perf/x86/intel: Add Broadwell core support
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/hardirq.h>
18 #include <asm/apic.h>
19
20 #include "perf_event.h"
21
22 /*
23 * Intel PerfMon, used on Core and later.
24 */
25 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26 {
27 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
28 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
29 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
30 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
31 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
32 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
33 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
34 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
35 };
36
37 static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 {
39 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
40 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
41 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
42 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
43 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
44 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
45 EVENT_CONSTRAINT_END
46 };
47
48 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49 {
50 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
51 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
54 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
55 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
56 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
57 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
58 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
59 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
60 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
63 EVENT_CONSTRAINT_END
64 };
65
66 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67 {
68 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
69 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
72 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
73 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
74 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
75 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
76 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
77 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
78 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
79 EVENT_CONSTRAINT_END
80 };
81
82 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83 {
84 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
85 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
86 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
87 EVENT_EXTRA_END
88 };
89
90 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
91 {
92 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
93 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
94 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
95 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
96 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
97 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
98 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
99 EVENT_CONSTRAINT_END
100 };
101
102 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
103 {
104 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
105 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
106 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
107 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
108 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
109 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
111 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
113 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
114 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
115 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116 EVENT_CONSTRAINT_END
117 };
118
119 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
120 {
121 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
122 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
123 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
124 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
125 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
126 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
127 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
128 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
129 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
130 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
131 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
133 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
134 /*
135 * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
136 * siblings; disable these events because they can corrupt unrelated
137 * counters.
138 */
139 INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
140 INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
141 INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
142 INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
143 EVENT_CONSTRAINT_END
144 };
145
146 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
147 {
148 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
149 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
150 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
151 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
152 EVENT_EXTRA_END
153 };
154
155 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
156 {
157 EVENT_CONSTRAINT_END
158 };
159
160 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
161 {
162 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
163 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
164 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
165 EVENT_CONSTRAINT_END
166 };
167
168 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
169 {
170 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
171 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
172 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
173 EVENT_CONSTRAINT_END
174 };
175
176 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
177 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
178 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
179 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
180 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
181 EVENT_EXTRA_END
182 };
183
184 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
185 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
186 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
187 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
188 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
189 EVENT_EXTRA_END
190 };
191
192 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
193 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
194 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
195
196 struct attribute *nhm_events_attrs[] = {
197 EVENT_PTR(mem_ld_nhm),
198 NULL,
199 };
200
201 struct attribute *snb_events_attrs[] = {
202 EVENT_PTR(mem_ld_snb),
203 EVENT_PTR(mem_st_snb),
204 NULL,
205 };
206
207 static struct event_constraint intel_hsw_event_constraints[] = {
208 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
211 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
212 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
213 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
214 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
215 INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
216 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
217 INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
218 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
219 INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
220 EVENT_CONSTRAINT_END
221 };
222
223 static struct event_constraint intel_bdw_event_constraints[] = {
224 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
225 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
226 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
227 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
228 INTEL_EVENT_CONSTRAINT(0xa3, 0x4), /* CYCLE_ACTIVITY.* */
229 EVENT_CONSTRAINT_END
230 };
231
232 static u64 intel_pmu_event_map(int hw_event)
233 {
234 return intel_perfmon_event_map[hw_event];
235 }
236
237 #define SNB_DMND_DATA_RD (1ULL << 0)
238 #define SNB_DMND_RFO (1ULL << 1)
239 #define SNB_DMND_IFETCH (1ULL << 2)
240 #define SNB_DMND_WB (1ULL << 3)
241 #define SNB_PF_DATA_RD (1ULL << 4)
242 #define SNB_PF_RFO (1ULL << 5)
243 #define SNB_PF_IFETCH (1ULL << 6)
244 #define SNB_LLC_DATA_RD (1ULL << 7)
245 #define SNB_LLC_RFO (1ULL << 8)
246 #define SNB_LLC_IFETCH (1ULL << 9)
247 #define SNB_BUS_LOCKS (1ULL << 10)
248 #define SNB_STRM_ST (1ULL << 11)
249 #define SNB_OTHER (1ULL << 15)
250 #define SNB_RESP_ANY (1ULL << 16)
251 #define SNB_NO_SUPP (1ULL << 17)
252 #define SNB_LLC_HITM (1ULL << 18)
253 #define SNB_LLC_HITE (1ULL << 19)
254 #define SNB_LLC_HITS (1ULL << 20)
255 #define SNB_LLC_HITF (1ULL << 21)
256 #define SNB_LOCAL (1ULL << 22)
257 #define SNB_REMOTE (0xffULL << 23)
258 #define SNB_SNP_NONE (1ULL << 31)
259 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
260 #define SNB_SNP_MISS (1ULL << 33)
261 #define SNB_NO_FWD (1ULL << 34)
262 #define SNB_SNP_FWD (1ULL << 35)
263 #define SNB_HITM (1ULL << 36)
264 #define SNB_NON_DRAM (1ULL << 37)
265
266 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
267 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
268 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
269
270 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
271 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
272 SNB_HITM)
273
274 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
275 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
276
277 #define SNB_L3_ACCESS SNB_RESP_ANY
278 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
279
280 static __initconst const u64 snb_hw_cache_extra_regs
281 [PERF_COUNT_HW_CACHE_MAX]
282 [PERF_COUNT_HW_CACHE_OP_MAX]
283 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
284 {
285 [ C(LL ) ] = {
286 [ C(OP_READ) ] = {
287 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
288 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
289 },
290 [ C(OP_WRITE) ] = {
291 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
292 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
293 },
294 [ C(OP_PREFETCH) ] = {
295 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
296 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
297 },
298 },
299 [ C(NODE) ] = {
300 [ C(OP_READ) ] = {
301 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
302 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
303 },
304 [ C(OP_WRITE) ] = {
305 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
306 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
307 },
308 [ C(OP_PREFETCH) ] = {
309 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
310 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
311 },
312 },
313 };
314
315 static __initconst const u64 snb_hw_cache_event_ids
316 [PERF_COUNT_HW_CACHE_MAX]
317 [PERF_COUNT_HW_CACHE_OP_MAX]
318 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
319 {
320 [ C(L1D) ] = {
321 [ C(OP_READ) ] = {
322 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
323 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
324 },
325 [ C(OP_WRITE) ] = {
326 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
327 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
328 },
329 [ C(OP_PREFETCH) ] = {
330 [ C(RESULT_ACCESS) ] = 0x0,
331 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
332 },
333 },
334 [ C(L1I ) ] = {
335 [ C(OP_READ) ] = {
336 [ C(RESULT_ACCESS) ] = 0x0,
337 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
338 },
339 [ C(OP_WRITE) ] = {
340 [ C(RESULT_ACCESS) ] = -1,
341 [ C(RESULT_MISS) ] = -1,
342 },
343 [ C(OP_PREFETCH) ] = {
344 [ C(RESULT_ACCESS) ] = 0x0,
345 [ C(RESULT_MISS) ] = 0x0,
346 },
347 },
348 [ C(LL ) ] = {
349 [ C(OP_READ) ] = {
350 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
351 [ C(RESULT_ACCESS) ] = 0x01b7,
352 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
353 [ C(RESULT_MISS) ] = 0x01b7,
354 },
