Merge branch 'for-4.4-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20
21 #include "perf_event.h"
22
23 /*
24 * Intel PerfMon, used on Core and later.
25 */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
29 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
30 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
31 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
32 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
33 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
34 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
35 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
36 };
37
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 EVENT_CONSTRAINT_END
47 };
48
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 EVENT_CONSTRAINT_END
65 };
66
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 EVENT_CONSTRAINT_END
81 };
82
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88 EVENT_EXTRA_END
89 };
90
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100 EVENT_CONSTRAINT_END
101 };
102
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117
118 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
123 EVENT_CONSTRAINT_END
124 };
125
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141
142 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
147 EVENT_CONSTRAINT_END
148 };
149
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156 EVENT_EXTRA_END
157 };
158
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161 EVENT_CONSTRAINT_END
162 };
163
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169 EVENT_CONSTRAINT_END
170 };
171
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177 EVENT_CONSTRAINT_END
178 };
179
180 struct event_constraint intel_skl_event_constraints[] = {
181 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
182 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
183 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
184 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
185 EVENT_CONSTRAINT_END
186 };
187
188 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
189 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
191 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
192 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
193 EVENT_EXTRA_END
194 };
195
196 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
197 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
198 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
199 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
200 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
201 EVENT_EXTRA_END
202 };
203
204 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
205 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
206 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
207 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
208 /*
209 * Note the low 8 bits eventsel code is not a continuous field, containing
210 * some #GPing bits. These are masked out.
211 */
212 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
213 EVENT_EXTRA_END
214 };
215
216 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
217 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
218 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
219
220 struct attribute *nhm_events_attrs[] = {
221 EVENT_PTR(mem_ld_nhm),
222 NULL,
223 };
224
225 struct attribute *snb_events_attrs[] = {
226 EVENT_PTR(mem_ld_snb),
227 EVENT_PTR(mem_st_snb),
228 NULL,
229 };
230
231 static struct event_constraint intel_hsw_event_constraints[] = {
232 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
233 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
234 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
235 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
236 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
237 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
238 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
239 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
240 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
241 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
242 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
243 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
244
245 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
246 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
247 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
248 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
249
250 EVENT_CONSTRAINT_END
251 };
252
253 struct event_constraint intel_bdw_event_constraints[] = {
254 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
255 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
256 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
257 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
258 INTEL_UEVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
259 EVENT_CONSTRAINT_END
260 };
261
262 static u64 intel_pmu_event_map(int hw_event)
263 {
264 return intel_perfmon_event_map[hw_event];
265 }
