf_event_set_period(event, hwc, idx);
1709
1710 if (event->state == PERF_EVENT_STATE_ACTIVE)
1711 intel_pmu_enable_event(hwc, idx);
1712
1713 return ret;
1714 }
1715
1716 static void intel_pmu_reset(void)
1717 {
1718 struct debug_store *ds = __get_cpu_var(cpu_hw_events).ds;
1719 unsigned long flags;
1720 int idx;
1721
1722 if (!x86_pmu.num_events)
1723 return;
1724
1725 local_irq_save(flags);
1726
1727 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1728
1729 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1730 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1731 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1732 }
1733 for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
1734 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1735 }
1736 if (ds)
1737 ds->bts_index = ds->bts_buffer_base;
1738
1739 local_irq_restore(flags);
1740 }
1741
1742 static int p6_pmu_handle_irq(struct pt_regs *regs)
1743 {
1744 struct perf_sample_data data;
1745 struct cpu_hw_events *cpuc;
1746 struct perf_event *event;
1747 struct hw_perf_event *hwc;
1748 int idx, handled = 0;
1749 u64 val;
1750
1751 data.addr = 0;
1752
1753 cpuc = &__get_cpu_var(cpu_hw_events);
1754
1755 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1756 if (!test_bit(idx, cpuc->active_mask))
1757 continue;
1758
1759 event = cpuc->events[idx];
1760 hwc = &event->hw;
1761
1762 val = x86_perf_event_update(event, hwc, idx);
1763 if (val & (1ULL << (x86_pmu.event_bits - 1)))
1764 continue;
1765
1766 /*
1767 * event overflow
1768 */
1769 handled = 1;
1770 data.period = event->hw.last_period;
1771
1772 if (!x86_perf_event_set_period(event, hwc, idx))
1773 continue;
1774
1775 if (perf_event_overflow(event, 1, &data, regs))
1776 p6_pmu_disable_event(hwc, idx);
1777 }
1778
1779 if (handled)
1780 inc_irq_stat(apic_perf_irqs);
1781
1782 return handled;
1783 }
1784
1785 /*
1786 * This handler is triggered by the local APIC, so the APIC IRQ handling
1787 * rules apply:
1788 */
1789 static int intel_pmu_handle_irq(struct pt_regs *regs)
1790 {
1791 struct perf_sample_data data;
1792 struct cpu_hw_events *cpuc;
1793 int bit, loops;
1794 u64 ack, status;
1795
1796 data.addr = 0;
1797
1798 cpuc = &__get_cpu_var(cpu_hw_events);
1799
1800 perf_disable();
1801 intel_pmu_drain_bts_buffer(cpuc);
1802 status = intel_pmu_get_status();
1803 if (!status) {
1804 perf_enable();
1805 return 0;
1806 }
1807
1808 loops = 0;
1809 again:
1810 if (++loops > 100) {
1811 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1812 perf_event_print_debug();
1813 intel_pmu_reset();
1814 perf_enable();
1815 return 1;
1816 }
1817
1818 inc_irq_stat(apic_perf_irqs);
1819 ack = status;
1820 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1821 struct perf_event *event = cpuc->events[bit];
1822
1823 clear_bit(bit, (unsigned long *) &status);
1824 if (!test_bit(bit, cpuc->active_mask))
1825 continue;
1826
1827 if (!intel_pmu_save_and_restart(event))
1828 continue;
1829
1830 data.period = event->hw.last_period;
1831
1832 if (perf_event_overflow(event, 1, &data, regs))
1833 intel_pmu_disable_event(&event->hw, bit);
1834 }
1835
1836 intel_pmu_ack_status(ack);
1837
1838 /*
1839 * Repeat if there is more work to be done:
1840 */
1841 status = intel_pmu_get_status();
1842 if (status)
1843 goto again;
1844
1845 perf_enable();
1846
1847 return 1;
1848 }
1849
1850 static int amd_pmu_handle_irq(struct pt_regs *regs)