355 [ C(OP_WRITE) ] = {
356 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
357 [ C(RESULT_ACCESS) ] = 0x01b7,
358 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
359 [ C(RESULT_MISS) ] = 0x01b7,
360 },
361 [ C(OP_PREFETCH) ] = {
362 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
363 [ C(RESULT_ACCESS) ] = 0x01b7,
364 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
365 [ C(RESULT_MISS) ] = 0x01b7,
366 },
367 },
368 [ C(DTLB) ] = {
369 [ C(OP_READ) ] = {
370 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
371 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
372 },
373 [ C(OP_WRITE) ] = {
374 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
375 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
376 },
377 [ C(OP_PREFETCH) ] = {
378 [ C(RESULT_ACCESS) ] = 0x0,
379 [ C(RESULT_MISS) ] = 0x0,
380 },
381 },
382 [ C(ITLB) ] = {
383 [ C(OP_READ) ] = {
384 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
385 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
386 },
387 [ C(OP_WRITE) ] = {
388 [ C(RESULT_ACCESS) ] = -1,
389 [ C(RESULT_MISS) ] = -1,
390 },
391 [ C(OP_PREFETCH) ] = {
392 [ C(RESULT_ACCESS) ] = -1,
393 [ C(RESULT_MISS) ] = -1,
394 },
395 },
396 [ C(BPU ) ] = {
397 [ C(OP_READ) ] = {
398 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
399 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
400 },
401 [ C(OP_WRITE) ] = {
402 [ C(RESULT_ACCESS) ] = -1,
403 [ C(RESULT_MISS) ] = -1,
404 },
405 [ C(OP_PREFETCH) ] = {
406 [ C(RESULT_ACCESS) ] = -1,
407 [ C(RESULT_MISS) ] = -1,
408 },
409 },
410 [ C(NODE) ] = {
411 [ C(OP_READ) ] = {
412 [ C(RESULT_ACCESS) ] = 0x01b7,
413 [ C(RESULT_MISS) ] = 0x01b7,
414 },
415 [ C(OP_WRITE) ] = {
416 [ C(RESULT_ACCESS) ] = 0x01b7,
417 [ C(RESULT_MISS) ] = 0x01b7,
418 },
419 [ C(OP_PREFETCH) ] = {
420 [ C(RESULT_ACCESS) ] = 0x01b7,
421 [ C(RESULT_MISS) ] = 0x01b7,
422 },
423 },
424
425 };
426
427 static __initconst const u64 hsw_hw_cache_event_ids
428 [PERF_COUNT_HW_CACHE_MAX]
429 [PERF_COUNT_HW_CACHE_OP_MAX]
430 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
431 {
432 [ C(L1D ) ] = {
433 [ C(OP_READ) ] = {
434 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
435 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
436 },
437 [ C(OP_WRITE) ] = {
438 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
439 [ C(RESULT_MISS) ] = 0x0,
440 },
441 [ C(OP_PREFETCH) ] = {
442 [ C(RESULT_ACCESS) ] = 0x0,
443 [ C(RESULT_MISS) ] = 0x0,
444 },
445 },
446 [ C(L1I ) ] = {
447 [ C(OP_READ) ] = {
448 [ C(RESULT_ACCESS) ] = 0x0,
449 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
450 },
451 [ C(OP_WRITE) ] = {
452 [ C(RESULT_ACCESS) ] = -1,
453 [ C(RESULT_MISS) ] = -1,
454 },
455 [ C(OP_PREFETCH) ] = {
456 [ C(RESULT_ACCESS) ] = 0x0,
457 [ C(RESULT_MISS) ] = 0x0,
458 },
459 },
460 [ C(LL ) ] = {
461 [ C(OP_READ) ] = {
462 /* OFFCORE_RESPONSE:ALL_DATA_RD|ALL_CODE_RD */
463 [ C(RESULT_ACCESS) ] = 0x1b7,
464 /* OFFCORE_RESPONSE:ALL_DATA_RD|ALL_CODE_RD|SUPPLIER_NONE|
465 L3_MISS|ANY_SNOOP */
466 [ C(RESULT_MISS) ] = 0x1b7,
467 },
468 [ C(OP_WRITE) ] = {
469 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE:ALL_RFO */
470 /* OFFCORE_RESPONSE:ALL_RFO|SUPPLIER_NONE|L3_MISS|ANY_SNOOP */
471 [ C(RESULT_MISS) ] = 0x1b7,
472 },
473 [ C(OP_PREFETCH) ] = {
474 [ C(RESULT_ACCESS) ] = 0x0,
475 [ C(RESULT_MISS) ] = 0x0,
476 },
477 },
478 [ C(DTLB) ] = {
479 [ C(OP_READ) ] = {
480 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
481 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
482 },
483 [ C(OP_WRITE) ] = {
484 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
485 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
486 },
487 [ C(OP_PREFETCH) ] = {
488 [ C(RESULT_ACCESS) ] = 0x0,
489 [ C(RESULT_MISS) ] = 0x0,
490 },
491 },
492 [ C(ITLB) ] = {
493 [ C(OP_READ) ] = {
494 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
495 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
496 },
497 [ C(OP_WRITE) ] = {
498 [ C(RESULT_ACCESS) ] = -1,
499 [ C(RESULT_MISS) ] = -1,
500 },
501 [ C(OP_PREFETCH) ] = {
502 [ C(RESULT_ACCESS) ] = -1,
503 [ C(RESULT_MISS) ] = -1,
504 },
505 },
506 [ C(BPU ) ] = {
507 [ C(OP_READ) ] = {
508 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
509 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
510 },
511 [ C(OP_WRITE) ] = {
512 [ C(RESULT_ACCESS) ] = -1,
513 [ C(RESULT_MISS) ] = -1,
514 },
515 [ C(OP_PREFETCH) ] = {
516 [ C(RESULT_ACCESS) ] = -1,
517 [ C(RESULT_MISS) ] = -1,
518 },
519 },
520 };
521
522 static __initconst const u64 hsw_hw_cache_extra_regs
523 [PERF_COUNT_HW_CACHE_MAX]
524 [PERF_COUNT_HW_CACHE_OP_MAX]
525 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
526 {
527 [ C(LL ) ] = {
528 [ C(OP_READ) ] = {
529 /* OFFCORE_RESPONSE:ALL_DATA_RD|ALL_CODE_RD */
530 [ C(RESULT_ACCESS) ] = 0x2d5,
531 /* OFFCORE_RESPONSE:ALL_DATA_RD|ALL_CODE_RD|SUPPLIER_NONE|
532 L3_MISS|ANY_SNOOP */
533 [ C(RESULT_MISS) ] = 0x3fbc0202d5ull,
534 },
535 [ C(OP_WRITE) ] = {
536 [ C(RESULT_ACCESS) ] = 0x122, /* OFFCORE_RESPONSE:ALL_RFO */
537 /* OFFCORE_RESPONSE:ALL_RFO|SUPPLIER_NONE|L3_MISS|ANY_SNOOP */
538 [ C(RESULT_MISS) ] = 0x3fbc020122ull,
539 },
540 [ C(OP_PREFETCH) ] = {
541 [ C(RESULT_ACCESS) ] = 0x0,
542 [ C(RESULT_MISS) ] = 0x0,
543 },
544 },
545 };
546
547 static __initconst const u64 westmere_hw_cache_event_ids
548 [PERF_COUNT_HW_CACHE_MAX]
549 [PERF_COUNT_HW_CACHE_OP_MAX]
550 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
551 {
552 [ C(L1D) ] = {
553 [ C(OP_READ) ] = {
554 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
555 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
556 },
557 [ C(OP_WRITE) ] = {
558 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
559 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
560 },
561 [ C(OP_PREFETCH) ] = {
562 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
563 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
564 },
565 },
566 [ C(L1I ) ] = {
567 [ C(OP_READ) ] = {
568 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
569 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
570 },
571 [ C(OP_WRITE) ] = {
572 [ C(RESULT_ACCESS) ] = -1,
573 [ C(RESULT_MISS) ] = -1,
574 },
575 [ C(OP_PREFETCH) ] = {
576 [ C(RESULT_ACCESS) ] = 0x0,
577 [ C(RESULT_MISS) ] = 0x0,
578 },
579 },
580 [ C(LL ) ] = {
581 [ C(OP_READ) ] = {
582 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
583 [ C(RESULT_ACCESS) ] = 0x01b7,
584 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
585 [ C(RESULT_MISS) ] = 0x01b7,
586 },
587 /*
588 * Use RFO, not WRITEBACK, because a write miss would typically occur
589 * on RFO.
590 */
591 [ C(OP_WRITE) ] = {
592 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
593 [ C(RESULT_ACCESS) ] = 0x01b7,
594 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
595 [ C(RESULT_MISS) ] = 0x01b7,
596 },
597 [ C(OP_PREFETCH) ] = {
598 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
599 [ C(RESULT_ACCESS) ] = 0x01b7,
600 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
601 [ C(RESULT_MISS) ] = 0x01b7,
602 },
603 },
604 [ C(DTLB) ] = {
605 [ C(OP_READ) ] = {
606 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
607 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
608 },
609 [ C(OP_WRITE) ] = {
610 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
611 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
612 },
613 [ C(OP_PREFETCH) ] = {
614 [ C(RESULT_ACCESS) ] = 0x0,
615 [ C(RESULT_MISS) ] = 0x0,
616 },
617 },
618 [ C(ITLB) ] = {
619 [ C(OP_READ) ] = {
620 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
621 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
622 },
623 [ C(OP_WRITE) ] = {
624 [ C(RESULT_ACCESS) ] = -1,
625 [ C(RESULT_MISS) ] = -1,
626 },
627 [ C(OP_PREFETCH) ] = {
628 [ C(RESULT_ACCESS) ] = -1,
629 [ C(RESULT_MISS) ] = -1,
630 },
631 },
632 [ C(BPU ) ] = {
633 [ C(OP_READ) ] = {
634 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
635 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
636 },
637 [ C(OP_WRITE) ] = {
638 [ C(RESULT_ACCESS) ] = -1,
639 [ C(RESULT_MISS) ] = -1,
640 },
641 [ C(OP_PREFETCH) ] = {
642 [ C(RESULT_ACCESS) ] = -1,
643 [ C(RESULT_MISS) ] = -1,
644 },
645 },
646 [ C(NODE) ] = {
647 [ C(OP_READ) ] = {
648 [ C(RESULT_ACCESS) ] = 0x01b7,
649 [ C(RESULT_MISS) ] = 0x01b7,
650 },
651 [ C(OP_WRITE) ] = {
652 [ C(RESULT_ACCESS) ] = 0x01b7,
653 [ C(RESULT_MISS) ] = 0x01b7,
654 },
655 [ C(OP_PREFETCH) ] = {
656 [ C(RESULT_ACCESS) ] = 0x01b7,
657 [ C(RESULT_MISS) ] = 0x01b7,
658 },
659 },
660 };
661
662 /*
663 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
664 * See IA32 SDM Vol 3B 30.6.1.3
665 */
666
667 #define NHM_DMND_DATA_RD (1 << 0)
668 #define NHM_DMND_RFO (1 << 1)
669 #define NHM_DMND_IFETCH (1 << 2)
670 #define NHM_DMND_WB (1 << 3)
671 #define NHM_PF_DATA_RD (1 << 4)
672 #define NHM_PF_DATA_RFO (1 << 5)
673 #define NHM_PF_IFETCH (1 << 6)
674 #define NHM_OFFCORE_OTHER (1 << 7)
675 #define NHM_UNCORE_HIT (1 << 8)
676 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
677 #define NHM_OTHER_CORE_HITM (1 << 10)
678 /* reserved */
679 #define NHM_REMOTE_CACHE_FWD (1 << 12)
680 #define NHM_REMOTE_DRAM (1 << 13)
681 #define NHM_LOCAL_DRAM (1 << 14)
682 #define NHM_NON_DRAM (1 << 15)
683
684 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
685 #define NHM_REMOTE (NHM_REMOTE_DRAM)
686
687 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
688 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
689 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
690
691 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
692 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
693 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
694
695 static __initconst const u64 nehalem_hw_cache_extra_regs
696 [PERF_COUNT_HW_CACHE_MAX]
697 [PERF_COUNT_HW_CACHE_OP_MAX]
698 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
699 {
700 [ C(LL ) ] = {
701 [ C(OP_READ) ] = {
702 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
703 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
704 },
705 [ C(OP_WRITE) ] = {
706 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
707 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
708 },
709 [ C(OP_PREFETCH) ] = {
710 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
711 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
712 },
713 },
714 [ C(NODE) ] = {
715 [ C(OP_READ) ] = {
716 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
717 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
718 },
719 [ C(OP_WRITE) ] = {
720 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
721 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
722 },
723 [ C(OP_PREFETCH) ] = {
724 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
725 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
726 },
727 },
728 };
729
730 static __initconst const u64 nehalem_hw_cache_event_ids
731 [PERF_COUNT_HW_CACHE_MAX]
732 [PERF_COUNT_HW_CACHE_OP_MAX]
733 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
734 {
735 [ C(L1D) ] = {
736 [ C(OP_READ) ] = {
737 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
738 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
739 },
740 [ C(OP_WRITE) ] = {
741 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
742 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
743 },
744 [ C(OP_PREFETCH) ] = {
745 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
746 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
747 },
748 },
749 [ C(L1I ) ] = {
750 [ C(OP_READ) ] = {
751 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
752 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
753 },
754 [ C(OP_WRITE) ] = {
755 [ C(RESULT_ACCESS) ] = -1,
756 [ C(RESULT_MISS) ] = -1,
757 },
758 [ C(OP_PREFETCH) ] = {
759 [ C(RESULT_ACCESS) ] = 0x0,
760 [ C(RESULT_MISS) ] = 0x0,
761 },
762 },
763 [ C(LL ) ] = {
764 [ C(OP_READ) ] = {
765 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
766 [ C(RESULT_ACCESS) ] = 0x01b7,
767 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
768 [ C(RESULT_MISS) ] = 0x01b7,
769 },
770 /*
771 * Use RFO, not WRITEBACK, because a write miss would typically occur
772 * on RFO.
