perf/x86: Add 'index' param to get_event_constraint() callback
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/hardirq.h>
18 #include <asm/apic.h>
19
20 #include "perf_event.h"
21
22 /*
23 * Intel PerfMon, used on Core and later.
24 */
25 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26 {
27 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
28 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
29 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
30 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
31 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
32 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
33 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
34 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
35 };
36
37 static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 {
39 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
40 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
41 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
42 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
43 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
44 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45 EVENT_CONSTRAINT_END
46 };
47
48 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49 {
50 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
51 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63 EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79 EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
85 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87 EVENT_EXTRA_END
88 };
89
90 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91 {
92 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
93 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
96 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
97 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99 EVENT_CONSTRAINT_END
100 };
101
102 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 {
104 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
105 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
108 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
109 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
113 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 EVENT_CONSTRAINT_END
117 };
118
119 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
120 {
121 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
122 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
123 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
124 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
125 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
126 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
127 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
128 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
129 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
130 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
131 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
133 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
134 /*
135 * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
136 * siblings; disable these events because they can corrupt unrelated
137 * counters.
138 */
139 INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
140 INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
141 INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
142 INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
143 EVENT_CONSTRAINT_END
144 };
145
146 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
147 {
148 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
149 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
150 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
151 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
152 EVENT_EXTRA_END
153 };
154
155 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
156 {
157 EVENT_CONSTRAINT_END
158 };
159
160 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
161 {
162 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
163 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
164 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
165 EVENT_CONSTRAINT_END
166 };
167
168 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
169 {
170 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
171 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
172 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
173 EVENT_CONSTRAINT_END
174 };
175
176 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
177 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
178 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
179 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
180 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
181 EVENT_EXTRA_END
182 };
183
184 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
185 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
186 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
187 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
188 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
189 EVENT_EXTRA_END
190 };
191
192 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
193 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
194 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
195
196 struct attribute *nhm_events_attrs[] = {
197 EVENT_PTR(mem_ld_nhm),
198 NULL,
199 };
200
201 struct attribute *snb_events_attrs[] = {
202 EVENT_PTR(mem_ld_snb),
203 EVENT_PTR(mem_st_snb),
204 NULL,
205 };
206
207 static struct event_constraint intel_hsw_event_constraints[] = {
208 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
211 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
212 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
213 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
214 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
215 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
216 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
217 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
218 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
219 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
220 EVENT_CONSTRAINT_END
221 };
222
223 struct event_constraint intel_bdw_event_constraints[] = {
224 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
225 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
226 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
227 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
228 INTEL_EVENT_CONSTRAINT(0xa3, 0x4), /* CYCLE_ACTIVITY.* */
229 EVENT_CONSTRAINT_END
230 };
231
232 static u64 intel_pmu_event_map(int hw_event)
233 {
234 return intel_perfmon_event_map[hw_event];
235 }
236
237 #define SNB_DMND_DATA_RD (1ULL << 0)
238 #define SNB_DMND_RFO (1ULL << 1)
239 #define SNB_DMND_IFETCH (1ULL << 2)
240 #define SNB_DMND_WB (1ULL << 3)
241 #define SNB_PF_DATA_RD (1ULL << 4)
242 #define SNB_PF_RFO (1ULL << 5)
243 #define SNB_PF_IFETCH (1ULL << 6)
244 #define SNB_LLC_DATA_RD (1ULL << 7)
245 #define SNB_LLC_RFO (1ULL << 8)
246 #define SNB_LLC_IFETCH (1ULL << 9)
247 #define SNB_BUS_LOCKS (1ULL << 10)
248 #define SNB_STRM_ST (1ULL << 11)
249 #define SNB_OTHER (1ULL << 15)
250 #define SNB_RESP_ANY (1ULL << 16)
251 #define SNB_NO_SUPP (1ULL << 17)
252 #define SNB_LLC_HITM (1ULL << 18)
253 #define SNB_LLC_HITE (1ULL << 19)
254 #define SNB_LLC_HITS (1ULL << 20)
255 #define SNB_LLC_HITF (1ULL << 21)
256 #define SNB_LOCAL (1ULL << 22)
257 #define SNB_REMOTE (0xffULL << 23)
258 #define SNB_SNP_NONE (1ULL << 31)
259 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
260 #define SNB_SNP_MISS (1ULL << 33)
261 #define SNB_NO_FWD (1ULL << 34)
262 #define SNB_SNP_FWD (1ULL << 35)
263 #define SNB_HITM (1ULL << 36)
264 #define SNB_NON_DRAM (1ULL << 37)
265
266 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
267 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
268 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
269
270 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
271 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
272 SNB_HITM)
273
274 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
275 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
276
277 #define SNB_L3_ACCESS SNB_RESP_ANY
278 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
279
280 static __initconst const u64 snb_hw_cache_extra_regs
281 [PERF_COUNT_HW_CACHE_MAX]
282 [PERF_COUNT_HW_CACHE_OP_MAX]
283 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
284 {
285 [ C(LL ) ] = {
286 [ C(OP_READ) ] = {
287 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
288 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
289 },
290 [ C(OP_WRITE) ] = {
291 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
292 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
293 },
294 [ C(OP_PREFETCH) ] = {
295 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
296 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
297 },
298 },
299 [ C(NODE) ] = {
300 [ C(OP_READ) ] = {
301 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
302 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
303 },
304 [ C(OP_WRITE) ] = {
305 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
306 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
307 },
308 [ C(OP_PREFETCH) ] = {
309 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
310 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
311 },
312 },
313 };
314
315 static __initconst const u64 snb_hw_cache_event_ids
316 [PERF_COUNT_HW_CACHE_MAX]
317 [PERF_COUNT_HW_CACHE_OP_MAX]
318 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
319 {
320 [ C(L1D) ] = {
321 [ C(OP_READ) ] = {
322 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
323 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
324 },
325 [ C(OP_WRITE) ] = {
326 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
327 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
328 },
329 [ C(OP_PREFETCH) ] = {
330 [ C(RESULT_ACCESS) ] = 0x0,
331 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
332 },
333 },
334 [ C(L1I ) ] = {
335 [ C(OP_READ) ] = {
336 [ C(RESULT_ACCESS) ] = 0x0,
337 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
338 },
339 [ C(OP_WRITE) ] = {
340 [ C(RESULT_ACCESS) ] = -1,
341 [ C(RESULT_MISS) ] = -1,
342 },
343 [ C(OP_PREFETCH) ] = {
344 [ C(RESULT_ACCESS) ] = 0x0,
345 [ C(RESULT_MISS) ] = 0x0,
346 },
347 },
348 [ C(LL ) ] = {
349 [ C(OP_READ) ] = {
350 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
351 [ C(RESULT_ACCESS) ] = 0x01b7,
352 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
353 [ C(RESULT_MISS) ] = 0x01b7,
354 },
355 [ C(OP_WRITE) ] = {
356 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
357 [ C(RESULT_ACCESS) ] = 0x01b7,
358 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
359 [ C(RESULT_MISS) ] = 0x01b7,
360 },
361 [ C(OP_PREFETCH) ] = {
362 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
363 [ C(RESULT_ACCESS) ] = 0x01b7,
364 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
365 [ C(RESULT_MISS) ] = 0x01b7,
366 },
367 },
368 [ C(DTLB) ] = {
369 [ C(OP_READ) ] = {
370 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
371 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
372 },
373 [ C(OP_WRITE) ] = {
374 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
375 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
376 },
377 [ C(OP_PREFETCH) ] = {
378 [ C(RESULT_ACCESS) ] = 0x0,
379 [ C(RESULT_MISS) ] = 0x0,
380 },
381 },
382 [ C(ITLB) ] = {
383 [ C(OP_READ) ] = {
384 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
385 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
386 },
387 [ C(OP_WRITE) ] = {
388 [ C(RESULT_ACCESS) ] = -1,
389 [ C(RESULT_MISS) ] = -1,
390 },
391 [ C(OP_PREFETCH) ] = {
392 [ C(RESULT_ACCESS) ] = -1,
393 [ C(RESULT_MISS) ] = -1,
394 },
395 },
396 [ C(BPU ) ] = {
397 [ C(OP_READ) ] = {
398 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
399 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
400 },
401 [ C(OP_WRITE) ] = {
402 [ C(RESULT_ACCESS) ] = -1,
403 [ C(RESULT_MISS) ] = -1,
404 },
405 [ C(OP_PREFETCH) ] = {
406 [ C(RESULT_ACCESS) ] = -1,
407 [ C(RESULT_MISS) ] = -1,
408 },
409 },
410 [ C(NODE) ] = {
411 [ C(OP_READ) ] = {
412 [ C(RESULT_ACCESS) ] = 0x01b7,
413 [ C(RESULT_MISS) ] = 0x01b7,
414 },
415 [ C(OP_WRITE) ] = {
416 [ C(RESULT_ACCESS) ] = 0x01b7,
417 [ C(RESULT_MISS) ] = 0x01b7,
418 },
419 [ C(OP_PREFETCH) ] = {
420 [ C(RESULT_ACCESS) ] = 0x01b7,
421 [ C(RESULT_MISS) ] = 0x01b7,
422 },
423 },
424
425 };
426
427 /*
428 * Notes on the events:
429 * - data reads do not include code reads (comparable to earlier tables)
430 * - data counts include speculative execution (except L1 write, dtlb, bpu)
431 * - remote node access includes remote memory, remote cache, remote mmio.
432 * - prefetches are not included in the counts because they are not
433 * reliably counted.