1851 {
1852 struct perf_sample_data data;
1853 struct cpu_hw_events *cpuc;
1854 struct perf_event *event;
1855 struct hw_perf_event *hwc;
1856 int idx, handled = 0;
1857 u64 val;
1858
1859 data.addr = 0;
1860
1861 cpuc = &__get_cpu_var(cpu_hw_events);
1862
1863 for (idx = 0; idx < x86_pmu.num_events; idx++) {
1864 if (!test_bit(idx, cpuc->active_mask))
1865 continue;
1866
1867 event = cpuc->events[idx];
1868 hwc = &event->hw;
1869
1870 val = x86_perf_event_update(event, hwc, idx);
1871 if (val & (1ULL << (x86_pmu.event_bits - 1)))
1872 continue;
1873
1874 /*
1875 * event overflow
1876 */
1877 handled = 1;
1878 data.period = event->hw.last_period;
1879
1880 if (!x86_perf_event_set_period(event, hwc, idx))
1881 continue;
1882
1883 if (perf_event_overflow(event, 1, &data, regs))
1884 amd_pmu_disable_event(hwc, idx);
1885 }
1886
1887 if (handled)
1888 inc_irq_stat(apic_perf_irqs);
1889
1890 return handled;
1891 }
1892
1893 void smp_perf_pending_interrupt(struct pt_regs *regs)
1894 {
1895 irq_enter();
1896 ack_APIC_irq();
1897 inc_irq_stat(apic_pending_irqs);
1898 perf_event_do_pending();
1899 irq_exit();
1900 }
1901
1902 void set_perf_event_pending(void)
1903 {
1904 #ifdef CONFIG_X86_LOCAL_APIC
1905 if (!x86_pmu.apic || !x86_pmu_initialized())
1906 return;
1907
1908 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1909 #endif
1910 }
1911
1912 void perf_events_lapic_init(void)
1913 {
1914 #ifdef CONFIG_X86_LOCAL_APIC
1915 if (!x86_pmu.apic || !x86_pmu_initialized())
1916 return;
1917
1918 /*
1919 * Always use NMI for PMU
1920 */
1921 apic_write(APIC_LVTPC, APIC_DM_NMI);
1922 #endif
1923 }
1924
1925 static int __kprobes
1926 perf_event_nmi_handler(struct notifier_block *self,
1927 unsigned long cmd, void *__args)
1928 {
1929 struct die_args *args = __args;
1930 struct pt_regs *regs;
1931
1932 if (!atomic_read(&active_events))
1933 return NOTIFY_DONE;
1934
1935 switch (cmd) {
1936 case DIE_NMI:
1937 case DIE_NMI_IPI:
1938 break;
1939
1940 default:
1941 return NOTIFY_DONE;
1942 }
1943
1944 regs = args->regs;
1945
1946 #ifdef CONFIG_X86_LOCAL_APIC
1947 apic_write(APIC_LVTPC, APIC_DM_NMI);
1948 #endif
1949 /*
1950 * Can't rely on the handled return value to say it was our NMI, two
1951 * events could trigger 'simultaneously' raising two back-to-back NMIs.
1952 *
1953 * If the first NMI handles both, the latter will be empty and daze
1954 * the CPU.
1955 */
1956 x86_pmu.handle_irq(regs);
1957
1958 return NOTIFY_STOP;
1959 }
1960
1961 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1962 .notifier_call = perf_event_nmi_handler,
1963 .next = NULL,
1964 .priority = 1
1965 };
1966
1967 static struct x86_pmu p6_pmu = {
1968 .name = "p6",
1969 .handle_irq = p6_pmu_handle_irq,
1970 .disable_all = p6_pmu_disable_all,
1971 .enable_all = p6_pmu_enable_all,
1972 .enable = p6_pmu_enable_event,
1973 .disable = p6_pmu_disable_event,
1974 .eventsel = MSR_P6_EVNTSEL0,
1975 .perfctr = MSR_P6_PERFCTR0,
1976 .event_map = p6_pmu_event_map,
1977 .raw_event = p6_pmu_raw_event,
1978 .max_events = ARRAY_SIZE(p6_perfmon_event_map),
1979 .apic = 1,
1980 .max_period = (1ULL << 31) - 1,
1981 .version = 0,
1982 .num_events = 2,
1983 /*
1984 * Events have 40 bits implemented. However they are designed such
1985 * that bits [32-39] are sign extensions of bit 31. As such the
1986 * effective width of a event for P6-like PMU is 32 bits only.