773 */
774 [ C(OP_WRITE) ] = {
775 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
776 [ C(RESULT_ACCESS) ] = 0x01b7,
777 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
778 [ C(RESULT_MISS) ] = 0x01b7,
779 },
780 [ C(OP_PREFETCH) ] = {
781 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
782 [ C(RESULT_ACCESS) ] = 0x01b7,
783 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
784 [ C(RESULT_MISS) ] = 0x01b7,
785 },
786 },
787 [ C(DTLB) ] = {
788 [ C(OP_READ) ] = {
789 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
790 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
791 },
792 [ C(OP_WRITE) ] = {
793 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
794 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
795 },
796 [ C(OP_PREFETCH) ] = {
797 [ C(RESULT_ACCESS) ] = 0x0,
798 [ C(RESULT_MISS) ] = 0x0,
799 },
800 },
801 [ C(ITLB) ] = {
802 [ C(OP_READ) ] = {
803 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
804 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
805 },
806 [ C(OP_WRITE) ] = {
807 [ C(RESULT_ACCESS) ] = -1,
808 [ C(RESULT_MISS) ] = -1,
809 },
810 [ C(OP_PREFETCH) ] = {
811 [ C(RESULT_ACCESS) ] = -1,
812 [ C(RESULT_MISS) ] = -1,
813 },
814 },
815 [ C(BPU ) ] = {
816 [ C(OP_READ) ] = {
817 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
818 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
819 },
820 [ C(OP_WRITE) ] = {
821 [ C(RESULT_ACCESS) ] = -1,
822 [ C(RESULT_MISS) ] = -1,
823 },
824 [ C(OP_PREFETCH) ] = {
825 [ C(RESULT_ACCESS) ] = -1,
826 [ C(RESULT_MISS) ] = -1,
827 },
828 },
829 [ C(NODE) ] = {
830 [ C(OP_READ) ] = {
831 [ C(RESULT_ACCESS) ] = 0x01b7,
832 [ C(RESULT_MISS) ] = 0x01b7,
833 },
834 [ C(OP_WRITE) ] = {
835 [ C(RESULT_ACCESS) ] = 0x01b7,
836 [ C(RESULT_MISS) ] = 0x01b7,
837 },
838 [ C(OP_PREFETCH) ] = {
839 [ C(RESULT_ACCESS) ] = 0x01b7,
840 [ C(RESULT_MISS) ] = 0x01b7,
841 },
842 },
843 };
844
845 static __initconst const u64 core2_hw_cache_event_ids
846 [PERF_COUNT_HW_CACHE_MAX]
847 [PERF_COUNT_HW_CACHE_OP_MAX]
848 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
849 {
850 [ C(L1D) ] = {
851 [ C(OP_READ) ] = {
852 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
853 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
854 },
855 [ C(OP_WRITE) ] = {
856 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
857 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
858 },
859 [ C(OP_PREFETCH) ] = {
860 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
861 [ C(RESULT_MISS) ] = 0,
862 },
863 },
864 [ C(L1I ) ] = {
865 [ C(OP_READ) ] = {
866 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
867 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
868 },
869 [ C(OP_WRITE) ] = {
870 [ C(RESULT_ACCESS) ] = -1,
871 [ C(RESULT_MISS) ] = -1,
872 },
873 [ C(OP_PREFETCH) ] = {
874 [ C(RESULT_ACCESS) ] = 0,
875 [ C(RESULT_MISS) ] = 0,
876 },
877 },
878 [ C(LL ) ] = {
879 [ C(OP_READ) ] = {
880 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
881 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
882 },
883 [ C(OP_WRITE) ] = {
884 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
885 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
886 },
887 [ C(OP_PREFETCH) ] = {
888 [ C(RESULT_ACCESS) ] = 0,
889 [ C(RESULT_MISS) ] = 0,
890 },
891 },
892 [ C(DTLB) ] = {
893 [ C(OP_READ) ] = {
894 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
895 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
896 },
897 [ C(OP_WRITE) ] = {
898 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
899 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
900 },
901 [ C(OP_PREFETCH) ] = {
902 [ C(RESULT_ACCESS) ] = 0,
903 [ C(RESULT_MISS) ] = 0,
904 },
905 },
906 [ C(ITLB) ] = {
907 [ C(OP_READ) ] = {
908 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
909 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
910 },
911 [ C(OP_WRITE) ] = {
912 [ C(RESULT_ACCESS) ] = -1,
913 [ C(RESULT_MISS) ] = -1,
914 },
915 [ C(OP_PREFETCH) ] = {
916 [ C(RESULT_ACCESS) ] = -1,
917 [ C(RESULT_MISS) ] = -1,
918 },
919 },
920 [ C(BPU ) ] = {
921 [ C(OP_READ) ] = {
922 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
923 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
924 },
925 [ C(OP_WRITE) ] = {
926 [ C(RESULT_ACCESS) ] = -1,
927 [ C(RESULT_MISS) ] = -1,
928 },
929 [ C(OP_PREFETCH) ] = {
930 [ C(RESULT_ACCESS) ] = -1,
931 [ C(RESULT_MISS) ] = -1,
932 },
933 },
934 };
935
936 static __initconst const u64 atom_hw_cache_event_ids
937 [PERF_COUNT_HW_CACHE_MAX]
938 [PERF_COUNT_HW_CACHE_OP_MAX]
939 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
940 {
941 [ C(L1D) ] = {
942 [ C(OP_READ) ] = {
943 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
944 [ C(RESULT_MISS) ] = 0,
945 },
946 [ C(OP_WRITE) ] = {
947 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
948 [ C(RESULT_MISS) ] = 0,
949 },
950 [ C(OP_PREFETCH) ] = {
951 [ C(RESULT_ACCESS) ] = 0x0,
952 [ C(RESULT_MISS) ] = 0,
953 },
954 },
955 [ C(L1I ) ] = {
956 [ C(OP_READ) ] = {
957 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
958 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
959 },
960 [ C(OP_WRITE) ] = {
961 [ C(RESULT_ACCESS) ] = -1,
962 [ C(RESULT_MISS) ] = -1,
963 },
964 [ C(OP_PREFETCH) ] = {
965 [ C(RESULT_ACCESS) ] = 0,
966 [ C(RESULT_MISS) ] = 0,
967 },
968 },
969 [ C(LL ) ] = {
970 [ C(OP_READ) ] = {
971 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
972 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
973 },
974 [ C(OP_WRITE) ] = {
975 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
976 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
977 },
978 [ C(OP_PREFETCH) ] = {
979 [ C(RESULT_ACCESS) ] = 0,
980 [ C(RESULT_MISS) ] = 0,
981 },
982 },
983 [ C(DTLB) ] = {
984 [ C(OP_READ) ] = {
985 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
986 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
987 },
988 [ C(OP_WRITE) ] = {
989 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
990 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
991 },
992 [ C(OP_PREFETCH) ] = {
993 [ C(RESULT_ACCESS) ] = 0,
994 [ C(RESULT_MISS) ] = 0,
995 },
996 },
997 [ C(ITLB) ] = {
998 [ C(OP_READ) ] = {
999 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1000 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1001 },
1002 [ C(OP_WRITE) ] = {
1003 [ C(RESULT_ACCESS) ] = -1,
1004 [ C(RESULT_MISS) ] = -1,
1005 },
1006 [ C(OP_PREFETCH) ] = {
1007 [ C(RESULT_ACCESS) ] = -1,
1008 [ C(RESULT_MISS) ] = -1,
1009 },
1010 },
1011 [ C(BPU ) ] = {
1012 [ C(OP_READ) ] = {
1013 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1014 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1015 },
1016 [ C(OP_WRITE) ] = {
1017 [ C(RESULT_ACCESS) ] = -1,
1018 [ C(RESULT_MISS) ] = -1,
1019 },
1020 [ C(OP_PREFETCH) ] = {
1021 [ C(RESULT_ACCESS) ] = -1,
1022 [ C(RESULT_MISS) ] = -1,
1023 },
1024 },
1025 };
1026
1027 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1028 {
1029 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1030 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1031 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
1032 EVENT_EXTRA_END
1033 };
1034
1035 #define SLM_DMND_READ SNB_DMND_DATA_RD
1036 #define SLM_DMND_WRITE SNB_DMND_RFO
1037 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1038
1039 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1040 #define SLM_LLC_ACCESS SNB_RESP_ANY
1041 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1042
1043 static __initconst const u64 slm_hw_cache_extra_regs
1044 [PERF_COUNT_HW_CACHE_MAX]
1045 [PERF_COUNT_HW_CACHE_OP_MAX]
1046 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1047 {
1048 [ C(LL ) ] = {
1049 [ C(OP_READ) ] = {
1050 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1051 [ C(RESULT_MISS) ] = SLM_DMND_READ|SLM_LLC_MISS,
1052 },
1053 [ C(OP_WRITE) ] = {
1054 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1055 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1056 },
1057 [ C(OP_PREFETCH) ] = {
1058 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1059 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1060 },
1061 },
1062 };
1063
1064 static __initconst const u64 slm_hw_cache_event_ids
1065 [PERF_COUNT_HW_CACHE_MAX]
1066 [PERF_COUNT_HW_CACHE_OP_MAX]
1067 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1068 {
1069 [ C(L1D) ] = {
1070 [ C(OP_READ) ] = {
1071 [ C(RESULT_ACCESS) ] = 0,
1072 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1073 },
1074 [ C(OP_WRITE) ] = {
1075 [ C(RESULT_ACCESS) ] = 0,
1076 [ C(RESULT_MISS) ] = 0,
1077 },
1078 [ C(OP_PREFETCH) ] = {
1079 [ C(RESULT_ACCESS) ] = 0,
1080 [ C(RESULT_MISS) ] = 0,
1081 },
1082 },
1083 [ C(L1I ) ] = {
1084 [ C(OP_READ) ] = {
1085 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1086 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1087 },
1088 [ C(OP_WRITE) ] = {
1089 [ C(RESULT_ACCESS) ] = -1,
1090 [ C(RESULT_MISS) ] = -1,
1091 },
1092 [ C(OP_PREFETCH) ] = {
1093 [ C(RESULT_ACCESS) ] = 0,
1094 [ C(RESULT_MISS) ] = 0,
1095 },
1096 },
1097 [ C(LL ) ] = {
1098 [ C(OP_READ) ] = {
1099 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1100 [ C(RESULT_ACCESS) ] = 0x01b7,
1101 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1102 [ C(RESULT_MISS) ] = 0x01b7,
1103 },
1104 [ C(OP_WRITE) ] = {
1105 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1106 [ C(RESULT_ACCESS) ] = 0x01b7,