434 */
435
436 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
437 #define HSW_DEMAND_RFO BIT_ULL(1)
438 #define HSW_ANY_RESPONSE BIT_ULL(16)
439 #define HSW_SUPPLIER_NONE BIT_ULL(17)
440 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
441 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
442 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
443 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
444 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
445 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
446 HSW_L3_MISS_REMOTE_HOP2P)
447 #define HSW_SNOOP_NONE BIT_ULL(31)
448 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
449 #define HSW_SNOOP_MISS BIT_ULL(33)
450 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
451 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
452 #define HSW_SNOOP_HITM BIT_ULL(36)
453 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
454 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
455 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
456 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
457 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
458 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
459 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
460 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
461 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
462 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
463 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
464
465 #define BDW_L3_MISS_LOCAL BIT(26)
466 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
467 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
468 HSW_L3_MISS_REMOTE_HOP2P)
469
470
471 static __initconst const u64 hsw_hw_cache_event_ids
472 [PERF_COUNT_HW_CACHE_MAX]
473 [PERF_COUNT_HW_CACHE_OP_MAX]
474 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
475 {
476 [ C(L1D ) ] = {
477 [ C(OP_READ) ] = {
478 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
479 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
480 },
481 [ C(OP_WRITE) ] = {
482 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
483 [ C(RESULT_MISS) ] = 0x0,
484 },
485 [ C(OP_PREFETCH) ] = {
486 [ C(RESULT_ACCESS) ] = 0x0,
487 [ C(RESULT_MISS) ] = 0x0,
488 },
489 },
490 [ C(L1I ) ] = {
491 [ C(OP_READ) ] = {
492 [ C(RESULT_ACCESS) ] = 0x0,
493 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
494 },
495 [ C(OP_WRITE) ] = {
496 [ C(RESULT_ACCESS) ] = -1,
497 [ C(RESULT_MISS) ] = -1,
498 },
499 [ C(OP_PREFETCH) ] = {
500 [ C(RESULT_ACCESS) ] = 0x0,
501 [ C(RESULT_MISS) ] = 0x0,
502 },
503 },
504 [ C(LL ) ] = {
505 [ C(OP_READ) ] = {
506 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
507 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
508 },
509 [ C(OP_WRITE) ] = {
510 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
511 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
512 },
513 [ C(OP_PREFETCH) ] = {
514 [ C(RESULT_ACCESS) ] = 0x0,
515 [ C(RESULT_MISS) ] = 0x0,
516 },
517 },
518 [ C(DTLB) ] = {
519 [ C(OP_READ) ] = {
520 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
521 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
522 },
523 [ C(OP_WRITE) ] = {
524 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
525 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
526 },
527 [ C(OP_PREFETCH) ] = {
528 [ C(RESULT_ACCESS) ] = 0x0,
529 [ C(RESULT_MISS) ] = 0x0,
530 },
531 },
532 [ C(ITLB) ] = {
533 [ C(OP_READ) ] = {
534 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
535 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
536 },
537 [ C(OP_WRITE) ] = {
538 [ C(RESULT_ACCESS) ] = -1,
539 [ C(RESULT_MISS) ] = -1,
540 },
541 [ C(OP_PREFETCH) ] = {
542 [ C(RESULT_ACCESS) ] = -1,
543 [ C(RESULT_MISS) ] = -1,
544 },
545 },
546 [ C(BPU ) ] = {
547 [ C(OP_READ) ] = {
548 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
549 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
550 },
551 [ C(OP_WRITE) ] = {
552 [ C(RESULT_ACCESS) ] = -1,
553 [ C(RESULT_MISS) ] = -1,
554 },
555 [ C(OP_PREFETCH) ] = {
556 [ C(RESULT_ACCESS) ] = -1,
557 [ C(RESULT_MISS) ] = -1,
558 },
559 },
560 [ C(NODE) ] = {
561 [ C(OP_READ) ] = {
562 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
563 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
564 },
565 [ C(OP_WRITE) ] = {
566 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
567 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
568 },
569 [ C(OP_PREFETCH) ] = {
570 [ C(RESULT_ACCESS) ] = 0x0,
571 [ C(RESULT_MISS) ] = 0x0,
572 },
573 },
574 };
575
576 static __initconst const u64 hsw_hw_cache_extra_regs
577 [PERF_COUNT_HW_CACHE_MAX]
578 [PERF_COUNT_HW_CACHE_OP_MAX]
579 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
580 {
581 [ C(LL ) ] = {
582 [ C(OP_READ) ] = {
583 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
584 HSW_LLC_ACCESS,
585 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
586 HSW_L3_MISS|HSW_ANY_SNOOP,
587 },
588 [ C(OP_WRITE) ] = {
589 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
590 HSW_LLC_ACCESS,
591 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
592 HSW_L3_MISS|HSW_ANY_SNOOP,
593 },
594 [ C(OP_PREFETCH) ] = {
595 [ C(RESULT_ACCESS) ] = 0x0,
596 [ C(RESULT_MISS) ] = 0x0,
597 },
598 },
599 [ C(NODE) ] = {
600 [ C(OP_READ) ] = {
601 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
602 HSW_L3_MISS_LOCAL_DRAM|
603 HSW_SNOOP_DRAM,
604 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
605 HSW_L3_MISS_REMOTE|
606 HSW_SNOOP_DRAM,
607 },
608 [ C(OP_WRITE) ] = {
609 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
610 HSW_L3_MISS_LOCAL_DRAM|
611 HSW_SNOOP_DRAM,
612 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
613 HSW_L3_MISS_REMOTE|
614 HSW_SNOOP_DRAM,
615 },
616 [ C(OP_PREFETCH) ] = {
617 [ C(RESULT_ACCESS) ] = 0x0,
618 [ C(RESULT_MISS) ] = 0x0,
619 },
620 },
621 };
622
623 static __initconst const u64 westmere_hw_cache_event_ids
624 [PERF_COUNT_HW_CACHE_MAX]
625 [PERF_COUNT_HW_CACHE_OP_MAX]
626 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
627 {
628 [ C(L1D) ] = {
629 [ C(OP_READ) ] = {
630 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
631 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
632 },
633 [ C(OP_WRITE) ] = {
634 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
635 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
636 },
637 [ C(OP_PREFETCH) ] = {
638 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
639 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
640 },
641 },
642 [ C(L1I ) ] = {
643 [ C(OP_READ) ] = {
644 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
645 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
646 },
647 [ C(OP_WRITE) ] = {
648 [ C(RESULT_ACCESS) ] = -1,
649 [ C(RESULT_MISS) ] = -1,
650 },
651 [ C(OP_PREFETCH) ] = {
652 [ C(RESULT_ACCESS) ] = 0x0,
653 [ C(RESULT_MISS) ] = 0x0,
654 },
655 },
656 [ C(LL ) ] = {
657 [ C(OP_READ) ] = {
658 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
659 [ C(RESULT_ACCESS) ] = 0x01b7,
660 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
661 [ C(RESULT_MISS) ] = 0x01b7,
662 },
663 /*
664 * Use RFO, not WRITEBACK, because a write miss would typically occur
665 * on RFO.
666 */
667 [ C(OP_WRITE) ] = {
668 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
669 [ C(RESULT_ACCESS) ] = 0x01b7,
670 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
671 [ C(RESULT_MISS) ] = 0x01b7,
672 },
673 [ C(OP_PREFETCH) ] = {
674 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
675 [ C(RESULT_ACCESS) ] = 0x01b7,
676 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
677 [ C(RESULT_MISS) ] = 0x01b7,
678 },
679 },
680 [ C(DTLB) ] = {
681 [ C(OP_READ) ] = {
682 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
683 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
684 },
685 [ C(OP_WRITE) ] = {
686 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
687 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
688 },
689 [ C(OP_PREFETCH) ] = {
690 [ C(RESULT_ACCESS) ] = 0x0,
691 [ C(RESULT_MISS) ] = 0x0,
692 },
693 },
694 [ C(ITLB) ] = {
695 [ C(OP_READ) ] = {
696 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
697 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
698 },
699 [ C(OP_WRITE) ] = {
700 [ C(RESULT_ACCESS) ] = -1,
701 [ C(RESULT_MISS) ] = -1,
702 },
703 [ C(OP_PREFETCH) ] = {
704 [ C(RESULT_ACCESS) ] = -1,
705 [ C(RESULT_MISS) ] = -1,
706 },
707 },
708 [ C(BPU ) ] = {
709 [ C(OP_READ) ] = {
710 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
711 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
712 },
713 [ C(OP_WRITE) ] = {
714 [ C(RESULT_ACCESS) ] = -1,
715 [ C(RESULT_MISS) ] = -1,
716 },
717 [ C(OP_PREFETCH) ] = {
718 [ C(RESULT_ACCESS) ] = -1,
719 [ C(RESULT_MISS) ] = -1,
720 },
721 },
722 [ C(NODE) ] = {
723 [ C(OP_READ) ] = {
724 [ C(RESULT_ACCESS) ] = 0x01b7,
725 [ C(RESULT_MISS) ] = 0x01b7,
726 },
727 [ C(OP_WRITE) ] = {
728 [ C(RESULT_ACCESS) ] = 0x01b7,
729 [ C(RESULT_MISS) ] = 0x01b7,
730 },
731 [ C(OP_PREFETCH) ] = {
732 [ C(RESULT_ACCESS) ] = 0x01b7,
733 [ C(RESULT_MISS) ] = 0x01b7,
734 },
735 },
736 };
737
738 /*
739 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
740 * See IA32 SDM Vol 3B 30.6.1.3
741 */
742
743 #define NHM_DMND_DATA_RD (1 << 0)
744 #define NHM_DMND_RFO (1 << 1)
745 #define NHM_DMND_IFETCH (1 << 2)
746 #define NHM_DMND_WB (1 << 3)
747 #define NHM_PF_DATA_RD (1 << 4)
748 #define NHM_PF_DATA_RFO (1 << 5)
749 #define NHM_PF_IFETCH (1 << 6)
750 #define NHM_OFFCORE_OTHER (1 << 7)
751 #define NHM_UNCORE_HIT (1 << 8)
752 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
753 #define NHM_OTHER_CORE_HITM (1 << 10)
754 /* reserved */
755 #define NHM_REMOTE_CACHE_FWD (1 << 12)
756 #define NHM_REMOTE_DRAM (1 << 13)
757 #define NHM_LOCAL_DRAM (1 << 14)
758 #define NHM_NON_DRAM (1 << 15)
759
760 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
761 #define NHM_REMOTE (NHM_REMOTE_DRAM)
762
763 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
764 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
765 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
766
767 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
768 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
769 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
770
771 static __initconst const u64 nehalem_hw_cache_extra_regs
772 [PERF_COUNT_HW_CACHE_MAX]
773 [PERF_COUNT_HW_CACHE_OP_MAX]
774 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
775 {
776 [ C(LL ) ] = {
777 [ C(OP_READ) ] = {
778 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
779 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
780 },
781 [ C(OP_WRITE) ] = {
782 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
783 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
784 },
785 [ C(OP_PREFETCH) ] = {
786 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
787 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
788 },
789 },
790 [ C(NODE) ] = {
791 [ C(OP_READ) ] = {
792 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
793 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
794 },
795 [ C(OP_WRITE) ] = {
796 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
797 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
798 },
799 [ C(OP_PREFETCH) ] = {
800 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
801 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
802 },
803 },
804 };
805
806 static __initconst const u64 nehalem_hw_cache_event_ids
807 [PERF_COUNT_HW_CACHE_MAX]
808 [PERF_COUNT_HW_CACHE_OP_MAX]
809 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
810 {
811 [ C(L1D) ] = {
812 [ C(OP_READ) ] = {
813 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
814 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
815 },
816 [ C(OP_WRITE) ] = {
817 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
818 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
819 },
820 [ C(OP_PREFETCH) ] = {
821 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
822 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
823 },
824 },
825 [ C(L1I ) ] = {
826 [ C(OP_READ) ] = {
827 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
828 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
829 },
830 [ C(OP_WRITE) ] = {
831 [ C(RESULT_ACCESS) ] = -1,
832 [ C(RESULT_MISS) ] = -1,
833 },
834 [ C(OP_PREFETCH) ] = {
835 [ C(RESULT_ACCESS) ] = 0x0,
836 [ C(RESULT_MISS) ] = 0x0,
837 },
838 },
839 [ C(LL ) ] = {
840 [ C(OP_READ) ] = {
841 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
842 [ C(RESULT_ACCESS) ] = 0x01b7,
843 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
844 [ C(RESULT_MISS) ] = 0x01b7,
845 },
846 /*
847 * Use RFO, not WRITEBACK, because a write miss would typically occur
848 * on RFO.