1987 *
1988 * See IA-32 Intel Architecture Software developer manual Vol 3B
1989 */
1990 .event_bits = 32,
1991 .event_mask = (1ULL << 32) - 1,
1992 .get_event_idx = intel_get_event_idx,
1993 };
1994
1995 static struct x86_pmu intel_pmu = {
1996 .name = "Intel",
1997 .handle_irq = intel_pmu_handle_irq,
1998 .disable_all = intel_pmu_disable_all,
1999 .enable_all = intel_pmu_enable_all,
2000 .enable = intel_pmu_enable_event,
2001 .disable = intel_pmu_disable_event,
2002 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2003 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2004 .event_map = intel_pmu_event_map,
2005 .raw_event = intel_pmu_raw_event,
2006 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2007 .apic = 1,
2008 /*
2009 * Intel PMCs cannot be accessed sanely above 32 bit width,
2010 * so we install an artificial 1<<31 period regardless of
2011 * the generic event period:
2012 */
2013 .max_period = (1ULL << 31) - 1,
2014 .enable_bts = intel_pmu_enable_bts,
2015 .disable_bts = intel_pmu_disable_bts,
2016 .get_event_idx = intel_get_event_idx,
2017 };
2018
2019 static struct x86_pmu amd_pmu = {
2020 .name = "AMD",
2021 .handle_irq = amd_pmu_handle_irq,
2022 .disable_all = amd_pmu_disable_all,
2023 .enable_all = amd_pmu_enable_all,
2024 .enable = amd_pmu_enable_event,
2025 .disable = amd_pmu_disable_event,
2026 .eventsel = MSR_K7_EVNTSEL0,
2027 .perfctr = MSR_K7_PERFCTR0,
2028 .event_map = amd_pmu_event_map,
2029 .raw_event = amd_pmu_raw_event,
2030 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
2031 .num_events = 4,
2032 .event_bits = 48,
2033 .event_mask = (1ULL << 48) - 1,
2034 .apic = 1,
2035 /* use highest bit to detect overflow */
2036 .max_period = (1ULL << 47) - 1,
2037 .get_event_idx = gen_get_event_idx,
2038 };
2039
2040 static int p6_pmu_init(void)
2041 {
2042 switch (boot_cpu_data.x86_model) {
2043 case 1:
2044 case 3: /* Pentium Pro */
2045 case 5:
2046 case 6: /* Pentium II */
2047 case 7:
2048 case 8:
2049 case 11: /* Pentium III */
2050 event_constraints = intel_p6_event_constraints;
2051 break;
2052 case 9:
2053 case 13:
2054 /* Pentium M */
2055 event_constraints = intel_p6_event_constraints;
2056 break;
2057 default:
2058 pr_cont("unsupported p6 CPU model %d ",
2059 boot_cpu_data.x86_model);
2060 return -ENODEV;
2061 }
2062
2063 x86_pmu = p6_pmu;
2064
2065 if (!cpu_has_apic) {
2066 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
2067 pr_info("no hardware sampling interrupt available.\n");
2068 x86_pmu.apic = 0;
2069 }
2070
2071 return 0;
2072 }
2073
2074 static int intel_pmu_init(void)
2075 {
2076 union cpuid10_edx edx;
2077 union cpuid10_eax eax;
2078 unsigned int unused;
2079 unsigned int ebx;
2080 int version;
2081
2082 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2083 /* check for P6 processor family */
2084 if (boot_cpu_data.x86 == 6) {
2085 return p6_pmu_init();
2086 } else {
2087 return -ENODEV;
2088 }
2089 }
2090
2091 /*
2092 * Check whether the Architectural PerfMon supports
2093 * Branch Misses Retired hw_event or not.