1107 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1108 [ C(RESULT_MISS) ] = 0x01b7,
1109 },
1110 [ C(OP_PREFETCH) ] = {
1111 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1112 [ C(RESULT_ACCESS) ] = 0x01b7,
1113 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1114 [ C(RESULT_MISS) ] = 0x01b7,
1115 },
1116 },
1117 [ C(DTLB) ] = {
1118 [ C(OP_READ) ] = {
1119 [ C(RESULT_ACCESS) ] = 0,
1120 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1121 },
1122 [ C(OP_WRITE) ] = {
1123 [ C(RESULT_ACCESS) ] = 0,
1124 [ C(RESULT_MISS) ] = 0,
1125 },
1126 [ C(OP_PREFETCH) ] = {
1127 [ C(RESULT_ACCESS) ] = 0,
1128 [ C(RESULT_MISS) ] = 0,
1129 },
1130 },
1131 [ C(ITLB) ] = {
1132 [ C(OP_READ) ] = {
1133 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1134 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1135 },
1136 [ C(OP_WRITE) ] = {
1137 [ C(RESULT_ACCESS) ] = -1,
1138 [ C(RESULT_MISS) ] = -1,
1139 },
1140 [ C(OP_PREFETCH) ] = {
1141 [ C(RESULT_ACCESS) ] = -1,
1142 [ C(RESULT_MISS) ] = -1,
1143 },
1144 },
1145 [ C(BPU ) ] = {
1146 [ C(OP_READ) ] = {
1147 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1148 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1149 },
1150 [ C(OP_WRITE) ] = {
1151 [ C(RESULT_ACCESS) ] = -1,
1152 [ C(RESULT_MISS) ] = -1,
1153 },
1154 [ C(OP_PREFETCH) ] = {
1155 [ C(RESULT_ACCESS) ] = -1,
1156 [ C(RESULT_MISS) ] = -1,
1157 },
1158 },
1159 };
1160
1161 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
1162 {
1163 /* user explicitly requested branch sampling */
1164 if (has_branch_stack(event))
1165 return true;
1166
1167 /* implicit branch sampling to correct PEBS skid */
1168 if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
1169 x86_pmu.intel_cap.pebs_format < 2)
1170 return true;
1171
1172 return false;
1173 }
1174
1175 static void intel_pmu_disable_all(void)
1176 {
1177 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1178
1179 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1180
1181 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1182 intel_pmu_disable_bts();
1183
1184 intel_pmu_pebs_disable_all();
1185 intel_pmu_lbr_disable_all();
1186 }
1187
1188 static void intel_pmu_enable_all(int added)
1189 {
1190 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1191
1192 intel_pmu_pebs_enable_all();
1193 intel_pmu_lbr_enable_all();
1194 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1195 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1196
1197 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1198 struct perf_event *event =
1199 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1200
1201 if (WARN_ON_ONCE(!event))
1202 return;
1203
1204 intel_pmu_enable_bts(event->hw.config);
1205 }
1206 }
1207
1208 /*
1209 * Workaround for:
1210 * Intel Errata AAK100 (model 26)
1211 * Intel Errata AAP53 (model 30)
1212 * Intel Errata BD53 (model 44)
1213 *
1214 * The official story:
1215 * These chips need to be 'reset' when adding counters by programming the
1216 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1217 * in sequence on the same PMC or on different PMCs.
1218 *
1219 * In practise it appears some of these events do in fact count, and
1220 * we need to programm all 4 events.
1221 */
1222 static void intel_pmu_nhm_workaround(void)
1223 {
1224 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1225 static const unsigned long nhm_magic[4] = {
1226 0x4300B5,
1227 0x4300D2,
1228 0x4300B1,
1229 0x4300B1
1230 };
1231 struct perf_event *event;
1232 int i;
1233
1234 /*
1235 * The Errata requires below steps:
1236 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1237 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1238 * the corresponding PMCx;
1239 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1240 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1241 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1242 */
1243
1244 /*
1245 * The real steps we choose are a little different from above.
1246 * A) To reduce MSR operations, we don't run step 1) as they
1247 * are already cleared before this function is called;
1248 * B) Call x86_perf_event_update to save PMCx before configuring
1249 * PERFEVTSELx with magic number;
1250 * C) With step 5), we do clear only when the PERFEVTSELx is
1251 * not used currently.
1252 * D) Call x86_perf_event_set_period to restore PMCx;
1253 */
1254
1255 /* We always operate 4 pairs of PERF Counters */
1256 for (i = 0; i < 4; i++) {
1257 event = cpuc->events[i];
1258 if (event)
1259 x86_perf_event_update(event);
1260 }
1261
1262 for (i = 0; i < 4; i++) {
1263 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1264 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1265 }
1266
1267 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1268 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1269
1270 for (i = 0; i < 4; i++) {
1271 event = cpuc->events[i];
1272
1273 if (event) {
1274 x86_perf_event_set_period(event);
1275 __x86_pmu_enable_event(&event->hw,
1276 ARCH_PERFMON_EVENTSEL_ENABLE);
1277 } else
1278 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1279 }
1280 }
1281
1282 static void intel_pmu_nhm_enable_all(int added)
1283 {
1284 if (added)
1285 intel_pmu_nhm_workaround();
1286 intel_pmu_enable_all(added);
1287 }
1288
1289 static inline u64 intel_pmu_get_status(void)
1290 {
1291 u64 status;
1292
1293 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1294
1295 return status;
1296 }
1297
1298 static inline void intel_pmu_ack_status(u64 ack)
1299 {
1300 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1301 }
1302
1303 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1304 {
1305 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1306 u64 ctrl_val, mask;
1307
1308 mask = 0xfULL << (idx * 4);
1309
1310 rdmsrl(hwc->config_base, ctrl_val);
1311 ctrl_val &= ~mask;
1312 wrmsrl(hwc->config_base, ctrl_val);
1313 }
1314
1315 static inline bool event_is_checkpointed(struct perf_event *event)
1316 {
1317 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1318 }
1319
1320 static void intel_pmu_disable_event(struct perf_event *event)
1321 {
1322 struct hw_perf_event *hwc = &event->hw;
1323 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1324
1325 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1326 intel_pmu_disable_bts();
1327 intel_pmu_drain_bts_buffer();
1328 return;
1329 }
1330
1331 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1332 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1333 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1334
1335 /*
1336 * must disable before any actual event
1337 * because any event may be combined with LBR
1338 */
1339 if (intel_pmu_needs_lbr_smpl(event))
1340 intel_pmu_lbr_disable(event);
1341
1342 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1343 intel_pmu_disable_fixed(hwc);
1344 return;
1345 }
1346
1347 x86_pmu_disable_event(event);
1348
1349 if (unlikely(event->attr.precise_ip))
1350 intel_pmu_pebs_disable(event);
1351 }
1352
1353 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1354 {
1355 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1356 u64 ctrl_val, bits, mask;
1357
1358 /*
1359 * Enable IRQ generation (0x8),
1360 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1361 * if requested:
1362 */
1363 bits = 0x8ULL;
1364 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1365 bits |= 0x2;
1366 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1367 bits |= 0x1;
1368
1369 /*
1370 * ANY bit is supported in v3 and up
1371 */
1372 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1373 bits |= 0x4;
1374
1375 bits <<= (idx * 4);
1376 mask = 0xfULL << (idx * 4);
1377
1378 rdmsrl(hwc->config_base, ctrl_val);
1379 ctrl_val &= ~mask;
1380 ctrl_val |= bits;
1381 wrmsrl(hwc->config_base, ctrl_val);
1382 }
1383
1384 static void intel_pmu_enable_event(struct perf_event *event)
1385 {
1386 struct hw_perf_event *hwc = &event->hw;
1387 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1388
1389 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1390 if (!__this_cpu_read(cpu_hw_events.enabled))
1391 return;
1392
1393 intel_pmu_enable_bts(hwc->config);
1394 return;
1395 }
1396 /*
1397 * must enabled before any actual event
1398 * because any event may be combined with LBR
1399 */
1400 if (intel_pmu_needs_lbr_smpl(event))
1401 intel_pmu_lbr_enable(event);
1402
1403 if (event->attr.exclude_host)
1404 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1405 if (event->attr.exclude_guest)
1406 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1407
1408 if (unlikely(event_is_checkpointed(event)))
1409 cpuc->intel_cp_status |= (1ull << hwc->idx);
1410
1411 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1412 intel_pmu_enable_fixed(hwc);
1413 return;
1414 }
1415
1416 if (unlikely(event->attr.precise_ip))
1417 intel_pmu_pebs_enable(event);
1418
1419 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1420 }
1421
1422 /*
1423 * Save and restart an expired event. Called by NMI contexts,
1424 * so it has to be careful about preempting normal event ops:
1425 */
1426 int intel_pmu_save_and_restart(struct perf_event *event)
1427 {
1428 x86_perf_event_update(event);
1429 /*
1430 * For a checkpointed counter always reset back to 0. This
1431 * avoids a situation where the counter overflows, aborts the
1432 * transaction and is then set back to shortly before the
1433 * overflow, and overflows and aborts again.