849 */
850 [ C(OP_WRITE) ] = {
851 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
852 [ C(RESULT_ACCESS) ] = 0x01b7,
853 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
854 [ C(RESULT_MISS) ] = 0x01b7,
855 },
856 [ C(OP_PREFETCH) ] = {
857 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
858 [ C(RESULT_ACCESS) ] = 0x01b7,
859 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
860 [ C(RESULT_MISS) ] = 0x01b7,
861 },
862 },
863 [ C(DTLB) ] = {
864 [ C(OP_READ) ] = {
865 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
866 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
867 },
868 [ C(OP_WRITE) ] = {
869 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
870 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
871 },
872 [ C(OP_PREFETCH) ] = {
873 [ C(RESULT_ACCESS) ] = 0x0,
874 [ C(RESULT_MISS) ] = 0x0,
875 },
876 },
877 [ C(ITLB) ] = {
878 [ C(OP_READ) ] = {
879 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
880 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
881 },
882 [ C(OP_WRITE) ] = {
883 [ C(RESULT_ACCESS) ] = -1,
884 [ C(RESULT_MISS) ] = -1,
885 },
886 [ C(OP_PREFETCH) ] = {
887 [ C(RESULT_ACCESS) ] = -1,
888 [ C(RESULT_MISS) ] = -1,
889 },
890 },
891 [ C(BPU ) ] = {
892 [ C(OP_READ) ] = {
893 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
894 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
895 },
896 [ C(OP_WRITE) ] = {
897 [ C(RESULT_ACCESS) ] = -1,
898 [ C(RESULT_MISS) ] = -1,
899 },
900 [ C(OP_PREFETCH) ] = {
901 [ C(RESULT_ACCESS) ] = -1,
902 [ C(RESULT_MISS) ] = -1,
903 },
904 },
905 [ C(NODE) ] = {
906 [ C(OP_READ) ] = {
907 [ C(RESULT_ACCESS) ] = 0x01b7,
908 [ C(RESULT_MISS) ] = 0x01b7,
909 },
910 [ C(OP_WRITE) ] = {
911 [ C(RESULT_ACCESS) ] = 0x01b7,
912 [ C(RESULT_MISS) ] = 0x01b7,
913 },
914 [ C(OP_PREFETCH) ] = {
915 [ C(RESULT_ACCESS) ] = 0x01b7,
916 [ C(RESULT_MISS) ] = 0x01b7,
917 },
918 },
919 };
920
921 static __initconst const u64 core2_hw_cache_event_ids
922 [PERF_COUNT_HW_CACHE_MAX]
923 [PERF_COUNT_HW_CACHE_OP_MAX]
924 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
925 {
926 [ C(L1D) ] = {
927 [ C(OP_READ) ] = {
928 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
929 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
930 },
931 [ C(OP_WRITE) ] = {
932 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
933 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
934 },
935 [ C(OP_PREFETCH) ] = {
936 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
937 [ C(RESULT_MISS) ] = 0,
938 },
939 },
940 [ C(L1I ) ] = {
941 [ C(OP_READ) ] = {
942 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
943 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
944 },
945 [ C(OP_WRITE) ] = {
946 [ C(RESULT_ACCESS) ] = -1,
947 [ C(RESULT_MISS) ] = -1,
948 },
949 [ C(OP_PREFETCH) ] = {
950 [ C(RESULT_ACCESS) ] = 0,
951 [ C(RESULT_MISS) ] = 0,
952 },
953 },
954 [ C(LL ) ] = {
955 [ C(OP_READ) ] = {
956 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
957 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
958 },
959 [ C(OP_WRITE) ] = {
960 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
961 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
962 },
963 [ C(OP_PREFETCH) ] = {
964 [ C(RESULT_ACCESS) ] = 0,
965 [ C(RESULT_MISS) ] = 0,
966 },
967 },
968 [ C(DTLB) ] = {
969 [ C(OP_READ) ] = {
970 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
971 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
972 },
973 [ C(OP_WRITE) ] = {
974 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
975 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
976 },
977 [ C(OP_PREFETCH) ] = {
978 [ C(RESULT_ACCESS) ] = 0,
979 [ C(RESULT_MISS) ] = 0,
980 },
981 },
982 [ C(ITLB) ] = {
983 [ C(OP_READ) ] = {
984 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
985 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
986 },
987 [ C(OP_WRITE) ] = {
988 [ C(RESULT_ACCESS) ] = -1,
989 [ C(RESULT_MISS) ] = -1,
990 },
991 [ C(OP_PREFETCH) ] = {
992 [ C(RESULT_ACCESS) ] = -1,
993 [ C(RESULT_MISS) ] = -1,
994 },
995 },
996 [ C(BPU ) ] = {
997 [ C(OP_READ) ] = {
998 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
999 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1000 },
1001 [ C(OP_WRITE) ] = {
1002 [ C(RESULT_ACCESS) ] = -1,
1003 [ C(RESULT_MISS) ] = -1,
1004 },
1005 [ C(OP_PREFETCH) ] = {
1006 [ C(RESULT_ACCESS) ] = -1,
1007 [ C(RESULT_MISS) ] = -1,
1008 },
1009 },
1010 };
1011
1012 static __initconst const u64 atom_hw_cache_event_ids
1013 [PERF_COUNT_HW_CACHE_MAX]
1014 [PERF_COUNT_HW_CACHE_OP_MAX]
1015 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1016 {
1017 [ C(L1D) ] = {
1018 [ C(OP_READ) ] = {
1019 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1020 [ C(RESULT_MISS) ] = 0,
1021 },
1022 [ C(OP_WRITE) ] = {
1023 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1024 [ C(RESULT_MISS) ] = 0,
1025 },
1026 [ C(OP_PREFETCH) ] = {
1027 [ C(RESULT_ACCESS) ] = 0x0,
1028 [ C(RESULT_MISS) ] = 0,
1029 },
1030 },
1031 [ C(L1I ) ] = {
1032 [ C(OP_READ) ] = {
1033 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1034 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1035 },
1036 [ C(OP_WRITE) ] = {
1037 [ C(RESULT_ACCESS) ] = -1,
1038 [ C(RESULT_MISS) ] = -1,
1039 },
1040 [ C(OP_PREFETCH) ] = {
1041 [ C(RESULT_ACCESS) ] = 0,
1042 [ C(RESULT_MISS) ] = 0,
1043 },
1044 },
1045 [ C(LL ) ] = {
1046 [ C(OP_READ) ] = {
1047 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1048 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1049 },
1050 [ C(OP_WRITE) ] = {
1051 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1052 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1053 },
1054 [ C(OP_PREFETCH) ] = {
1055 [ C(RESULT_ACCESS) ] = 0,
1056 [ C(RESULT_MISS) ] = 0,
1057 },
1058 },
1059 [ C(DTLB) ] = {
1060 [ C(OP_READ) ] = {
1061 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1062 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1063 },
1064 [ C(OP_WRITE) ] = {
1065 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1066 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1067 },
1068 [ C(OP_PREFETCH) ] = {
1069 [ C(RESULT_ACCESS) ] = 0,
1070 [ C(RESULT_MISS) ] = 0,
1071 },
1072 },
1073 [ C(ITLB) ] = {
1074 [ C(OP_READ) ] = {
1075 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1076 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1077 },
1078 [ C(OP_WRITE) ] = {
1079 [ C(RESULT_ACCESS) ] = -1,
1080 [ C(RESULT_MISS) ] = -1,
1081 },
1082 [ C(OP_PREFETCH) ] = {
1083 [ C(RESULT_ACCESS) ] = -1,
1084 [ C(RESULT_MISS) ] = -1,
1085 },
1086 },
1087 [ C(BPU ) ] = {
1088 [ C(OP_READ) ] = {
1089 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1090 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1091 },
1092 [ C(OP_WRITE) ] = {
1093 [ C(RESULT_ACCESS) ] = -1,
1094 [ C(RESULT_MISS) ] = -1,
1095 },
1096 [ C(OP_PREFETCH) ] = {
1097 [ C(RESULT_ACCESS) ] = -1,
1098 [ C(RESULT_MISS) ] = -1,
1099 },
1100 },
1101 };
1102
1103 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1104 {
1105 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1106 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1107 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1108 EVENT_EXTRA_END
1109 };
1110
1111 #define SLM_DMND_READ SNB_DMND_DATA_RD
1112 #define SLM_DMND_WRITE SNB_DMND_RFO
1113 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1114
1115 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1116 #define SLM_LLC_ACCESS SNB_RESP_ANY
1117 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1118
1119 static __initconst const u64 slm_hw_cache_extra_regs
1120 [PERF_COUNT_HW_CACHE_MAX]
1121 [PERF_COUNT_HW_CACHE_OP_MAX]
1122 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1123 {
1124 [ C(LL ) ] = {
1125 [ C(OP_READ) ] = {
1126 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1127 [ C(RESULT_MISS) ] = SLM_DMND_READ|SLM_LLC_MISS,
1128 },
1129 [ C(OP_WRITE) ] = {
1130 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1131 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1132 },
1133 [ C(OP_PREFETCH) ] = {
1134 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1135 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1136 },
1137 },
1138 };
1139
1140 static __initconst const u64 slm_hw_cache_event_ids
1141 [PERF_COUNT_HW_CACHE_MAX]
1142 [PERF_COUNT_HW_CACHE_OP_MAX]
1143 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1144 {
1145 [ C(L1D) ] = {
1146 [ C(OP_READ) ] = {
1147 [ C(RESULT_ACCESS) ] = 0,
1148 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1149 },
1150 [ C(OP_WRITE) ] = {
1151 [ C(RESULT_ACCESS) ] = 0,
1152 [ C(RESULT_MISS) ] = 0,
1153 },
1154 [ C(OP_PREFETCH) ] = {
1155 [ C(RESULT_ACCESS) ] = 0,
1156 [ C(RESULT_MISS) ] = 0,
1157 },
1158 },
1159 [ C(L1I ) ] = {
1160 [ C(OP_READ) ] = {
1161 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1162 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1163 },
1164 [ C(OP_WRITE) ] = {
1165 [ C(RESULT_ACCESS) ] = -1,
1166 [ C(RESULT_MISS) ] = -1,
1167 },
1168 [ C(OP_PREFETCH) ] = {
1169 [ C(RESULT_ACCESS) ] = 0,
1170 [ C(RESULT_MISS) ] = 0,
1171 },
1172 },
1173 [ C(LL ) ] = {
1174 [ C(OP_READ) ] = {
1175 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1176 [ C(RESULT_ACCESS) ] = 0x01b7,