2094 */
2095 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
2096 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
2097 return -ENODEV;
2098
2099 version = eax.split.version_id;
2100 if (version < 2)
2101 return -ENODEV;
2102
2103 x86_pmu = intel_pmu;
2104 x86_pmu.version = version;
2105 x86_pmu.num_events = eax.split.num_events;
2106 x86_pmu.event_bits = eax.split.bit_width;
2107 x86_pmu.event_mask = (1ULL << eax.split.bit_width) - 1;
2108
2109 /*
2110 * Quirk: v2 perfmon does not report fixed-purpose events, so
2111 * assume at least 3 events:
2112 */
2113 x86_pmu.num_events_fixed = max((int)edx.split.num_events_fixed, 3);
2114
2115 /*
2116 * Install the hw-cache-events table:
2117 */
2118 switch (boot_cpu_data.x86_model) {
2119 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2120 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
2121 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
2122 case 29: /* six-core 45 nm xeon "Dunnington" */
2123 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2124 sizeof(hw_cache_event_ids));
2125
2126 pr_cont("Core2 events, ");
2127 event_constraints = intel_core_event_constraints;
2128 break;
2129 default:
2130 case 26:
2131 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2132 sizeof(hw_cache_event_ids));
2133
2134 event_constraints = intel_nehalem_event_constraints;
2135 pr_cont("Nehalem/Corei7 events, ");
2136 break;
2137 case 28:
2138 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2139 sizeof(hw_cache_event_ids));
2140
2141 pr_cont("Atom events, ");
2142 break;
2143 }
2144 return 0;
2145 }
2146
2147 static int amd_pmu_init(void)
2148 {
2149 /* Performance-monitoring supported from K7 and later: */
2150 if (boot_cpu_data.x86 < 6)
2151 return -ENODEV;
2152
2153 x86_pmu = amd_pmu;
2154
2155 /* Events are common for all AMDs */
2156 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
2157 sizeof(hw_cache_event_ids));
2158
2159 return 0;
2160 }
2161
2162 void __init init_hw_perf_events(void)
2163 {
2164 int err;
2165
2166 pr_info("Performance Events: ");
2167
2168 switch (boot_cpu_data.x86_vendor) {
2169 case X86_VENDOR_INTEL:
2170 err = intel_pmu_init();
2171 break;
2172 case X86_VENDOR_AMD:
2173 err = amd_pmu_init();
2174 break;
2175 default:
2176 return;
2177 }
2178 if (err != 0) {
2179 pr_cont("no PMU driver, software events only.\n");
2180 return;
2181 }
2182
2183 pr_cont("%s PMU driver.\n", x86_pmu.name);
2184
2185 if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
2186 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2187 x86_pmu.num_events, X86_PMC_MAX_GENERIC);
2188 x86_pmu.num_events = X86_PMC_MAX_GENERIC;
2189 }
2190 perf_event_mask = (1 << x86_pmu.num_events) - 1;
2191 perf_max_events = x86_pmu.num_events;
2192
2193 if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
2194 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2195 x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
2196 x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
2197 }
2198
2199 perf_event_mask |=
2200 ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
2201 x86_pmu.intel_ctrl = perf_event_mask;
2202
2203 perf_events_lapic_init();
2204 register_die_notifier(&perf_event_nmi_notifier);
2205
2206 pr_info("... version: %d\n", x86_pmu.version);
2207 pr_info("... bit width: %d\n", x86_pmu.event_bits);
2208 pr_info("... generic registers: %d\n", x86_pmu.num_events);
2209 pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
2210 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2211 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
2212 pr_info("... event mask: %016Lx\n", perf_event_mask);
2213 }
2214
2215 static inline void x86_pmu_read(struct perf_event *event)
2216 {
2217 x86_perf_event_update(event, &event->hw, event->hw.idx);
2218 }
2219
2220 static const struct pmu pmu = {
2221 .enable = x86_pmu_enable,
2222 .disable = x86_pmu_disable,
2223 .read = x86_pmu_read,
2224 .unthrottle = x86_pmu_unthrottle,
2225 };
2226
2227 static int
2228 validate_event(struct cpu_hw_events *cpuc, struct perf_event *event)
2229 {
2230 struct hw_perf_event fake_event = event->hw;
2231
2232 if (event->pmu != &pmu)
2233 return 0;
2234
2235 return x86_schedule_event(cpuc, &fake_event);
2236 }
2237
2238 static int validate_group(struct perf_event *event)
2239 {
2240 struct perf_event *sibling, *leader = event->group_leader;
2241 struct cpu_hw_events fake_pmu;
2242
2243 memset(&fake_pmu, 0, sizeof(fake_pmu));
2244
2245 if (!validate_event(&fake_pmu, leader))
2246 return -ENOSPC;
2247
2248 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
2249 if (!validate_event(&fake_pmu, sibling))
2250 return -ENOSPC;
2251 }
2252