1434 */
1435 if (unlikely(event_is_checkpointed(event))) {
1436 /* No race with NMIs because the counter should not be armed */
1437 wrmsrl(event->hw.event_base, 0);
1438 local64_set(&event->hw.prev_count, 0);
1439 }
1440 return x86_perf_event_set_period(event);
1441 }
1442
1443 static void intel_pmu_reset(void)
1444 {
1445 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1446 unsigned long flags;
1447 int idx;
1448
1449 if (!x86_pmu.num_counters)
1450 return;
1451
1452 local_irq_save(flags);
1453
1454 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1455
1456 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1457 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1458 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
1459 }
1460 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1461 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1462
1463 if (ds)
1464 ds->bts_index = ds->bts_buffer_base;
1465
1466 local_irq_restore(flags);
1467 }
1468
1469 /*
1470 * This handler is triggered by the local APIC, so the APIC IRQ handling
1471 * rules apply:
1472 */
1473 static int intel_pmu_handle_irq(struct pt_regs *regs)
1474 {
1475 struct perf_sample_data data;
1476 struct cpu_hw_events *cpuc;
1477 int bit, loops;
1478 u64 status;
1479 int handled;
1480
1481 cpuc = &__get_cpu_var(cpu_hw_events);
1482
1483 /*
1484 * No known reason to not always do late ACK,
1485 * but just in case do it opt-in.
1486 */
1487 if (!x86_pmu.late_ack)
1488 apic_write(APIC_LVTPC, APIC_DM_NMI);
1489 intel_pmu_disable_all();
1490 handled = intel_pmu_drain_bts_buffer();
1491 status = intel_pmu_get_status();
1492 if (!status)
1493 goto done;
1494
1495 loops = 0;
1496 again:
1497 intel_pmu_ack_status(status);
1498 if (++loops > 100) {
1499 static bool warned = false;
1500 if (!warned) {
1501 WARN(1, "perfevents: irq loop stuck!\n");
1502 perf_event_print_debug();
1503 warned = true;
1504 }
1505 intel_pmu_reset();
1506 goto done;
1507 }
1508
1509 inc_irq_stat(apic_perf_irqs);
1510
1511 intel_pmu_lbr_read();
1512
1513 /*
1514 * CondChgd bit 63 doesn't mean any overflow status. Ignore
1515 * and clear the bit.
1516 */
1517 if (__test_and_clear_bit(63, (unsigned long *)&status)) {
1518 if (!status)
1519 goto done;
1520 }
1521
1522 /*
1523 * PEBS overflow sets bit 62 in the global status register
1524 */
1525 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1526 handled++;
1527 x86_pmu.drain_pebs(regs);
1528 }
1529
1530 /*
1531 * Checkpointed counters can lead to 'spurious' PMIs because the
1532 * rollback caused by the PMI will have cleared the overflow status
1533 * bit. Therefore always force probe these counters.
1534 */
1535 status |= cpuc->intel_cp_status;
1536
1537 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1538 struct perf_event *event = cpuc->events[bit];
1539
1540 handled++;
1541
1542 if (!test_bit(bit, cpuc->active_mask))
1543 continue;
1544
1545 if (!intel_pmu_save_and_restart(event))
1546 continue;
1547
1548 perf_sample_data_init(&data, 0, event->hw.last_period);
1549
1550 if (has_branch_stack(event))
1551 data.br_stack = &cpuc->lbr_stack;
1552
1553 if (perf_event_overflow(event, &data, regs))
1554 x86_pmu_stop(event, 0);
1555 }
1556
1557 /*
1558 * Repeat if there is more work to be done:
1559 */
1560 status = intel_pmu_get_status();
1561 if (status)
1562 goto again;
1563
1564 done:
1565 intel_pmu_enable_all(0);
1566 /*
1567 * Only unmask the NMI after the overflow counters
1568 * have been reset. This avoids spurious NMIs on
1569 * Haswell CPUs.
1570 */
1571 if (x86_pmu.late_ack)
1572 apic_write(APIC_LVTPC, APIC_DM_NMI);
1573 return handled;
1574 }
1575
1576 static struct event_constraint *
1577 intel_bts_constraints(struct perf_event *event)
1578 {
1579 struct hw_perf_event *hwc = &event->hw;
1580 unsigned int hw_event, bts_event;
1581
1582 if (event->attr.freq)
1583 return NULL;
1584
1585 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1586 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1587
1588 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1589 return &bts_constraint;
1590
1591 return NULL;
1592 }
1593
1594 static int intel_alt_er(int idx)
1595 {
1596 if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1597 return idx;
1598
1599 if (idx == EXTRA_REG_RSP_0)
1600 return EXTRA_REG_RSP_1;
1601
1602 if (idx == EXTRA_REG_RSP_1)
1603 return EXTRA_REG_RSP_0;
1604
1605 return idx;
1606 }
1607
1608 static void intel_fixup_er(struct perf_event *event, int idx)
1609 {
1610 event->hw.extra_reg.idx = idx;
1611
1612 if (idx == EXTRA_REG_RSP_0) {
1613 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1614 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1615 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1616 } else if (idx == EXTRA_REG_RSP_1) {
1617 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1618 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1619 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1620 }
1621 }
1622
1623 /*
1624 * manage allocation of shared extra msr for certain events
1625 *
1626 * sharing can be:
1627 * per-cpu: to be shared between the various events on a single PMU
1628 * per-core: per-cpu + shared by HT threads
1629 */
1630 static struct event_constraint *
1631 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1632 struct perf_event *event,
1633 struct hw_perf_event_extra *reg)
1634 {
1635 struct event_constraint *c = &emptyconstraint;
1636 struct er_account *era;
1637 unsigned long flags;
1638 int idx = reg->idx;
1639
1640 /*
1641 * reg->alloc can be set due to existing state, so for fake cpuc we
1642 * need to ignore this, otherwise we might fail to allocate proper fake
1643 * state for this extra reg constraint. Also see the comment below.
1644 */
1645 if (reg->alloc && !cpuc->is_fake)
1646 return NULL; /* call x86_get_event_constraint() */
1647
1648 again:
1649 era = &cpuc->shared_regs->regs[idx];
1650 /*
1651 * we use spin_lock_irqsave() to avoid lockdep issues when
1652 * passing a fake cpuc
1653 */
1654 raw_spin_lock_irqsave(&era->lock, flags);
1655
1656 if (!atomic_read(&era->ref) || era->config == reg->config) {
1657
1658 /*
1659 * If its a fake cpuc -- as per validate_{group,event}() we
1660 * shouldn't touch event state and we can avoid doing so
1661 * since both will only call get_event_constraints() once
1662 * on each event, this avoids the need for reg->alloc.
1663 *
1664 * Not doing the ER fixup will only result in era->reg being
1665 * wrong, but since we won't actually try and program hardware
1666 * this isn't a problem either.
1667 */
1668 if (!cpuc->is_fake) {
1669 if (idx != reg->idx)
1670 intel_fixup_er(event, idx);
1671
1672 /*
1673 * x86_schedule_events() can call get_event_constraints()
1674 * multiple times on events in the case of incremental
1675 * scheduling(). reg->alloc ensures we only do the ER
1676 * allocation once.
1677 */
1678 reg->alloc = 1;
1679 }
1680
1681 /* lock in msr value */
1682 era->config = reg->config;
1683 era->reg = reg->reg;
1684
1685 /* one more user */
1686 atomic_inc(&era->ref);
1687
1688 /*
1689 * need to call x86_get_event_constraint()
1690 * to check if associated event has constraints
1691 */
1692 c = NULL;
1693 } else {
1694 idx = intel_alt_er(idx);
1695 if (idx != reg->idx) {
1696 raw_spin_unlock_irqrestore(&era->lock, flags);
1697 goto again;
1698 }
1699 }
1700 raw_spin_unlock_irqrestore(&era->lock, flags);
1701
1702 return c;
1703 }
1704
1705 static void
1706 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1707 struct hw_perf_event_extra *reg)
1708 {
1709 struct er_account *era;
1710
1711 /*
1712 * Only put constraint if extra reg was actually allocated. Also takes
1713 * care of event which do not use an extra shared reg.
1714 *
1715 * Also, if this is a fake cpuc we shouldn't touch any event state
1716 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1717 * either since it'll be thrown out.
1718 */
1719 if (!reg->alloc || cpuc->is_fake)
1720 return;
1721
1722 era = &cpuc->shared_regs->regs[reg->idx];
1723
1724 /* one fewer user */
1725 atomic_dec(&era->ref);
1726
1727 /* allocate again next time */
1728 reg->alloc = 0;
1729 }
1730
1731 static struct event_constraint *
1732 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1733 struct perf_event *event)
1734 {
1735 struct event_constraint *c = NULL, *d;
1736 struct hw_perf_event_extra *xreg, *breg;
1737
1738 xreg = &event->hw.extra_reg;
1739 if (xreg->idx != EXTRA_REG_NONE) {
1740 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1741 if (c == &emptyconstraint)
1742 return c;
1743 }
1744 breg = &event->hw.branch_reg;
1745 if (breg->idx != EXTRA_REG_NONE) {
1746 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1747 if (d == &emptyconstraint) {
1748 __intel_shared_reg_put_constraints(cpuc, xreg);
1749 c = d;
1750 }
1751 }
1752 return c;
1753 }
1754
1755 struct event_constraint *
1756 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1757 {
1758 struct event_constraint *c;
1759
1760 if (x86_pmu.event_constraints) {
1761 for_each_event_constraint(c, x86_pmu.event_constraints) {
1762 if ((event->hw.config & c->cmask) == c->code) {
1763 event->hw.flags |= c->flags;
1764 return c;
1765 }
1766 }
1767 }
1768
1769 return &unconstrained;
1770 }
1771
1772 static struct event_constraint *
1773 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1774 {
1775 struct event_constraint *c;
1776
1777 c = intel_bts_constraints(event);
1778 if (c)
1779 return c;
1780
1781 c = intel_pebs_constraints(event);
1782 if (c)
1783 return c;
1784
1785 c = intel_shared_regs_constraints(cpuc, event);
1786 if (c)
1787 return c;
1788
1789 return x86_get_event_constraints(cpuc, event);
1790 }
1791
1792 static void
1793 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1794 struct perf_event *event)
1795 {
1796 struct hw_perf_event_extra *reg;
1797
1798 reg = &event->hw.extra_reg;
1799 if (reg->idx != EXTRA_REG_NONE)
1800 __intel_shared_reg_put_constraints(cpuc, reg);
1801
1802 reg = &event->hw.branch_reg;
1803 if (reg->idx != EXTRA_REG_NONE)
1804 __intel_shared_reg_put_constraints(cpuc, reg);
1805 }
1806
1807 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1808 struct perf_event *event)
1809 {
1810 intel_put_shared_regs_event_constraints(cpuc, event);
1811 }
1812
1813 static void intel_pebs_aliases_core2(struct perf_event *event)
1814 {
1815 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1816 /*
1817 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1818 * (0x003c) so that we can use it with PEBS.