1177 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1178 [ C(RESULT_MISS) ] = 0x01b7,
1179 },
1180 [ C(OP_WRITE) ] = {
1181 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1182 [ C(RESULT_ACCESS) ] = 0x01b7,
1183 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1184 [ C(RESULT_MISS) ] = 0x01b7,
1185 },
1186 [ C(OP_PREFETCH) ] = {
1187 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1188 [ C(RESULT_ACCESS) ] = 0x01b7,
1189 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1190 [ C(RESULT_MISS) ] = 0x01b7,
1191 },
1192 },
1193 [ C(DTLB) ] = {
1194 [ C(OP_READ) ] = {
1195 [ C(RESULT_ACCESS) ] = 0,
1196 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1197 },
1198 [ C(OP_WRITE) ] = {
1199 [ C(RESULT_ACCESS) ] = 0,
1200 [ C(RESULT_MISS) ] = 0,
1201 },
1202 [ C(OP_PREFETCH) ] = {
1203 [ C(RESULT_ACCESS) ] = 0,
1204 [ C(RESULT_MISS) ] = 0,
1205 },
1206 },
1207 [ C(ITLB) ] = {
1208 [ C(OP_READ) ] = {
1209 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1210 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1211 },
1212 [ C(OP_WRITE) ] = {
1213 [ C(RESULT_ACCESS) ] = -1,
1214 [ C(RESULT_MISS) ] = -1,
1215 },
1216 [ C(OP_PREFETCH) ] = {
1217 [ C(RESULT_ACCESS) ] = -1,
1218 [ C(RESULT_MISS) ] = -1,
1219 },
1220 },
1221 [ C(BPU ) ] = {
1222 [ C(OP_READ) ] = {
1223 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1224 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1225 },
1226 [ C(OP_WRITE) ] = {
1227 [ C(RESULT_ACCESS) ] = -1,
1228 [ C(RESULT_MISS) ] = -1,
1229 },
1230 [ C(OP_PREFETCH) ] = {
1231 [ C(RESULT_ACCESS) ] = -1,
1232 [ C(RESULT_MISS) ] = -1,
1233 },
1234 },
1235 };
1236
1237 static void intel_pmu_disable_all(void)
1238 {
1239 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1240
1241 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1242
1243 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1244 intel_pmu_disable_bts();
1245 else
1246 intel_bts_disable_local();
1247
1248 intel_pmu_pebs_disable_all();
1249 intel_pmu_lbr_disable_all();
1250 }
1251
1252 static void intel_pmu_enable_all(int added)
1253 {
1254 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1255
1256 intel_pmu_pebs_enable_all();
1257 intel_pmu_lbr_enable_all();
1258 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1259 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1260
1261 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1262 struct perf_event *event =
1263 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1264
1265 if (WARN_ON_ONCE(!event))
1266 return;
1267
1268 intel_pmu_enable_bts(event->hw.config);
1269 } else
1270 intel_bts_enable_local();
1271 }
1272
1273 /*
1274 * Workaround for:
1275 * Intel Errata AAK100 (model 26)
1276 * Intel Errata AAP53 (model 30)
1277 * Intel Errata BD53 (model 44)
1278 *
1279 * The official story:
1280 * These chips need to be 'reset' when adding counters by programming the
1281 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1282 * in sequence on the same PMC or on different PMCs.
1283 *
1284 * In practise it appears some of these events do in fact count, and
1285 * we need to programm all 4 events.
1286 */
1287 static void intel_pmu_nhm_workaround(void)
1288 {
1289 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1290 static const unsigned long nhm_magic[4] = {
1291 0x4300B5,
1292 0x4300D2,
1293 0x4300B1,
1294 0x4300B1
1295 };
1296 struct perf_event *event;
1297 int i;
1298
1299 /*
1300 * The Errata requires below steps:
1301 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1302 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1303 * the corresponding PMCx;
1304 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1305 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1306 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1307 */
1308
1309 /*
1310 * The real steps we choose are a little different from above.
1311 * A) To reduce MSR operations, we don't run step 1) as they
1312 * are already cleared before this function is called;
1313 * B) Call x86_perf_event_update to save PMCx before configuring
1314 * PERFEVTSELx with magic number;
1315 * C) With step 5), we do clear only when the PERFEVTSELx is
1316 * not used currently.
1317 * D) Call x86_perf_event_set_period to restore PMCx;
1318 */
1319
1320 /* We always operate 4 pairs of PERF Counters */
1321 for (i = 0; i < 4; i++) {
1322 event = cpuc->events[i];
1323 if (event)
1324 x86_perf_event_update(event);
1325 }
1326
1327 for (i = 0; i < 4; i++) {
1328 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1329 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1330 }
1331
1332 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1333 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1334
1335 for (i = 0; i < 4; i++) {
1336 event = cpuc->events[i];
1337
1338 if (event) {
1339 x86_perf_event_set_period(event);
1340 __x86_pmu_enable_event(&event->hw,
1341 ARCH_PERFMON_EVENTSEL_ENABLE);
1342 } else
1343 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1344 }
1345 }
1346
1347 static void intel_pmu_nhm_enable_all(int added)
1348 {
1349 if (added)
1350 intel_pmu_nhm_workaround();
1351 intel_pmu_enable_all(added);
1352 }
1353
1354 static inline u64 intel_pmu_get_status(void)
1355 {
1356 u64 status;
1357
1358 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1359
1360 return status;
1361 }
1362
1363 static inline void intel_pmu_ack_status(u64 ack)
1364 {
1365 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1366 }
1367
1368 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1369 {
1370 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1371 u64 ctrl_val, mask;
1372
1373 mask = 0xfULL << (idx * 4);
1374
1375 rdmsrl(hwc->config_base, ctrl_val);
1376 ctrl_val &= ~mask;
1377 wrmsrl(hwc->config_base, ctrl_val);
1378 }
1379
1380 static inline bool event_is_checkpointed(struct perf_event *event)
1381 {
1382 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1383 }
1384
1385 static void intel_pmu_disable_event(struct perf_event *event)
1386 {
1387 struct hw_perf_event *hwc = &event->hw;
1388 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1389
1390 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1391 intel_pmu_disable_bts();
1392 intel_pmu_drain_bts_buffer();
1393 return;
1394 }
1395
1396 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1397 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1398 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1399
1400 /*
1401 * must disable before any actual event
1402 * because any event may be combined with LBR
1403 */
1404 if (needs_branch_stack(event))
1405 intel_pmu_lbr_disable(event);
1406
1407 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1408 intel_pmu_disable_fixed(hwc);
1409 return;
1410 }
1411
1412 x86_pmu_disable_event(event);
1413
1414 if (unlikely(event->attr.precise_ip))
1415 intel_pmu_pebs_disable(event);
1416 }
1417
1418 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1419 {
1420 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1421 u64 ctrl_val, bits, mask;
1422
1423 /*
1424 * Enable IRQ generation (0x8),
1425 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1426 * if requested:
1427 */
1428 bits = 0x8ULL;
1429 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1430 bits |= 0x2;
1431 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1432 bits |= 0x1;
1433
1434 /*
1435 * ANY bit is supported in v3 and up
1436 */
1437 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1438 bits |= 0x4;
1439
1440 bits <<= (idx * 4);
1441 mask = 0xfULL << (idx * 4);
1442
1443 rdmsrl(hwc->config_base, ctrl_val);
1444 ctrl_val &= ~mask;
1445 ctrl_val |= bits;
1446 wrmsrl(hwc->config_base, ctrl_val);
1447 }
1448
1449 static void intel_pmu_enable_event(struct perf_event *event)
1450 {
1451 struct hw_perf_event *hwc = &event->hw;
1452 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1453
1454 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1455 if (!__this_cpu_read(cpu_hw_events.enabled))
1456 return;
1457
1458 intel_pmu_enable_bts(hwc->config);
1459 return;
1460 }
1461 /*
1462 * must enabled before any actual event
1463 * because any event may be combined with LBR
1464 */
1465 if (needs_branch_stack(event))
1466 intel_pmu_lbr_enable(event);
1467
1468 if (event->attr.exclude_host)
1469 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1470 if (event->attr.exclude_guest)
1471 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1472
1473 if (unlikely(event_is_checkpointed(event)))
1474 cpuc->intel_cp_status |= (1ull << hwc->idx);
1475
1476 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1477 intel_pmu_enable_fixed(hwc);
1478 return;
1479 }
1480
1481 if (unlikely(event->attr.precise_ip))
1482 intel_pmu_pebs_enable(event);
1483
1484 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1485 }
1486
1487 /*
1488 * Save and restart an expired event. Called by NMI contexts,
1489 * so it has to be careful about preempting normal event ops:
1490 */
1491 int intel_pmu_save_and_restart(struct perf_event *event)
1492 {
1493 x86_perf_event_update(event);
1494 /*
1495 * For a checkpointed counter always reset back to 0. This
1496 * avoids a situation where the counter overflows, aborts the
1497 * transaction and is then set back to shortly before the
1498 * overflow, and overflows and aborts again.