266
267 /*
268 * Notes on the events:
269 * - data reads do not include code reads (comparable to earlier tables)
270 * - data counts include speculative execution (except L1 write, dtlb, bpu)
271 * - remote node access includes remote memory, remote cache, remote mmio.
272 * - prefetches are not included in the counts.
273 * - icache miss does not include decoded icache
274 */
275
276 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
277 #define SKL_DEMAND_RFO BIT_ULL(1)
278 #define SKL_ANY_RESPONSE BIT_ULL(16)
279 #define SKL_SUPPLIER_NONE BIT_ULL(17)
280 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
281 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
282 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
283 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
284 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
285 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
286 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
287 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
288 #define SKL_SPL_HIT BIT_ULL(30)
289 #define SKL_SNOOP_NONE BIT_ULL(31)
290 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
291 #define SKL_SNOOP_MISS BIT_ULL(33)
292 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
293 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
294 #define SKL_SNOOP_HITM BIT_ULL(36)
295 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
296 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
297 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
298 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
299 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
300 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
301 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
302 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
303 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
304 SKL_SNOOP_HITM|SKL_SPL_HIT)
305 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
306 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
307 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
308 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
309 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
310
311 static __initconst const u64 skl_hw_cache_event_ids
312 [PERF_COUNT_HW_CACHE_MAX]
313 [PERF_COUNT_HW_CACHE_OP_MAX]
314 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
315 {
316 [ C(L1D ) ] = {
317 [ C(OP_READ) ] = {
318 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
319 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
320 },
321 [ C(OP_WRITE) ] = {
322 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
323 [ C(RESULT_MISS) ] = 0x0,
324 },
325 [ C(OP_PREFETCH) ] = {
326 [ C(RESULT_ACCESS) ] = 0x0,
327 [ C(RESULT_MISS) ] = 0x0,
328 },
329 },
330 [ C(L1I ) ] = {
331 [ C(OP_READ) ] = {
332 [ C(RESULT_ACCESS) ] = 0x0,
333 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
334 },
335 [ C(OP_WRITE) ] = {
336 [ C(RESULT_ACCESS) ] = -1,
337 [ C(RESULT_MISS) ] = -1,
338 },
339 [ C(OP_PREFETCH) ] = {
340 [ C(RESULT_ACCESS) ] = 0x0,
341 [ C(RESULT_MISS) ] = 0x0,
342 },
343 },
344 [ C(LL ) ] = {
345 [ C(OP_READ) ] = {
346 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
347 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
348 },
349 [ C(OP_WRITE) ] = {
350 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
351 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
352 },
353 [ C(OP_PREFETCH) ] = {
354 [ C(RESULT_ACCESS) ] = 0x0,
355 [ C(RESULT_MISS) ] = 0x0,
356 },
357 },
358 [ C(DTLB) ] = {
359 [ C(OP_READ) ] = {
360 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
361 [ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
362 },
363 [ C(OP_WRITE) ] = {
364 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
365 [ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
366 },
367 [ C(OP_PREFETCH) ] = {
368 [ C(RESULT_ACCESS) ] = 0x0,
369 [ C(RESULT_MISS) ] = 0x0,
370 },
371 },
372 [ C(ITLB) ] = {
373 [ C(OP_READ) ] = {
374 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
375 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
376 },
377 [ C(OP_WRITE) ] = {
378 [ C(RESULT_ACCESS) ] = -1,
379 [ C(RESULT_MISS) ] = -1,
380 },
381 [ C(OP_PREFETCH) ] = {
382 [ C(RESULT_ACCESS) ] = -1,
383 [ C(RESULT_MISS) ] = -1,
384 },
385 },
386 [ C(BPU ) ] = {
387 [ C(OP_READ) ] = {
388 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
389 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
390 },
391 [ C(OP_WRITE) ] = {
392 [ C(RESULT_ACCESS) ] = -1,
393 [ C(RESULT_MISS) ] = -1,
394 },
395 [ C(OP_PREFETCH) ] = {
396 [ C(RESULT_ACCESS) ] = -1,
397 [ C(RESULT_MISS) ] = -1,
398 },
399 },
400 [ C(NODE) ] = {
401 [ C(OP_READ) ] = {
402 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
403 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
404 },
405 [ C(OP_WRITE) ] = {
406 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
407 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
408 },
409 [ C(OP_PREFETCH) ] = {