1819 *
1820 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1821 * PEBS capable. However we can use INST_RETIRED.ANY_P
1822 * (0x00c0), which is a PEBS capable event, to get the same
1823 * count.
1824 *
1825 * INST_RETIRED.ANY_P counts the number of cycles that retires
1826 * CNTMASK instructions. By setting CNTMASK to a value (16)
1827 * larger than the maximum number of instructions that can be
1828 * retired per cycle (4) and then inverting the condition, we
1829 * count all cycles that retire 16 or less instructions, which
1830 * is every cycle.
1831 *
1832 * Thereby we gain a PEBS capable cycle counter.
1833 */
1834 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1835
1836 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1837 event->hw.config = alt_config;
1838 }
1839 }
1840
1841 static void intel_pebs_aliases_snb(struct perf_event *event)
1842 {
1843 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1844 /*
1845 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1846 * (0x003c) so that we can use it with PEBS.
1847 *
1848 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1849 * PEBS capable. However we can use UOPS_RETIRED.ALL
1850 * (0x01c2), which is a PEBS capable event, to get the same
1851 * count.
1852 *
1853 * UOPS_RETIRED.ALL counts the number of cycles that retires
1854 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1855 * larger than the maximum number of micro-ops that can be
1856 * retired per cycle (4) and then inverting the condition, we
1857 * count all cycles that retire 16 or less micro-ops, which
1858 * is every cycle.
1859 *
1860 * Thereby we gain a PEBS capable cycle counter.
1861 */
1862 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1863
1864 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1865 event->hw.config = alt_config;
1866 }
1867 }
1868
1869 static int intel_pmu_hw_config(struct perf_event *event)
1870 {
1871 int ret = x86_pmu_hw_config(event);
1872
1873 if (ret)
1874 return ret;
1875
1876 if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1877 x86_pmu.pebs_aliases(event);
1878
1879 if (intel_pmu_needs_lbr_smpl(event)) {
1880 ret = intel_pmu_setup_lbr_filter(event);
1881 if (ret)
1882 return ret;
1883 }
1884
1885 if (event->attr.type != PERF_TYPE_RAW)
1886 return 0;
1887
1888 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1889 return 0;
1890
1891 if (x86_pmu.version < 3)
1892 return -EINVAL;
1893
1894 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1895 return -EACCES;
1896
1897 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1898
1899 return 0;
1900 }
1901
1902 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1903 {
1904 if (x86_pmu.guest_get_msrs)
1905 return x86_pmu.guest_get_msrs(nr);
1906 *nr = 0;
1907 return NULL;
1908 }
1909 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1910
1911 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1912 {
1913 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1914 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1915
1916 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1917 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1918 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1919 /*
1920 * If PMU counter has PEBS enabled it is not enough to disable counter
1921 * on a guest entry since PEBS memory write can overshoot guest entry
1922 * and corrupt guest memory. Disabling PEBS solves the problem.
1923 */
1924 arr[1].msr = MSR_IA32_PEBS_ENABLE;
1925 arr[1].host = cpuc->pebs_enabled;
1926 arr[1].guest = 0;
1927
1928 *nr = 2;
1929 return arr;
1930 }
1931
1932 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1933 {
1934 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1935 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1936 int idx;
1937
1938 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1939 struct perf_event *event = cpuc->events[idx];
1940
1941 arr[idx].msr = x86_pmu_config_addr(idx);
1942 arr[idx].host = arr[idx].guest = 0;
1943
1944 if (!test_bit(idx, cpuc->active_mask))
1945 continue;
1946
1947 arr[idx].host = arr[idx].guest =
1948 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1949
1950 if (event->attr.exclude_host)
1951 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1952 else if (event->attr.exclude_guest)
1953 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1954 }
1955
1956 *nr = x86_pmu.num_counters;
1957 return arr;
1958 }
1959
1960 static void core_pmu_enable_event(struct perf_event *event)
1961 {
1962 if (!event->attr.exclude_host)
1963 x86_pmu_enable_event(event);
1964 }
1965
1966 static void core_pmu_enable_all(int added)
1967 {
1968 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1969 int idx;
1970
1971 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1972 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1973
1974 if (!test_bit(idx, cpuc->active_mask) ||
1975 cpuc->events[idx]->attr.exclude_host)
1976 continue;
1977
1978 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1979 }
1980 }
1981
1982 static int hsw_hw_config(struct perf_event *event)
1983 {
1984 int ret = intel_pmu_hw_config(event);
1985
1986 if (ret)
1987 return ret;
1988 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
1989 return 0;
1990 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
1991
1992 /*
1993 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
1994 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
1995 * this combination.
1996 */
1997 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
1998 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
1999 event->attr.precise_ip > 0))
2000 return -EOPNOTSUPP;
2001
2002 if (event_is_checkpointed(event)) {
2003 /*
2004 * Sampling of checkpointed events can cause situations where
2005 * the CPU constantly aborts because of a overflow, which is
2006 * then checkpointed back and ignored. Forbid checkpointing
2007 * for sampling.
2008 *
2009 * But still allow a long sampling period, so that perf stat
2010 * from KVM works.
2011 */
2012 if (event->attr.sample_period > 0 &&
2013 event->attr.sample_period < 0x7fffffff)
2014 return -EOPNOTSUPP;
2015 }
2016 return 0;
2017 }
2018
2019 static struct event_constraint counter2_constraint =
2020 EVENT_CONSTRAINT(0, 0x4, 0);
2021
2022 static struct event_constraint *
2023 hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
2024 {
2025 struct event_constraint *c = intel_get_event_constraints(cpuc, event);
2026
2027 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2028 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2029 if (c->idxmsk64 & (1U << 2))
2030 return &counter2_constraint;
2031 return &emptyconstraint;
2032 }
2033
2034 return c;
2035 }
2036
2037 PMU_FORMAT_ATTR(event, "config:0-7" );
2038 PMU_FORMAT_ATTR(umask, "config:8-15" );
2039 PMU_FORMAT_ATTR(edge, "config:18" );
2040 PMU_FORMAT_ATTR(pc, "config:19" );
2041 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
2042 PMU_FORMAT_ATTR(inv, "config:23" );
2043 PMU_FORMAT_ATTR(cmask, "config:24-31" );
2044 PMU_FORMAT_ATTR(in_tx, "config:32");
2045 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2046
2047 static struct attribute *intel_arch_formats_attr[] = {
2048 &format_attr_event.attr,
2049 &format_attr_umask.attr,
2050 &format_attr_edge.attr,
2051 &format_attr_pc.attr,
2052 &format_attr_inv.attr,
2053 &format_attr_cmask.attr,
2054 NULL,
2055 };
2056
2057 ssize_t intel_event_sysfs_show(char *page, u64 config)
2058 {
2059 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2060
2061 return x86_event_sysfs_show(page, config, event);
2062 }
2063
2064 static __initconst const struct x86_pmu core_pmu = {
2065 .name = "core",
2066 .handle_irq = x86_pmu_handle_irq,
2067 .disable_all = x86_pmu_disable_all,
2068 .enable_all = core_pmu_enable_all,
2069 .enable = core_pmu_enable_event,
2070 .disable = x86_pmu_disable_event,
2071 .hw_config = x86_pmu_hw_config,
2072 .schedule_events = x86_schedule_events,
2073 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2074 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2075 .event_map = intel_pmu_event_map,
2076 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2077 .apic = 1,
2078 /*
2079 * Intel PMCs cannot be accessed sanely above 32 bit width,
2080 * so we install an artificial 1<<31 period regardless of
2081 * the generic event period:
2082 */
2083 .max_period = (1ULL << 31) - 1,
2084 .get_event_constraints = intel_get_event_constraints,
2085 .put_event_constraints = intel_put_event_constraints,
2086 .event_constraints = intel_core_event_constraints,
2087 .guest_get_msrs = core_guest_get_msrs,
2088 .format_attrs = intel_arch_formats_attr,
2089 .events_sysfs_show = intel_event_sysfs_show,
2090 };
2091
2092 struct intel_shared_regs *allocate_shared_regs(int cpu)
2093 {
2094 struct intel_shared_regs *regs;
2095 int i;
2096
2097 regs = kzalloc_node(sizeof(struct intel_shared_regs),
2098 GFP_KERNEL, cpu_to_node(cpu));
2099 if (regs) {
2100 /*
2101 * initialize the locks to keep lockdep happy
2102 */
2103 for (i = 0; i < EXTRA_REG_MAX; i++)
2104 raw_spin_lock_init(&regs->regs[i].lock);
2105
2106 regs->core_id = -1;
2107 }
2108 return regs;
2109 }
2110
2111 static int intel_pmu_cpu_prepare(int cpu)
2112 {
2113 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2114
2115 if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
2116 return NOTIFY_OK;
2117
2118 cpuc->shared_regs = allocate_shared_regs(cpu);
2119 if (!cpuc->shared_regs)
2120 return NOTIFY_BAD;
2121
2122 return NOTIFY_OK;
2123 }
2124
2125 static void intel_pmu_cpu_starting(int cpu)
2126 {
2127 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2128 int core_id = topology_core_id(cpu);
2129 int i;
2130
2131 init_debug_store_on_cpu(cpu);
2132 /*
2133 * Deal with CPUs that don't clear their LBRs on power-up.