1499 */
1500 if (unlikely(event_is_checkpointed(event))) {
1501 /* No race with NMIs because the counter should not be armed */
1502 wrmsrl(event->hw.event_base, 0);
1503 local64_set(&event->hw.prev_count, 0);
1504 }
1505 return x86_perf_event_set_period(event);
1506 }
1507
1508 static void intel_pmu_reset(void)
1509 {
1510 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1511 unsigned long flags;
1512 int idx;
1513
1514 if (!x86_pmu.num_counters)
1515 return;
1516
1517 local_irq_save(flags);
1518
1519 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1520
1521 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1522 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1523 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
1524 }
1525 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1526 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1527
1528 if (ds)
1529 ds->bts_index = ds->bts_buffer_base;
1530
1531 local_irq_restore(flags);
1532 }
1533
1534 /*
1535 * This handler is triggered by the local APIC, so the APIC IRQ handling
1536 * rules apply:
1537 */
1538 static int intel_pmu_handle_irq(struct pt_regs *regs)
1539 {
1540 struct perf_sample_data data;
1541 struct cpu_hw_events *cpuc;
1542 int bit, loops;
1543 u64 status;
1544 int handled;
1545
1546 cpuc = this_cpu_ptr(&cpu_hw_events);
1547
1548 /*
1549 * No known reason to not always do late ACK,
1550 * but just in case do it opt-in.
1551 */
1552 if (!x86_pmu.late_ack)
1553 apic_write(APIC_LVTPC, APIC_DM_NMI);
1554 intel_pmu_disable_all();
1555 handled = intel_pmu_drain_bts_buffer();
1556 handled += intel_bts_interrupt();
1557 status = intel_pmu_get_status();
1558 if (!status)
1559 goto done;
1560
1561 loops = 0;
1562 again:
1563 intel_pmu_ack_status(status);
1564 if (++loops > 100) {
1565 static bool warned = false;
1566 if (!warned) {
1567 WARN(1, "perfevents: irq loop stuck!\n");
1568 perf_event_print_debug();
1569 warned = true;
1570 }
1571 intel_pmu_reset();
1572 goto done;
1573 }
1574
1575 inc_irq_stat(apic_perf_irqs);
1576
1577 intel_pmu_lbr_read();
1578
1579 /*
1580 * CondChgd bit 63 doesn't mean any overflow status. Ignore
1581 * and clear the bit.
1582 */
1583 if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1584 if (!status)
1585 goto done;
1586 }
1587
1588 /*
1589 * PEBS overflow sets bit 62 in the global status register
1590 */
1591 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1592 handled++;
1593 x86_pmu.drain_pebs(regs);
1594 }
1595
1596 /*
1597 * Intel PT
1598 */
1599 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1600 handled++;
1601 intel_pt_interrupt();
1602 }
1603
1604 /*
1605 * Checkpointed counters can lead to 'spurious' PMIs because the
1606 * rollback caused by the PMI will have cleared the overflow status
1607 * bit. Therefore always force probe these counters.
1608 */
1609 status |= cpuc->intel_cp_status;
1610
1611 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1612 struct perf_event *event = cpuc->events[bit];
1613
1614 handled++;
1615
1616 if (!test_bit(bit, cpuc->active_mask))
1617 continue;
1618
1619 if (!intel_pmu_save_and_restart(event))
1620 continue;
1621
1622 perf_sample_data_init(&data, 0, event->hw.last_period);
1623
1624 if (has_branch_stack(event))
1625 data.br_stack = &cpuc->lbr_stack;
1626
1627 if (perf_event_overflow(event, &data, regs))
1628 x86_pmu_stop(event, 0);
1629 }
1630
1631 /*
1632 * Repeat if there is more work to be done:
1633 */
1634 status = intel_pmu_get_status();
1635 if (status)
1636 goto again;
1637
1638 done:
1639 intel_pmu_enable_all(0);
1640 /*
1641 * Only unmask the NMI after the overflow counters
1642 * have been reset. This avoids spurious NMIs on
1643 * Haswell CPUs.
1644 */
1645 if (x86_pmu.late_ack)
1646 apic_write(APIC_LVTPC, APIC_DM_NMI);
1647 return handled;
1648 }
1649
1650 static struct event_constraint *
1651 intel_bts_constraints(struct perf_event *event)
1652 {
1653 struct hw_perf_event *hwc = &event->hw;
1654 unsigned int hw_event, bts_event;
1655
1656 if (event->attr.freq)
1657 return NULL;
1658
1659 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1660 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1661
1662 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1663 return &bts_constraint;
1664
1665 return NULL;
1666 }
1667
1668 static int intel_alt_er(int idx)
1669 {
1670 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1671 return idx;
1672
1673 if (idx == EXTRA_REG_RSP_0)
1674 return EXTRA_REG_RSP_1;
1675
1676 if (idx == EXTRA_REG_RSP_1)
1677 return EXTRA_REG_RSP_0;
1678
1679 return idx;
1680 }
1681
1682 static void intel_fixup_er(struct perf_event *event, int idx)
1683 {
1684 event->hw.extra_reg.idx = idx;
1685
1686 if (idx == EXTRA_REG_RSP_0) {
1687 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1688 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1689 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1690 } else if (idx == EXTRA_REG_RSP_1) {
1691 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1692 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1693 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1694 }
1695 }
1696
1697 /*
1698 * manage allocation of shared extra msr for certain events
1699 *
1700 * sharing can be:
1701 * per-cpu: to be shared between the various events on a single PMU
1702 * per-core: per-cpu + shared by HT threads
1703 */
1704 static struct event_constraint *
1705 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1706 struct perf_event *event,
1707 struct hw_perf_event_extra *reg)
1708 {
1709 struct event_constraint *c = &emptyconstraint;
1710 struct er_account *era;
1711 unsigned long flags;
1712 int idx = reg->idx;
1713
1714 /*
1715 * reg->alloc can be set due to existing state, so for fake cpuc we
1716 * need to ignore this, otherwise we might fail to allocate proper fake
1717 * state for this extra reg constraint. Also see the comment below.
1718 */
1719 if (reg->alloc && !cpuc->is_fake)
1720 return NULL; /* call x86_get_event_constraint() */
1721
1722 again:
1723 era = &cpuc->shared_regs->regs[idx];
1724 /*
1725 * we use spin_lock_irqsave() to avoid lockdep issues when
1726 * passing a fake cpuc
1727 */
1728 raw_spin_lock_irqsave(&era->lock, flags);
1729
1730 if (!atomic_read(&era->ref) || era->config == reg->config) {
1731
1732 /*
1733 * If its a fake cpuc -- as per validate_{group,event}() we
1734 * shouldn't touch event state and we can avoid doing so
1735 * since both will only call get_event_constraints() once
1736 * on each event, this avoids the need for reg->alloc.
1737 *
1738 * Not doing the ER fixup will only result in era->reg being
1739 * wrong, but since we won't actually try and program hardware
1740 * this isn't a problem either.
1741 */
1742 if (!cpuc->is_fake) {
1743 if (idx != reg->idx)
1744 intel_fixup_er(event, idx);
1745
1746 /*
1747 * x86_schedule_events() can call get_event_constraints()
1748 * multiple times on events in the case of incremental
1749 * scheduling(). reg->alloc ensures we only do the ER
1750 * allocation once.
1751 */
1752 reg->alloc = 1;
1753 }
1754
1755 /* lock in msr value */
1756 era->config = reg->config;
1757 era->reg = reg->reg;
1758
1759 /* one more user */
1760 atomic_inc(&era->ref);
1761
1762 /*
1763 * need to call x86_get_event_constraint()
1764 * to check if associated event has constraints
1765 */
1766 c = NULL;
1767 } else {
1768 idx = intel_alt_er(idx);
1769 if (idx != reg->idx) {
1770 raw_spin_unlock_irqrestore(&era->lock, flags);
1771 goto again;
1772 }
1773 }
1774 raw_spin_unlock_irqrestore(&era->lock, flags);
1775
1776 return c;
1777 }
1778
1779 static void
1780 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1781 struct hw_perf_event_extra *reg)
1782 {
1783 struct er_account *era;
1784
1785 /*
1786 * Only put constraint if extra reg was actually allocated. Also takes
1787 * care of event which do not use an extra shared reg.
1788 *
1789 * Also, if this is a fake cpuc we shouldn't touch any event state
1790 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1791 * either since it'll be thrown out.
1792 */
1793 if (!reg->alloc || cpuc->is_fake)
1794 return;
1795
1796 era = &cpuc->shared_regs->regs[reg->idx];
1797
1798 /* one fewer user */
1799 atomic_dec(&era->ref);
1800
1801 /* allocate again next time */
1802 reg->alloc = 0;
1803 }
1804
1805 static struct event_constraint *
1806 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1807 struct perf_event *event)
1808 {
1809 struct event_constraint *c = NULL, *d;
1810 struct hw_perf_event_extra *xreg, *breg;
1811
1812 xreg = &event->hw.extra_reg;
1813 if (xreg->idx != EXTRA_REG_NONE) {
1814 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1815 if (c == &emptyconstraint)
1816 return c;
1817 }
1818 breg = &event->hw.branch_reg;
1819 if (breg->idx != EXTRA_REG_NONE) {
1820 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1821 if (d == &emptyconstraint) {
1822 __intel_shared_reg_put_constraints(cpuc, xreg);
1823 c = d;
1824 }
1825 }
1826 return c;
1827 }
1828
1829 struct event_constraint *
1830 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1831 struct perf_event *event)
1832 {
1833 struct event_constraint *c;
1834
1835 if (x86_pmu.event_constraints) {
1836 for_each_event_constraint(c, x86_pmu.event_constraints) {
1837 if ((event->hw.config & c->cmask) == c->code) {
1838 event->hw.flags |= c->flags;
1839 return c;
1840 }
1841 }
1842 }
1843
1844 return &unconstrained;
1845 }
1846
1847 static struct event_constraint *
1848 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1849 struct perf_event *event)
1850 {
1851 struct event_constraint *c;
1852
1853 c = intel_bts_constraints(event);
1854 if (c)
1855 return c;
1856
1857 c = intel_shared_regs_constraints(cpuc, event);
1858 if (c)
1859 return c;
1860
1861 c = intel_pebs_constraints(event);
1862 if (c)
1863 return c;
1864
1865 return x86_get_event_constraints(cpuc, idx, event);
1866 }
1867
1868 static void
1869 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1870 struct perf_event *event)
1871 {
1872 struct hw_perf_event_extra *reg;
1873
1874 reg = &event->hw.extra_reg;
1875 if (reg->idx != EXTRA_REG_NONE)
1876 __intel_shared_reg_put_constraints(cpuc, reg);
1877
1878 reg = &event->hw.branch_reg;
1879 if (reg->idx != EXTRA_REG_NONE)
1880 __intel_shared_reg_put_constraints(cpuc, reg);
1881 }
1882
1883 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1884 struct perf_event *event)
1885 {
1886 intel_put_shared_regs_event_constraints(cpuc, event);
1887 }
1888
1889 static void intel_pebs_aliases_core2(struct perf_event *event)
1890 {
1891 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1892 /*
1893 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1894 * (0x003c) so that we can use it with PEBS.