410 [ C(RESULT_ACCESS) ] = 0x0,
411 [ C(RESULT_MISS) ] = 0x0,
412 },
413 },
414 };
415
416 static __initconst const u64 skl_hw_cache_extra_regs
417 [PERF_COUNT_HW_CACHE_MAX]
418 [PERF_COUNT_HW_CACHE_OP_MAX]
419 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
420 {
421 [ C(LL ) ] = {
422 [ C(OP_READ) ] = {
423 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
424 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
425 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
426 SKL_L3_MISS|SKL_ANY_SNOOP|
427 SKL_SUPPLIER_NONE,
428 },
429 [ C(OP_WRITE) ] = {
430 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
431 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
432 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
433 SKL_L3_MISS|SKL_ANY_SNOOP|
434 SKL_SUPPLIER_NONE,
435 },
436 [ C(OP_PREFETCH) ] = {
437 [ C(RESULT_ACCESS) ] = 0x0,
438 [ C(RESULT_MISS) ] = 0x0,
439 },
440 },
441 [ C(NODE) ] = {
442 [ C(OP_READ) ] = {
443 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
444 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
445 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
446 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
447 },
448 [ C(OP_WRITE) ] = {
449 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
450 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
451 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
452 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
453 },
454 [ C(OP_PREFETCH) ] = {
455 [ C(RESULT_ACCESS) ] = 0x0,
456 [ C(RESULT_MISS) ] = 0x0,
457 },
458 },
459 };
460
461 #define SNB_DMND_DATA_RD (1ULL << 0)
462 #define SNB_DMND_RFO (1ULL << 1)
463 #define SNB_DMND_IFETCH (1ULL << 2)
464 #define SNB_DMND_WB (1ULL << 3)
465 #define SNB_PF_DATA_RD (1ULL << 4)
466 #define SNB_PF_RFO (1ULL << 5)
467 #define SNB_PF_IFETCH (1ULL << 6)
468 #define SNB_LLC_DATA_RD (1ULL << 7)
469 #define SNB_LLC_RFO (1ULL << 8)
470 #define SNB_LLC_IFETCH (1ULL << 9)
471 #define SNB_BUS_LOCKS (1ULL << 10)
472 #define SNB_STRM_ST (1ULL << 11)
473 #define SNB_OTHER (1ULL << 15)
474 #define SNB_RESP_ANY (1ULL << 16)
475 #define SNB_NO_SUPP (1ULL << 17)
476 #define SNB_LLC_HITM (1ULL << 18)
477 #define SNB_LLC_HITE (1ULL << 19)
478 #define SNB_LLC_HITS (1ULL << 20)
479 #define SNB_LLC_HITF (1ULL << 21)
480 #define SNB_LOCAL (1ULL << 22)
481 #define SNB_REMOTE (0xffULL << 23)
482 #define SNB_SNP_NONE (1ULL << 31)
483 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
484 #define SNB_SNP_MISS (1ULL << 33)
485 #define SNB_NO_FWD (1ULL << 34)
486 #define SNB_SNP_FWD (1ULL << 35)
487 #define SNB_HITM (1ULL << 36)
488 #define SNB_NON_DRAM (1ULL << 37)
489
490 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
491 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
492 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
493
494 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
495 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
496 SNB_HITM)
497
498 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
499 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
500
501 #define SNB_L3_ACCESS SNB_RESP_ANY
502 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
503
504 static __initconst const u64 snb_hw_cache_extra_regs
505 [PERF_COUNT_HW_CACHE_MAX]
506 [PERF_COUNT_HW_CACHE_OP_MAX]
507 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
508 {
509 [ C(LL ) ] = {
510 [ C(OP_READ) ] = {
511 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
512 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
513 },
514 [ C(OP_WRITE) ] = {
515 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
516 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
517 },
518 [ C(OP_PREFETCH) ] = {
519 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
520 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
521 },
522 },
523 [ C(NODE) ] = {
524 [ C(OP_READ) ] = {
525 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
526 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
527 },
528 [ C(OP_WRITE) ] = {
529 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
530 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
531 },
532 [ C(OP_PREFETCH) ] = {
533 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
534 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
535 },
536 },
537 };
538
539 static __initconst const u64 snb_hw_cache_event_ids
540 [PERF_COUNT_HW_CACHE_MAX]
541 [PERF_COUNT_HW_CACHE_OP_MAX]
542 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
543 {
544 [ C(L1D) ] = {
545 [ C(OP_READ) ] = {
546 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
547 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
548 },
549 [ C(OP_WRITE) ] = {
550 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
551 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
552 },
553 [ C(OP_PREFETCH) ] = {
554 [ C(RESULT_ACCESS) ] = 0x0,
555 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
556 },
557 },
558 [ C(L1I ) ] = {
559 [ C(OP_READ) ] = {
560 [ C(RESULT_ACCESS) ] = 0x0,