2134 */
2135 intel_pmu_lbr_reset();
2136
2137 cpuc->lbr_sel = NULL;
2138
2139 if (!cpuc->shared_regs)
2140 return;
2141
2142 if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
2143 for_each_cpu(i, topology_thread_cpumask(cpu)) {
2144 struct intel_shared_regs *pc;
2145
2146 pc = per_cpu(cpu_hw_events, i).shared_regs;
2147 if (pc && pc->core_id == core_id) {
2148 cpuc->kfree_on_online = cpuc->shared_regs;
2149 cpuc->shared_regs = pc;
2150 break;
2151 }
2152 }
2153 cpuc->shared_regs->core_id = core_id;
2154 cpuc->shared_regs->refcnt++;
2155 }
2156
2157 if (x86_pmu.lbr_sel_map)
2158 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2159 }
2160
2161 static void intel_pmu_cpu_dying(int cpu)
2162 {
2163 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2164 struct intel_shared_regs *pc;
2165
2166 pc = cpuc->shared_regs;
2167 if (pc) {
2168 if (pc->core_id == -1 || --pc->refcnt == 0)
2169 kfree(pc);
2170 cpuc->shared_regs = NULL;
2171 }
2172
2173 fini_debug_store_on_cpu(cpu);
2174 }
2175
2176 static void intel_pmu_flush_branch_stack(void)
2177 {
2178 /*
2179 * Intel LBR does not tag entries with the
2180 * PID of the current task, then we need to
2181 * flush it on ctxsw
2182 * For now, we simply reset it
2183 */
2184 if (x86_pmu.lbr_nr)
2185 intel_pmu_lbr_reset();
2186 }
2187
2188 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2189
2190 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2191
2192 static struct attribute *intel_arch3_formats_attr[] = {
2193 &format_attr_event.attr,
2194 &format_attr_umask.attr,
2195 &format_attr_edge.attr,
2196 &format_attr_pc.attr,
2197 &format_attr_any.attr,
2198 &format_attr_inv.attr,
2199 &format_attr_cmask.attr,
2200 &format_attr_in_tx.attr,
2201 &format_attr_in_tx_cp.attr,
2202
2203 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2204 &format_attr_ldlat.attr, /* PEBS load latency */
2205 NULL,
2206 };
2207
2208 static __initconst const struct x86_pmu intel_pmu = {
2209 .name = "Intel",
2210 .handle_irq = intel_pmu_handle_irq,
2211 .disable_all = intel_pmu_disable_all,
2212 .enable_all = intel_pmu_enable_all,
2213 .enable = intel_pmu_enable_event,
2214 .disable = intel_pmu_disable_event,
2215 .hw_config = intel_pmu_hw_config,
2216 .schedule_events = x86_schedule_events,
2217 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2218 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2219 .event_map = intel_pmu_event_map,
2220 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2221 .apic = 1,
2222 /*
2223 * Intel PMCs cannot be accessed sanely above 32 bit width,
2224 * so we install an artificial 1<<31 period regardless of
2225 * the generic event period:
2226 */
2227 .max_period = (1ULL << 31) - 1,
2228 .get_event_constraints = intel_get_event_constraints,
2229 .put_event_constraints = intel_put_event_constraints,
2230 .pebs_aliases = intel_pebs_aliases_core2,
2231
2232 .format_attrs = intel_arch3_formats_attr,
2233 .events_sysfs_show = intel_event_sysfs_show,
2234
2235 .cpu_prepare = intel_pmu_cpu_prepare,
2236 .cpu_starting = intel_pmu_cpu_starting,
2237 .cpu_dying = intel_pmu_cpu_dying,
2238 .guest_get_msrs = intel_guest_get_msrs,
2239 .flush_branch_stack = intel_pmu_flush_branch_stack,
2240 };
2241
2242 static __init void intel_clovertown_quirk(void)
2243 {
2244 /*
2245 * PEBS is unreliable due to:
2246 *
2247 * AJ67 - PEBS may experience CPL leaks
2248 * AJ68 - PEBS PMI may be delayed by one event
2249 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
2250 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
2251 *
2252 * AJ67 could be worked around by restricting the OS/USR flags.
2253 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
2254 *
2255 * AJ106 could possibly be worked around by not allowing LBR
2256 * usage from PEBS, including the fixup.
2257 * AJ68 could possibly be worked around by always programming
2258 * a pebs_event_reset[0] value and coping with the lost events.
2259 *
2260 * But taken together it might just make sense to not enable PEBS on
2261 * these chips.
2262 */
2263 pr_warn("PEBS disabled due to CPU errata\n");
2264 x86_pmu.pebs = 0;
2265 x86_pmu.pebs_constraints = NULL;
2266 }
2267
2268 static int intel_snb_pebs_broken(int cpu)
2269 {
2270 u32 rev = UINT_MAX; /* default to broken for unknown models */
2271
2272 switch (cpu_data(cpu).x86_model) {
2273 case 42: /* SNB */
2274 rev = 0x28;
2275 break;
2276
2277 case 45: /* SNB-EP */
2278 switch (cpu_data(cpu).x86_mask) {
2279 case 6: rev = 0x618; break;
2280 case 7: rev = 0x70c; break;
2281 }
2282 }
2283
2284 return (cpu_data(cpu).microcode < rev);
2285 }
2286
2287 static void intel_snb_check_microcode(void)
2288 {
2289 int pebs_broken = 0;
2290 int cpu;
2291
2292 get_online_cpus();
2293 for_each_online_cpu(cpu) {
2294 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
2295 break;
2296 }
2297 put_online_cpus();
2298
2299 if (pebs_broken == x86_pmu.pebs_broken)
2300 return;
2301
2302 /*
2303 * Serialized by the microcode lock..
2304 */
2305 if (x86_pmu.pebs_broken) {
2306 pr_info("PEBS enabled due to microcode update\n");
2307 x86_pmu.pebs_broken = 0;
2308 } else {
2309 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
2310 x86_pmu.pebs_broken = 1;
2311 }
2312 }
2313
2314 /*
2315 * Under certain circumstances, access certain MSR may cause #GP.
2316 * The function tests if the input MSR can be safely accessed.
2317 */
2318 static bool check_msr(unsigned long msr, u64 mask)
2319 {
2320 u64 val_old, val_new, val_tmp;
2321
2322 /*
2323 * Read the current value, change it and read it back to see if it
2324 * matches, this is needed to detect certain hardware emulators
2325 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
2326 */
2327 if (rdmsrl_safe(msr, &val_old))
2328 return false;
2329
2330 /*
2331 * Only change the bits which can be updated by wrmsrl.
2332 */
2333 val_tmp = val_old ^ mask;
2334 if (wrmsrl_safe(msr, val_tmp) ||
2335 rdmsrl_safe(msr, &val_new))
2336 return false;
2337
2338 if (val_new != val_tmp)
2339 return false;
2340
2341 /* Here it's sure that the MSR can be safely accessed.
2342 * Restore the old value and return.
2343 */
2344 wrmsrl(msr, val_old);
2345
2346 return true;
2347 }
2348
2349 static __init void intel_sandybridge_quirk(void)
2350 {
2351 x86_pmu.check_microcode = intel_snb_check_microcode;
2352 intel_snb_check_microcode();
2353 }
2354
2355 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
2356 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
2357 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
2358 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
2359 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
2360 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
2361 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
2362 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2363 };
2364
2365 static __init void intel_arch_events_quirk(void)
2366 {
2367 int bit;
2368
2369 /* disable event that reported as not presend by cpuid */
2370 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
2371 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2372 pr_warn("CPUID marked event: \'%s\' unavailable\n",
2373 intel_arch_events_map[bit].name);
2374 }
2375 }
2376
2377 static __init void intel_nehalem_quirk(void)
2378 {
2379 union cpuid10_ebx ebx;
2380
2381 ebx.full = x86_pmu.events_maskl;
2382 if (ebx.split.no_branch_misses_retired) {
2383 /*
2384 * Erratum AAJ80 detected, we work it around by using
2385 * the BR_MISP_EXEC.ANY event. This will over-count
2386 * branch-misses, but it's still much better than the
2387 * architectural event which is often completely bogus:
2388 */
2389 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
2390 ebx.split.no_branch_misses_retired = 0;
2391 x86_pmu.events_maskl = ebx.full;
2392 pr_info("CPU erratum AAJ80 worked around\n");
2393 }
2394 }
2395
2396 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
2397 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
2398
2399 /* Haswell special events */
2400 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
2401 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
2402 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
2403 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
2404 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
2405 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
2406 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
2407 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
2408 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
2409 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
2410 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
2411 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
2412
2413 static struct attribute *hsw_events_attrs[] = {
2414 EVENT_PTR(tx_start),
2415 EVENT_PTR(tx_commit),
2416 EVENT_PTR(tx_abort),
2417 EVENT_PTR(tx_capacity),
2418 EVENT_PTR(tx_conflict),
2419 EVENT_PTR(el_start),
2420 EVENT_PTR(el_commit),
2421 EVENT_PTR(el_abort),
2422 EVENT_PTR(el_capacity),
2423 EVENT_PTR(el_conflict),
2424 EVENT_PTR(cycles_t),
2425 EVENT_PTR(cycles_ct),
2426 EVENT_PTR(mem_ld_hsw),
2427 EVENT_PTR(mem_st_hsw),
2428 NULL
2429 };
2430
2431 __init int intel_pmu_init(void)
2432 {
2433 union cpuid10_edx edx;
2434 union cpuid10_eax eax;
2435 union cpuid10_ebx ebx;
2436 struct event_constraint *c;
2437 unsigned int unused;
2438 struct extra_reg *er;
2439 int version, i;
2440
2441 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2442 switch (boot_cpu_data.x86) {
2443 case 0x6:
2444 return p6_pmu_init();
2445 case 0xb:
2446 return knc_pmu_init();
2447 case 0xf:
2448 return p4_pmu_init();
2449 }
2450 return -ENODEV;
2451 }
2452
2453 /*
2454 * Check whether the Architectural PerfMon supports
2455 * Branch Misses Retired hw_event or not.