1895 *
1896 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1897 * PEBS capable. However we can use INST_RETIRED.ANY_P
1898 * (0x00c0), which is a PEBS capable event, to get the same
1899 * count.
1900 *
1901 * INST_RETIRED.ANY_P counts the number of cycles that retires
1902 * CNTMASK instructions. By setting CNTMASK to a value (16)
1903 * larger than the maximum number of instructions that can be
1904 * retired per cycle (4) and then inverting the condition, we
1905 * count all cycles that retire 16 or less instructions, which
1906 * is every cycle.
1907 *
1908 * Thereby we gain a PEBS capable cycle counter.
1909 */
1910 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1911
1912 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1913 event->hw.config = alt_config;
1914 }
1915 }
1916
1917 static void intel_pebs_aliases_snb(struct perf_event *event)
1918 {
1919 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1920 /*
1921 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1922 * (0x003c) so that we can use it with PEBS.
1923 *
1924 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1925 * PEBS capable. However we can use UOPS_RETIRED.ALL
1926 * (0x01c2), which is a PEBS capable event, to get the same
1927 * count.
1928 *
1929 * UOPS_RETIRED.ALL counts the number of cycles that retires
1930 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1931 * larger than the maximum number of micro-ops that can be
1932 * retired per cycle (4) and then inverting the condition, we
1933 * count all cycles that retire 16 or less micro-ops, which
1934 * is every cycle.
1935 *
1936 * Thereby we gain a PEBS capable cycle counter.
1937 */
1938 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1939
1940 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1941 event->hw.config = alt_config;
1942 }
1943 }
1944
1945 static int intel_pmu_hw_config(struct perf_event *event)
1946 {
1947 int ret = x86_pmu_hw_config(event);
1948
1949 if (ret)
1950 return ret;
1951
1952 if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1953 x86_pmu.pebs_aliases(event);
1954
1955 if (needs_branch_stack(event)) {
1956 ret = intel_pmu_setup_lbr_filter(event);
1957 if (ret)
1958 return ret;
1959
1960 /*
1961 * BTS is set up earlier in this path, so don't account twice
1962 */
1963 if (!intel_pmu_has_bts(event)) {
1964 /* disallow lbr if conflicting events are present */
1965 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
1966 return -EBUSY;
1967
1968 event->destroy = hw_perf_lbr_event_destroy;
1969 }
1970 }
1971
1972 if (event->attr.type != PERF_TYPE_RAW)
1973 return 0;
1974
1975 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1976 return 0;
1977
1978 if (x86_pmu.version < 3)
1979 return -EINVAL;
1980
1981 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1982 return -EACCES;
1983
1984 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1985
1986 return 0;
1987 }
1988
1989 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1990 {
1991 if (x86_pmu.guest_get_msrs)
1992 return x86_pmu.guest_get_msrs(nr);
1993 *nr = 0;
1994 return NULL;
1995 }
1996 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1997
1998 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1999 {
2000 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2001 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2002
2003 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2004 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2005 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2006 /*
2007 * If PMU counter has PEBS enabled it is not enough to disable counter
2008 * on a guest entry since PEBS memory write can overshoot guest entry
2009 * and corrupt guest memory. Disabling PEBS solves the problem.
2010 */
2011 arr[1].msr = MSR_IA32_PEBS_ENABLE;
2012 arr[1].host = cpuc->pebs_enabled;
2013 arr[1].guest = 0;
2014
2015 *nr = 2;
2016 return arr;
2017 }
2018
2019 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2020 {
2021 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2022 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2023 int idx;
2024
2025 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2026 struct perf_event *event = cpuc->events[idx];
2027
2028 arr[idx].msr = x86_pmu_config_addr(idx);
2029 arr[idx].host = arr[idx].guest = 0;
2030
2031 if (!test_bit(idx, cpuc->active_mask))
2032 continue;
2033
2034 arr[idx].host = arr[idx].guest =
2035 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2036
2037 if (event->attr.exclude_host)
2038 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2039 else if (event->attr.exclude_guest)
2040 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2041 }
2042
2043 *nr = x86_pmu.num_counters;
2044 return arr;
2045 }
2046
2047 static void core_pmu_enable_event(struct perf_event *event)
2048 {
2049 if (!event->attr.exclude_host)
2050 x86_pmu_enable_event(event);
2051 }
2052
2053 static void core_pmu_enable_all(int added)
2054 {
2055 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2056 int idx;
2057
2058 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2059 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2060
2061 if (!test_bit(idx, cpuc->active_mask) ||
2062 cpuc->events[idx]->attr.exclude_host)
2063 continue;
2064
2065 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2066 }
2067 }
2068
2069 static int hsw_hw_config(struct perf_event *event)
2070 {
2071 int ret = intel_pmu_hw_config(event);
2072
2073 if (ret)
2074 return ret;
2075 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2076 return 0;
2077 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2078
2079 /*
2080 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2081 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2082 * this combination.
2083 */
2084 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2085 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2086 event->attr.precise_ip > 0))
2087 return -EOPNOTSUPP;
2088
2089 if (event_is_checkpointed(event)) {
2090 /*
2091 * Sampling of checkpointed events can cause situations where
2092 * the CPU constantly aborts because of a overflow, which is
2093 * then checkpointed back and ignored. Forbid checkpointing
2094 * for sampling.
2095 *
2096 * But still allow a long sampling period, so that perf stat
2097 * from KVM works.
2098 */
2099 if (event->attr.sample_period > 0 &&
2100 event->attr.sample_period < 0x7fffffff)
2101 return -EOPNOTSUPP;
2102 }
2103 return 0;
2104 }
2105
2106 static struct event_constraint counter2_constraint =
2107 EVENT_CONSTRAINT(0, 0x4, 0);
2108
2109 static struct event_constraint *
2110 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2111 struct perf_event *event)
2112 {
2113 struct event_constraint *c;
2114
2115 c = intel_get_event_constraints(cpuc, idx, event);
2116
2117 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2118 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2119 if (c->idxmsk64 & (1U << 2))
2120 return &counter2_constraint;
2121 return &emptyconstraint;
2122 }
2123
2124 return c;
2125 }
2126
2127 /*
2128 * Broadwell:
2129 *
2130 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2131 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2132 * the two to enforce a minimum period of 128 (the smallest value that has bits
2133 * 0-5 cleared and >= 100).
2134 *
2135 * Because of how the code in x86_perf_event_set_period() works, the truncation
2136 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2137 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2138 *
2139 * Therefore the effective (average) period matches the requested period,
2140 * despite coarser hardware granularity.
2141 */
2142 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2143 {
2144 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2145 X86_CONFIG(.event=0xc0, .umask=0x01)) {
2146 if (left < 128)
2147 left = 128;
2148 left &= ~0x3fu;
2149 }
2150 return left;
2151 }
2152
2153 PMU_FORMAT_ATTR(event, "config:0-7" );
2154 PMU_FORMAT_ATTR(umask, "config:8-15" );
2155 PMU_FORMAT_ATTR(edge, "config:18" );
2156 PMU_FORMAT_ATTR(pc, "config:19" );
2157 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
2158 PMU_FORMAT_ATTR(inv, "config:23" );
2159 PMU_FORMAT_ATTR(cmask, "config:24-31" );
2160 PMU_FORMAT_ATTR(in_tx, "config:32");
2161 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2162
2163 static struct attribute *intel_arch_formats_attr[] = {
2164 &format_attr_event.attr,
2165 &format_attr_umask.attr,
2166 &format_attr_edge.attr,
2167 &format_attr_pc.attr,
2168 &format_attr_inv.attr,
2169 &format_attr_cmask.attr,
2170 NULL,
2171 };
2172
2173 ssize_t intel_event_sysfs_show(char *page, u64 config)
2174 {
2175 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2176
2177 return x86_event_sysfs_show(page, config, event);
2178 }
2179
2180 static __initconst const struct x86_pmu core_pmu = {
2181 .name = "core",
2182 .handle_irq = x86_pmu_handle_irq,
2183 .disable_all = x86_pmu_disable_all,
2184 .enable_all = core_pmu_enable_all,
2185 .enable = core_pmu_enable_event,
2186 .disable = x86_pmu_disable_event,
2187 .hw_config = x86_pmu_hw_config,
2188 .schedule_events = x86_schedule_events,
2189 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2190 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2191 .event_map = intel_pmu_event_map,
2192 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2193 .apic = 1,
2194 /*
2195 * Intel PMCs cannot be accessed sanely above 32 bit width,
2196 * so we install an artificial 1<<31 period regardless of
2197 * the generic event period:
2198 */
2199 .max_period = (1ULL << 31) - 1,
2200 .get_event_constraints = intel_get_event_constraints,
2201 .put_event_constraints = intel_put_event_constraints,
2202 .event_constraints = intel_core_event_constraints,
2203 .guest_get_msrs = core_guest_get_msrs,
2204 .format_attrs = intel_arch_formats_attr,
2205 .events_sysfs_show = intel_event_sysfs_show,
2206 };
2207
2208 struct intel_shared_regs *allocate_shared_regs(int cpu)
2209 {
2210 struct intel_shared_regs *regs;
2211 int i;
2212
2213 regs = kzalloc_node(sizeof(struct intel_shared_regs),
2214 GFP_KERNEL, cpu_to_node(cpu));
2215 if (regs) {
2216 /*
2217 * initialize the locks to keep lockdep happy
2218 */
2219 for (i = 0; i < EXTRA_REG_MAX; i++)
2220 raw_spin_lock_init(&regs->regs[i].lock);
2221
2222 regs->core_id = -1;
2223 }
2224 return regs;
2225 }
2226
2227 static int intel_pmu_cpu_prepare(int cpu)
2228 {
2229 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2230
2231 if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
2232 return NOTIFY_OK;
2233
2234 cpuc->shared_regs = allocate_shared_regs(cpu);
2235 if (!cpuc->shared_regs)
2236 return NOTIFY_BAD;
2237
2238 return NOTIFY_OK;
2239 }
2240
2241 static void intel_pmu_cpu_starting(int cpu)
2242 {
2243 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2244 int core_id = topology_core_id(cpu);
2245 int i;
2246
2247 init_debug_store_on_cpu(cpu);
2248 /*
2249 * Deal with CPUs that don't clear their LBRs on power-up.