2253 if (!validate_event(&fake_pmu, event))
2254 return -ENOSPC;
2255
2256 return 0;
2257 }
2258
2259 const struct pmu *hw_perf_event_init(struct perf_event *event)
2260 {
2261 int err;
2262
2263 err = __hw_perf_event_init(event);
2264 if (!err) {
2265 if (event->group_leader != event)
2266 err = validate_group(event);
2267 }
2268 if (err) {
2269 if (event->destroy)
2270 event->destroy(event);
2271 return ERR_PTR(err);
2272 }
2273
2274 return &pmu;
2275 }
2276
2277 /*
2278 * callchain support
2279 */
2280
2281 static inline
2282 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
2283 {
2284 if (entry->nr < PERF_MAX_STACK_DEPTH)
2285 entry->ip[entry->nr++] = ip;
2286 }
2287
2288 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
2289 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
2290 static DEFINE_PER_CPU(int, in_nmi_frame);
2291
2292
2293 static void
2294 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
2295 {
2296 /* Ignore warnings */
2297 }
2298
2299 static void backtrace_warning(void *data, char *msg)
2300 {
2301 /* Ignore warnings */
2302 }
2303
2304 static int backtrace_stack(void *data, char *name)
2305 {
2306 per_cpu(in_nmi_frame, smp_processor_id()) =
2307 x86_is_stack_id(NMI_STACK, name);
2308
2309 return 0;
2310 }
2311
2312 static void backtrace_address(void *data, unsigned long addr, int reliable)
2313 {
2314 struct perf_callchain_entry *entry = data;
2315
2316 if (per_cpu(in_nmi_frame, smp_processor_id()))
2317 return;
2318
2319 if (reliable)
2320 callchain_store(entry, addr);
2321 }
2322
2323 static const struct stacktrace_ops backtrace_ops = {
2324 .warning = backtrace_warning,
2325 .warning_symbol = backtrace_warning_symbol,
2326 .stack = backtrace_stack,
2327 .address = backtrace_address,
2328 };
2329
2330 #include "../dumpstack.h"
2331
2332 static void
2333 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
2334 {
2335 callchain_store(entry, PERF_CONTEXT_KERNEL);
2336 callchain_store(entry, regs->ip);
2337
2338 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2339 }
2340
2341 /*
2342 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
2343 */
2344 static unsigned long
2345 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
2346 {
2347 unsigned long offset, addr = (unsigned long)from;
2348 int type = in_nmi() ? KM_NMI : KM_IRQ0;
2349 unsigned long size, len = 0;
2350 struct page *page;
2351 void *map;
2352 int ret;
2353
2354 do {
2355 ret = __get_user_pages_fast(addr, 1, 0, &page);
2356 if (!ret)
2357 break;
2358
2359 offset = addr & (PAGE_SIZE - 1);
2360 size = min(PAGE_SIZE - offset, n - len);
2361
2362 map = kmap_atomic(page, type);
2363 memcpy(to, map+offset, size);
2364 kunmap_atomic(map, type);
2365 put_page(page);
2366
2367 len += size;
2368 to += size;
2369 addr += size;
2370
2371 } while (len < n);
2372
2373 return len;
2374 }
2375
2376 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
2377 {
2378 unsigned long bytes;
2379
2380 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
2381
2382 return bytes == sizeof(*frame);
2383 }
2384
2385 static void
2386 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
2387 {
2388 struct stack_frame frame;
2389 const void __user *fp;
2390
2391 if (!user_mode(regs))
2392 regs = task_pt_regs(current);
2393
2394 fp = (void __user *)regs->bp;
2395
2396 callchain_store(entry, PERF_CONTEXT_USER);
2397 callchain_store(entry, regs->ip);
2398
2399 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2400 frame.next_frame = NULL;
2401 frame.return_address = 0;
2402
2403 if (!copy_stack_frame(fp, &frame))
2404 break;
2405
2406 if ((unsigned long)fp < regs->sp)
2407 break;
2408
2409 callchain_store(entry, frame.return_address);
2410 fp = frame.next_frame;
2411 }
2412 }
2413
2414 static void
2415 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
2416 {
2417 int is_user;
2418
2419 if (!regs)
2420 return;
2421
2422 is_user = user_mode(regs);
2423
2424 if (!current || current->pid == 0)
2425 return;
2426
2427 if (is_user && current->state != TASK_RUNNING)
2428 return;
2429
2430 if (!is_user)
2431 perf_callchain_kernel(regs, entry);
2432
2433 if (current->mm)
2434 perf_callchain_user(regs, entry);
2435 }
2436
2437 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2438 {
2439 struct perf_callchain_entry *entry;
2440
2441 if (in_nmi())
2442 entry = &__get_cpu_var(pmc_nmi_entry);
2443 else
2444 entry = &__get_cpu_var(pmc_irq_entry);
2445
2446 entry->nr = 0;
2447
2448 perf_do_callchain(regs, entry);
2449
2450 return entry;
2451 }
2452
2453 void hw_perf_event_setup_online(int cpu)
2454 {
2455 init_debug_store_on_cpu(cpu);
2456 }
This page took 0.084377 seconds and 6 git commands to generate.