2456 */
2457 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
2458 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2459 return -ENODEV;
2460
2461 version = eax.split.version_id;
2462 if (version < 2)
2463 x86_pmu = core_pmu;
2464 else
2465 x86_pmu = intel_pmu;
2466
2467 x86_pmu.version = version;
2468 x86_pmu.num_counters = eax.split.num_counters;
2469 x86_pmu.cntval_bits = eax.split.bit_width;
2470 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
2471
2472 x86_pmu.events_maskl = ebx.full;
2473 x86_pmu.events_mask_len = eax.split.mask_length;
2474
2475 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
2476
2477 /*
2478 * Quirk: v2 perfmon does not report fixed-purpose events, so
2479 * assume at least 3 events:
2480 */
2481 if (version > 1)
2482 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2483
2484 if (boot_cpu_has(X86_FEATURE_PDCM)) {
2485 u64 capabilities;
2486
2487 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
2488 x86_pmu.intel_cap.capabilities = capabilities;
2489 }
2490
2491 intel_ds_init();
2492
2493 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
2494
2495 /*
2496 * Install the hw-cache-events table:
2497 */
2498 switch (boot_cpu_data.x86_model) {
2499 case 14: /* 65nm Core "Yonah" */
2500 pr_cont("Core events, ");
2501 break;
2502
2503 case 15: /* 65nm Core2 "Merom" */
2504 x86_add_quirk(intel_clovertown_quirk);
2505 case 22: /* 65nm Core2 "Merom-L" */
2506 case 23: /* 45nm Core2 "Penryn" */
2507 case 29: /* 45nm Core2 "Dunnington (MP) */
2508 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
2509 sizeof(hw_cache_event_ids));
2510
2511 intel_pmu_lbr_init_core();
2512
2513 x86_pmu.event_constraints = intel_core2_event_constraints;
2514 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2515 pr_cont("Core2 events, ");
2516 break;
2517
2518 case 30: /* 45nm Nehalem */
2519 case 26: /* 45nm Nehalem-EP */
2520 case 46: /* 45nm Nehalem-EX */
2521 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
2522 sizeof(hw_cache_event_ids));
2523 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2524 sizeof(hw_cache_extra_regs));
2525
2526 intel_pmu_lbr_init_nhm();
2527
2528 x86_pmu.event_constraints = intel_nehalem_event_constraints;
2529 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2530 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2531 x86_pmu.extra_regs = intel_nehalem_extra_regs;
2532
2533 x86_pmu.cpu_events = nhm_events_attrs;
2534
2535 /* UOPS_ISSUED.STALLED_CYCLES */
2536 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2537 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2538 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2539 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2540 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2541
2542 x86_add_quirk(intel_nehalem_quirk);
2543
2544 pr_cont("Nehalem events, ");
2545 break;
2546
2547 case 28: /* 45nm Atom "Pineview" */
2548 case 38: /* 45nm Atom "Lincroft" */
2549 case 39: /* 32nm Atom "Penwell" */
2550 case 53: /* 32nm Atom "Cloverview" */
2551 case 54: /* 32nm Atom "Cedarview" */
2552 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
2553 sizeof(hw_cache_event_ids));
2554
2555 intel_pmu_lbr_init_atom();
2556
2557 x86_pmu.event_constraints = intel_gen_event_constraints;
2558 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2559 pr_cont("Atom events, ");
2560 break;
2561
2562 case 55: /* 22nm Atom "Silvermont" */
2563 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
2564 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
2565 sizeof(hw_cache_event_ids));
2566 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
2567 sizeof(hw_cache_extra_regs));
2568
2569 intel_pmu_lbr_init_atom();
2570
2571 x86_pmu.event_constraints = intel_slm_event_constraints;
2572 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
2573 x86_pmu.extra_regs = intel_slm_extra_regs;
2574 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2575 pr_cont("Silvermont events, ");
2576 break;
2577
2578 case 37: /* 32nm Westmere */
2579 case 44: /* 32nm Westmere-EP */
2580 case 47: /* 32nm Westmere-EX */
2581 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
2582 sizeof(hw_cache_event_ids));
2583 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
2584 sizeof(hw_cache_extra_regs));
2585
2586 intel_pmu_lbr_init_nhm();
2587
2588 x86_pmu.event_constraints = intel_westmere_event_constraints;
2589 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2590 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2591 x86_pmu.extra_regs = intel_westmere_extra_regs;
2592 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2593
2594 x86_pmu.cpu_events = nhm_events_attrs;
2595
2596 /* UOPS_ISSUED.STALLED_CYCLES */
2597 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2598 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2599 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2600 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2601 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2602
2603 pr_cont("Westmere events, ");
2604 break;
2605
2606 case 42: /* 32nm SandyBridge */
2607 case 45: /* 32nm SandyBridge-E/EN/EP */
2608 x86_add_quirk(intel_sandybridge_quirk);
2609 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2610 sizeof(hw_cache_event_ids));
2611 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2612 sizeof(hw_cache_extra_regs));
2613
2614 intel_pmu_lbr_init_snb();
2615
2616 x86_pmu.event_constraints = intel_snb_event_constraints;
2617 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2618 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2619 if (boot_cpu_data.x86_model == 45)
2620 x86_pmu.extra_regs = intel_snbep_extra_regs;
2621 else
2622 x86_pmu.extra_regs = intel_snb_extra_regs;
2623 /* all extra regs are per-cpu when HT is on */
2624 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2625 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2626
2627 x86_pmu.cpu_events = snb_events_attrs;
2628
2629 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2630 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2631 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2632 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2633 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
2634 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2635
2636 pr_cont("SandyBridge events, ");
2637 break;
2638
2639 case 58: /* 22nm IvyBridge */
2640 case 62: /* 22nm IvyBridge-EP/EX */
2641 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
2642 sizeof(hw_cache_event_ids));
2643 /* dTLB-load-misses on IVB is different than SNB */
2644 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
2645
2646 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
2647 sizeof(hw_cache_extra_regs));
2648
2649 intel_pmu_lbr_init_snb();
2650
2651 x86_pmu.event_constraints = intel_ivb_event_constraints;
2652 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
2653 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2654 if (boot_cpu_data.x86_model == 62)
2655 x86_pmu.extra_regs = intel_snbep_extra_regs;
2656 else
2657 x86_pmu.extra_regs = intel_snb_extra_regs;
2658 /* all extra regs are per-cpu when HT is on */
2659 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2660 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2661
2662 x86_pmu.cpu_events = snb_events_attrs;
2663
2664 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2665 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
2666 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2667
2668 pr_cont("IvyBridge events, ");
2669 break;
2670
2671
2672 case 60: /* 22nm Haswell Core */
2673 case 63: /* 22nm Haswell Server */
2674 case 69: /* 22nm Haswell ULT */
2675 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
2676 x86_pmu.late_ack = true;
2677 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2678 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2679
2680 intel_pmu_lbr_init_snb();
2681
2682 x86_pmu.event_constraints = intel_hsw_event_constraints;
2683 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2684 x86_pmu.extra_regs = intel_snbep_extra_regs;
2685 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2686 /* all extra regs are per-cpu when HT is on */
2687 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2688 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2689
2690 x86_pmu.hw_config = hsw_hw_config;
2691 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2692 x86_pmu.cpu_events = hsw_events_attrs;
2693 x86_pmu.lbr_double_abort = true;
2694 pr_cont("Haswell events, ");
2695 break;
2696
2697 case 61: /* 14nm Broadwell Core-M */
2698 x86_pmu.late_ack = true;
2699 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
2700 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
2701
2702 intel_pmu_lbr_init_snb();
2703
2704 x86_pmu.event_constraints = intel_bdw_event_constraints;
2705 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2706 x86_pmu.extra_regs = intel_snbep_extra_regs;
2707 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2708 /* all extra regs are per-cpu when HT is on */
2709 x86_pmu.er_flags |= ERF_HAS_RSP_1;
2710 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2711
2712 x86_pmu.hw_config = hsw_hw_config;
2713 x86_pmu.get_event_constraints = hsw_get_event_constraints;
2714 x86_pmu.cpu_events = hsw_events_attrs;
2715 pr_cont("Broadwell events, ");
2716 break;
2717
2718 default:
2719 switch (x86_pmu.version) {
2720 case 1:
2721 x86_pmu.event_constraints = intel_v1_event_constraints;
2722 pr_cont("generic architected perfmon v1, ");
2723 break;
2724 default:
2725 /*
2726 * default constraints for v2 and up
2727 */
2728 x86_pmu.event_constraints = intel_gen_event_constraints;
2729 pr_cont("generic architected perfmon, ");
2730 break;
2731 }
2732 }
2733
2734 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2735 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2736 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2737 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2738 }
2739 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2740
2741 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2742 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2743 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2744 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2745 }
2746
2747 x86_pmu.intel_ctrl |=
2748 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2749
2750 if (x86_pmu.event_constraints) {
2751 /*
2752 * event on fixed counter2 (REF_CYCLES) only works on this
2753 * counter, so do not extend mask to generic counters
2754 */
2755 for_each_event_constraint(c, x86_pmu.event_constraints) {
2756 if (c->cmask != FIXED_EVENT_FLAGS
2757 || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2758 continue;
2759 }
2760
2761 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2762 c->weight += x86_pmu.num_counters;
2763 }
2764 }
2765
2766 /*
2767 * Access LBR MSR may cause #GP under certain circumstances.
2768 * E.g. KVM doesn't support LBR MSR
2769 * Check all LBT MSR here.
2770 * Disable LBR access if any LBR MSRs can not be accessed.
2771 */
2772 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
2773 x86_pmu.lbr_nr = 0;
2774 for (i = 0; i < x86_pmu.lbr_nr; i++) {
2775 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
2776 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
2777 x86_pmu.lbr_nr = 0;
2778 }
2779
2780 /*
2781 * Access extra MSR may cause #GP under certain circumstances.
2782 * E.g. KVM doesn't support offcore event
2783 * Check all extra_regs here.
2784 */
2785 if (x86_pmu.extra_regs) {
2786 for (er = x86_pmu.extra_regs; er->msr; er++) {
2787 er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
2788 /* Disable LBR select mapping */
2789 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
2790 x86_pmu.lbr_sel_map = NULL;
2791 }
2792 }
2793
2794 /* Support full width counters using alternative MSR range */
2795 if (x86_pmu.intel_cap.full_width_write) {
2796 x86_pmu.max_period = x86_pmu.cntval_mask;
2797 x86_pmu.perfctr = MSR_IA32_PMC0;
2798 pr_cont("full-width counters, ");
2799 }
2800
2801 return 0;
2802 }
This page took 0.106314 seconds and 5 git commands to generate.