2250 */
2251 intel_pmu_lbr_reset();
2252
2253 cpuc->lbr_sel = NULL;
2254
2255 if (!cpuc->shared_regs)
2256 return;
2257
2258 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2259 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2260
2261 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2262 struct intel_shared_regs *pc;
2263
2264 pc = per_cpu(cpu_hw_events, i).shared_regs;
2265 if (pc && pc->core_id == core_id) {
2266 *onln = cpuc->shared_regs;
2267 cpuc->shared_regs = pc;
2268 break;
2269 }
2270 }
2271 cpuc->shared_regs->core_id = core_id;
2272 cpuc->shared_regs->refcnt++;
2273 }
2274
2275 if (x86_pmu.lbr_sel_map)
2276 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2277 }
2278
2279 static void intel_pmu_cpu_dying(int cpu)
2280 {
2281 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2282 struct intel_shared_regs *pc;
2283
2284 pc = cpuc->shared_regs;
2285 if (pc) {
2286 if (pc->core_id == -1 || --pc->refcnt == 0)
2287 kfree(pc);
2288 cpuc->shared_regs = NULL;
2289 }
2290
2291 fini_debug_store_on_cpu(cpu);
2292 }
2293
2294 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2295
2296 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2297
2298 static struct attribute *intel_arch3_formats_attr[] = {
2299 &format_attr_event.attr,
2300 &format_attr_umask.attr,
2301 &format_attr_edge.attr,
2302 &format_attr_pc.attr,
2303 &format_attr_any.attr,
2304 &format_attr_inv.attr,
2305 &format_attr_cmask.attr,
2306 &format_attr_in_tx.attr,
2307 &format_attr_in_tx_cp.attr,
2308
2309 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2310 &format_attr_ldlat.attr, /* PEBS load latency */
2311 NULL,
2312 };
2313
2314 static __initconst const struct x86_pmu intel_pmu = {
2315 .name = "Intel",
2316 .handle_irq = intel_pmu_handle_irq,
2317 .disable_all = intel_pmu_disable_all,
2318 .enable_all = intel_pmu_enable_all,
2319 .enable = intel_pmu_enable_event,
2320 .disable = intel_pmu_disable_event,
2321 .hw_config = intel_pmu_hw_config,
2322 .schedule_events = x86_schedule_events,
2323 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2324 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2325 .event_map = intel_pmu_event_map,
2326 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2327 .apic = 1,
2328 /*
2329 * Intel PMCs cannot be accessed sanely above 32 bit width,
2330 * so we install an artificial 1<<31 period regardless of
2331 * the generic event period:
2332 */
2333 .max_period = (1ULL << 31) - 1,
2334 .get_event_constraints = intel_get_event_constraints,
2335 .put_event_constraints = intel_put_event_constraints,
2336 .pebs_aliases = intel_pebs_aliases_core2,
2337
2338 .format_attrs = intel_arch3_formats_attr,
2339 .events_sysfs_show = intel_event_sysfs_show,
2340
2341 .cpu_prepare = intel_pmu_cpu_prepare,
2342 .cpu_starting = intel_pmu_cpu_starting,
2343 .cpu_dying = intel_pmu_cpu_dying,
2344 .guest_get_msrs = intel_guest_get_msrs,
2345 .sched_task = intel_pmu_lbr_sched_task,
2346 };
2347
2348 static __init void intel_clovertown_quirk(void)
2349 {
2350 /*
2351 * PEBS is unreliable due to:
2352 *
2353 * AJ67 - PEBS may experience CPL leaks
2354 * AJ68 - PEBS PMI may be delayed by one event
2355 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2356 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2357 *
2358 * AJ67 could be worked around by restricting the OS/USR flags.
2359 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2360 *
2361 * AJ106 could possibly be worked around by not allowing LBR
2362 * usage from PEBS, including the fixup.
2363 * AJ68 could possibly be worked around by always programming
2364 * a pebs_event_reset[0] value and coping with the lost events.
2365 *
2366 * But taken together it might just make sense to not enable PEBS on
2367 * these chips.
2368 */
2369 pr_warn("PEBS disabled due to CPU errata\n");
2370 x86_pmu.pebs = 0;
2371 x86_pmu.pebs_constraints = NULL;
2372 }
2373
2374 static int intel_snb_pebs_broken(int cpu)
2375 {
2376 u32 rev = UINT_MAX; /* default to broken for unknown models */
2377
2378 switch (cpu_data(cpu).x86_model) {
2379 case 42: /* SNB */
2380 rev = 0x28;
2381 break;
2382
2383 case 45: /* SNB-EP */
2384 switch (cpu_data(cpu).x86_mask) {
2385 case 6: rev = 0x618; break;
2386 case 7: rev = 0x70c; break;
2387 }
2388 }
2389
2390 return (cpu_data(cpu).microcode < rev);
2391 }
2392
2393 static void intel_snb_check_microcode(void)
2394 {
2395 int pebs_broken = 0;
2396 int cpu;
2397
2398 get_online_cpus();
2399 for_each_online_cpu(cpu) {
2400 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2401 break;
2402 }
2403 put_online_cpus();
2404
2405 if (pebs_broken == x86_pmu.pebs_broken)
2406 return;
2407
2408 /*
2409 * Serialized by the microcode lock..
2410 */
2411 if (x86_pmu.pebs_broken) {
2412 pr_info("PEBS enabled due to microcode update\n");
2413 x86_pmu.pebs_broken = 0;
2414 } else {
2415 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2416 x86_pmu.pebs_broken = 1;
2417 }
2418 }
2419
2420 /*
2421 * Under certain circumstances, access certain MSR may cause #GP.
2422 * The function tests if the input MSR can be safely accessed.
2423 */
2424 static bool check_msr(unsigned long msr, u64 mask)
2425 {
2426 u64 val_old, val_new, val_tmp;
2427
2428 /*
2429 * Read the current value, change it and read it back to see if it
2430 * matches, this is needed to detect certain hardware emulators
2431 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2432 */
2433 if (rdmsrl_safe(msr, &val_old))
2434 return false;
2435
2436 /*
2437 * Only change the bits which can be updated by wrmsrl.
2438 */
2439 val_tmp = val_old ^ mask;
2440 if (wrmsrl_safe(msr, val_tmp) ||
2441 rdmsrl_safe(msr, &val_new))
2442 return false;
2443
2444 if (val_new != val_tmp)
2445 return false;
2446
2447 /* Here it's sure that the MSR can be safely accessed.
2448 * Restore the old value and return.
2449 */
2450 wrmsrl(msr, val_old);
2451
2452 return true;
2453 }
2454
2455 static __init void intel_sandybridge_quirk(void)
2456 {
2457 x86_pmu.check_microcode = intel_snb_check_microcode;
2458 intel_snb_check_microcode();
2459 }
2460
2461 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2462 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2463 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2464 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2465 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2466 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2467 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2468 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2469 };
2470
2471 static __init void intel_arch_events_quirk(void)
2472 {
2473 int bit;
2474
2475 /* disable event that reported as not presend by cpuid */
2476 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2477 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2478 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2479 intel_arch_events_map[bit].name);
2480 }
2481 }
2482
2483 static __init void intel_nehalem_quirk(void)
2484 {
2485 union cpuid10_ebx ebx;
2486
2487 ebx.full = x86_pmu.events_maskl;
2488 if (ebx.split.no_branch_misses_retired) {
2489 /*
2490 * Erratum AAJ80 detected, we work it around by using
2491 * the BR_MISP_EXEC.ANY event. This will over-count
2492 * branch-misses, but it's still much better than the
2493 * architectural event which is often completely bogus:
2494 */
2495 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2496 ebx.split.no_branch_misses_retired = 0;
2497 x86_pmu.events_maskl = ebx.full;
2498 pr_info("CPU erratum AAJ80 worked around\n");
2499 }
2500 }
2501
2502 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
2503 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
2504
2505 /* Haswell special events */
2506 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
2507 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
2508 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
2509 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
2510 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
2511 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
2512 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
2513 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
2514 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
2515 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
2516 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
2517 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
2518
2519 static struct attribute *hsw_events_attrs[] = {
2520 EVENT_PTR(tx_start),
2521 EVENT_PTR(tx_commit),
2522 EVENT_PTR(tx_abort),
2523 EVENT_PTR(tx_capacity),
2524 EVENT_PTR(tx_conflict),
2525 EVENT_PTR(el_start),
2526 EVENT_PTR(el_commit),
2527 EVENT_PTR(el_abort),
2528 EVENT_PTR(el_capacity),
2529 EVENT_PTR(el_conflict),
2530 EVENT_PTR(cycles_t),
2531 EVENT_PTR(cycles_ct),
2532 EVENT_PTR(mem_ld_hsw),
2533 EVENT_PTR(mem_st_hsw),
2534 NULL
2535 };
2536
2537 __init int intel_pmu_init(void)
2538 {
2539 union cpuid10_edx edx;
2540 union cpuid10_eax eax;
2541 union cpuid10_ebx ebx;
2542 struct event_constraint *c;
2543 unsigned int unused;
2544 struct extra_reg *er;
2545 int version, i;
2546
2547 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2548 switch (boot_cpu_data.x86) {
2549 case 0x6:
2550 return p6_pmu_init();
2551 case 0xb:
2552 return knc_pmu_init();
2553 case 0xf:
2554 return p4_pmu_init();
2555 }
2556 return -ENODEV;
2557 }
2558
2559 /*
2560 * Check whether the Architectural PerfMon supports
2561 * Branch Misses Retired hw_event or not.
2562 */
2563 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2564 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2565 return -ENODEV;
2566
2567 version = eax.split.version_id;
2568 if (version < 2)
2569 x86_pmu = core_pmu;
2570 else
2571 x86_pmu = intel_pmu;
2572
2573 x86_pmu.version = version;
2574 x86_pmu.num_counters = eax.split.num_counters;
2575 x86_pmu.cntval_bits = eax.split.bit_width;
2576 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
2577
2578 x86_pmu.events_maskl = ebx.full;
2579 x86_pmu.events_mask_len = eax.split.mask_length;
2580
2581 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
2582
2583 /*
2584 * Quirk: v2 perfmon does not report fixed-purpose events, so
2585 * assume at least 3 events:
2586 */
2587 if (version > 1)
2588 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2589
2590 if (boot_cpu_has(X86_FEATURE_PDCM)) {
2591 u64 capabilities;
2592
2593 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
2594 x86_pmu.intel_cap.capabilities = capabilities;
2595 }
2596
2597 intel_ds_init();
2598
2599 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
2600
2601 /*
2602 * Install the hw-cache-events table:
2603 */
2604 switch (boot_cpu_data.x86_model) {
2605 case 14: /* 65nm Core "Yonah" */
2606 pr_cont("Core events, ");
2607 break;
2608
2609 case 15: /* 65nm Core2 "Merom" */
2610 x86_add_quirk(intel_clovertown_quirk);
2611 case 22: /* 65nm Core2 "Merom-L" */
2612 case 23: /* 45nm Core2 "Penryn" */
2613 case 29: /* 45nm Core2 "Dunnington (MP) */
2614 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2615 sizeof(hw_cache_event_ids));
2616
2617 intel_pmu_lbr_init_core();
2618
2619 x86_pmu.event_constraints = intel_core2_event_constraints;
2620 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2621 pr_cont("Core2 events, ");
2622 break;
2623
2624 case 30: /* 45nm Nehalem */
2625 case 26: /* 45nm Nehalem-EP */
2626 case 46: /* 45nm Nehalem-EX */
2627 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2628 sizeof(hw_cache_event_ids));
2629 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2630 sizeof(hw_cache_extra_regs));
2631
2632 intel_pmu_lbr_init_nhm();
2633
2634 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2635 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2636 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2637 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2638
2639 x86_pmu.cpu_events = nhm_events_attrs;
2640
2641 /* UOPS_ISSUED.STALLED_CYCLES */
2642 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2643 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2644 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2645 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2646 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2647
2648 x86_add_quirk(intel_nehalem_quirk);
2649
2650 pr_cont("Nehalem events, ");
2651 break;
2652
2653 case 28: /* 45nm Atom "Pineview" */
2654 case 38: /* 45nm Atom "Lincroft" */
2655 case 39: /* 32nm Atom "Penwell" */
2656 case 53: /* 32nm Atom "Cloverview" */
2657 case 54: /* 32nm Atom "Cedarview" */
2658 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2659 sizeof(hw_cache_event_ids));
2660
2661 intel_pmu_lbr_init_atom();
2662
2663 x86_pmu.event_constraints = intel_gen_event_constraints;
2664 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2665 pr_cont("Atom events, ");
2666 break;
2667
2668 case 55: /* 22nm Atom "Silvermont" */
2669 case 76: /* 14nm Atom "Airmont" */
2670 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
2671 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
2672 sizeof(hw_cache_event_ids));
2673 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
2674 sizeof(hw_cache_extra_regs));
2675
2676 intel_pmu_lbr_init_atom();
2677
2678 x86_pmu.event_constraints = intel_slm_event_constraints;
2679 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
2680 x86_pmu.extra_regs = intel_slm_extra_regs;
2681 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
2682 pr_cont("Silvermont events, ");
2683 break;
2684
2685 case 37: /* 32nm Westmere */
2686 case 44: /* 32nm Westmere-EP */
2687 case 47: /* 32nm Westmere-EX */
2688 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2689 sizeof(hw_cache_event_ids));
2690 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2691 sizeof(hw_cache_extra_regs));
2692
2693 intel_pmu_lbr_init_nhm();
2694
2695 x86_pmu.event_constraints = intel_westmere_event_constraints;
2696 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2697 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2698 x86_pmu.extra_regs = intel_westmere_extra_regs;
2699 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
2700
2701 x86_pmu.cpu_events = nhm_events_attrs;
2702
2703 /* UOPS_ISSUED.STALLED_CYCLES */
2704 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2705 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2706 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2707 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2708 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2709
2710 pr_cont("Westmere events, ");
2711 break;
2712
2713 case 42: /* 32nm SandyBridge */
2714 case 45: /* 32nm SandyBridge-E/EN/EP */
2715 x86_add_quirk(intel_sandybridge_quirk);
2716 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2717 sizeof(hw_cache_event_ids));
2718 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2719 sizeof(hw_cache_extra_regs));
2720
2721 intel_pmu_lbr_init_snb();
2722
2723 x86_pmu.event_constraints = intel_snb_event_constraints;
2724 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2725 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2726 if (boot_cpu_data.x86_model == 45)
2727 x86_pmu.extra_regs = intel_snbep_extra_regs;
2728 else
2729 x86_pmu.extra_regs = intel_snb_extra_regs;
2730 /* all extra regs are per-cpu when HT is on */
2731 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
2732 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
2733
2734 x86_pmu.cpu_events = snb_events_attrs;
2735
2736 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2737 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2738 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2739 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2740 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2741 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2742
2743 pr_cont("SandyBridge events, ");
2744 break;
2745
2746 case 58: /* 22nm IvyBridge */
2747 case 62: /* 22nm IvyBridge-EP/EX */
2748 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2749 sizeof(hw_cache_event_ids));
2750 /* dTLB-load-misses on IVB is different than SNB */
2751 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
2752
2753 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2754 sizeof(hw_cache_extra_regs));
2755
2756 intel_pmu_lbr_init_snb();
2757
2758 x86_pmu.event_constraints = intel_ivb_event_constraints;
2759 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2760 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2761 if (boot_cpu_data.x86_model == 62)
2762 x86_pmu.extra_regs = intel_snbep_extra_regs;
2763 else
2764 x86_pmu.extra_regs = intel_snb_extra_regs;
2765 /* all extra regs are per-cpu when HT is on */
2766 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
2767 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
2768
2769 x86_pmu.cpu_events = snb_events_attrs;
2770
2771 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2772 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2773 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2774
2775 pr_cont("IvyBridge events, ");
2776 break;
2777
2778
2779 case 60: /* 22nm Haswell Core */
2780 case 63: /* 22nm Haswell Server */
2781 case 69: /* 22nm Haswell ULT */
2782 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
2783 x86_pmu.late_ack = true;
2784 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2785 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2786
2787 intel_pmu_lbr_init_hsw();
2788
2789 x86_pmu.event_constraints = intel_hsw_event_constraints;
2790 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2791 x86_pmu.extra_regs = intel_snbep_extra_regs;
2792 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2793 /* all extra regs are per-cpu when HT is on */
2794 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
2795 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
2796
2797 x86_pmu.hw_config = hsw_hw_config;
2798 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2799 x86_pmu.cpu_events = hsw_events_attrs;
2800 x86_pmu.lbr_double_abort = true;
2801 pr_cont("Haswell events, ");
2802 break;
2803
2804 case 61: /* 14nm Broadwell Core-M */
2805 case 86: /* 14nm Broadwell Xeon D */
2806 x86_pmu.late_ack = true;
2807 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2808 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2809
2810 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
2811 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
2812 BDW_L3_MISS|HSW_SNOOP_DRAM;
2813 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
2814 HSW_SNOOP_DRAM;
2815 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
2816 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
2817 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
2818 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
2819
2820 intel_pmu_lbr_init_snb();
2821
2822 x86_pmu.event_constraints = intel_bdw_event_constraints;
2823 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2824 x86_pmu.extra_regs = intel_snbep_extra_regs;
2825 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2826 /* all extra regs are per-cpu when HT is on */
2827 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
2828 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
2829
2830 x86_pmu.hw_config = hsw_hw_config;
2831 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2832 x86_pmu.cpu_events = hsw_events_attrs;
2833 x86_pmu.limit_period = bdw_limit_period;
2834 pr_cont("Broadwell events, ");
2835 break;
2836
2837 default:
2838 switch (x86_pmu.version) {
2839 case 1:
2840 x86_pmu.event_constraints = intel_v1_event_constraints;
2841 pr_cont("generic architected perfmon v1, ");
2842 break;
2843 default:
2844 /*
2845 * default constraints for v2 and up
2846 */
2847 x86_pmu.event_constraints = intel_gen_event_constraints;
2848 pr_cont("generic architected perfmon, ");
2849 break;
2850 }
2851 }
2852
2853 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2854 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2855 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2856 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2857 }
2858 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2859
2860 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2861 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2862 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2863 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2864 }
2865
2866 x86_pmu.intel_ctrl |=
2867 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2868
2869 if (x86_pmu.event_constraints) {
2870 /*
2871 * event on fixed counter2 (REF_CYCLES) only works on this
2872 * counter, so do not extend mask to generic counters
2873 */
2874 for_each_event_constraint(c, x86_pmu.event_constraints) {
2875 if (c->cmask != FIXED_EVENT_FLAGS
2876 || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2877 continue;
2878 }
2879
2880 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2881 c->weight += x86_pmu.num_counters;
2882 }
2883 }
2884
2885 /*
2886 * Access LBR MSR may cause #GP under certain circumstances.
2887 * E.g. KVM doesn't support LBR MSR
2888 * Check all LBT MSR here.
2889 * Disable LBR access if any LBR MSRs can not be accessed.
2890 */
2891 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
2892 x86_pmu.lbr_nr = 0;
2893 for (i = 0; i < x86_pmu.lbr_nr; i++) {
2894 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
2895 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
2896 x86_pmu.lbr_nr = 0;
2897 }
2898
2899 /*
2900 * Access extra MSR may cause #GP under certain circumstances.
2901 * E.g. KVM doesn't support offcore event
2902 * Check all extra_regs here.
2903 */
2904 if (x86_pmu.extra_regs) {
2905 for (er = x86_pmu.extra_regs; er->msr; er++) {
2906 er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
2907 /* Disable LBR select mapping */
2908 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
2909 x86_pmu.lbr_sel_map = NULL;
2910 }
2911 }
2912
2913 /* Support full width counters using alternative MSR range */
2914 if (x86_pmu.intel_cap.full_width_write) {
2915 x86_pmu.max_period = x86_pmu.cntval_mask;
2916 x86_pmu.perfctr = MSR_IA32_PMC0;
2917 pr_cont("full-width counters, ");
2918 }
2919
2920 return 0;
2921 }
This page took 0.10222 seconds and 5 git commands to generate.