561 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
562 },
563 [ C(OP_WRITE) ] = {
564 [ C(RESULT_ACCESS) ] = -1,
565 [ C(RESULT_MISS) ] = -1,
566 },
567 [ C(OP_PREFETCH) ] = {
568 [ C(RESULT_ACCESS) ] = 0x0,
569 [ C(RESULT_MISS) ] = 0x0,
570 },
571 },
572 [ C(LL ) ] = {
573 [ C(OP_READ) ] = {
574 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
575 [ C(RESULT_ACCESS) ] = 0x01b7,
576 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
577 [ C(RESULT_MISS) ] = 0x01b7,
578 },
579 [ C(OP_WRITE) ] = {
580 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
581 [ C(RESULT_ACCESS) ] = 0x01b7,
582 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
583 [ C(RESULT_MISS) ] = 0x01b7,
584 },
585 [ C(OP_PREFETCH) ] = {
586 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
587 [ C(RESULT_ACCESS) ] = 0x01b7,
588 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
589 [ C(RESULT_MISS) ] = 0x01b7,
590 },
591 },
592 [ C(DTLB) ] = {
593 [ C(OP_READ) ] = {
594 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
595 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
596 },
597 [ C(OP_WRITE) ] = {
598 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
599 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
600 },
601 [ C(OP_PREFETCH) ] = {
602 [ C(RESULT_ACCESS) ] = 0x0,
603 [ C(RESULT_MISS) ] = 0x0,
604 },
605 },
606 [ C(ITLB) ] = {
607 [ C(OP_READ) ] = {
608 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
609 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
610 },
611 [ C(OP_WRITE) ] = {
612 [ C(RESULT_ACCESS) ] = -1,
613 [ C(RESULT_MISS) ] = -1,
614 },
615 [ C(OP_PREFETCH) ] = {
616 [ C(RESULT_ACCESS) ] = -1,
617 [ C(RESULT_MISS) ] = -1,
618 },
619 },
620 [ C(BPU ) ] = {
621 [ C(OP_READ) ] = {
622 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
623 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
624 },
625 [ C(OP_WRITE) ] = {
626 [ C(RESULT_ACCESS) ] = -1,
627 [ C(RESULT_MISS) ] = -1,
628 },
629 [ C(OP_PREFETCH) ] = {
630 [ C(RESULT_ACCESS) ] = -1,
631 [ C(RESULT_MISS) ] = -1,
632 },
633 },
634 [ C(NODE) ] = {
635 [ C(OP_READ) ] = {
636 [ C(RESULT_ACCESS) ] = 0x01b7,
637 [ C(RESULT_MISS) ] = 0x01b7,
638 },
639 [ C(OP_WRITE) ] = {
640 [ C(RESULT_ACCESS) ] = 0x01b7,
641 [ C(RESULT_MISS) ] = 0x01b7,
642 },
643 [ C(OP_PREFETCH) ] = {
644 [ C(RESULT_ACCESS) ] = 0x01b7,
645 [ C(RESULT_MISS) ] = 0x01b7,
646 },
647 },
648
649 };
650
651 /*
652 * Notes on the events:
653 * - data reads do not include code reads (comparable to earlier tables)
654 * - data counts include speculative execution (except L1 write, dtlb, bpu)
655 * - remote node access includes remote memory, remote cache, remote mmio.
656 * - prefetches are not included in the counts because they are not
657 * reliably counted.
658 */
659
660 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
661 #define HSW_DEMAND_RFO BIT_ULL(1)
662 #define HSW_ANY_RESPONSE BIT_ULL(16)
663 #define HSW_SUPPLIER_NONE BIT_ULL(17)
664 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
665 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
666 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
667 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
668 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
669 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
670 HSW_L3_MISS_REMOTE_HOP2P)
671 #define HSW_SNOOP_NONE BIT_ULL(31)
672 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
673 #define HSW_SNOOP_MISS BIT_ULL(33)
674 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
675 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
676 #define HSW_SNOOP_HITM BIT_ULL(36)
677 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
678 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
679 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
680 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
681 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
682 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
683 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
684 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
685 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
686 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
687 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
688
689 #define BDW_L3_MISS_LOCAL BIT(26)
690 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
691 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
692 HSW_L3_MISS_REMOTE_HOP2P)
693
694
695 static __initconst const u64 hsw_hw_cache_event_ids
696 [PERF_COUNT_HW_CACHE_MAX]
697 [PERF_COUNT_HW_CACHE_OP_MAX]
698 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
699 {
700 [ C(L1D ) ] = {
701 [ C(OP_READ) ] = {
702 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
703 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
704 },
705 [ C(OP_WRITE) ] = {
706 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
707 [ C(RESULT_MISS) ] = 0x0,
708 },
709 [ C(OP_PREFETCH) ] = {
710 [ C(RESULT_ACCESS) ] = 0x0,
711 [ C(RESULT_MISS) ] = 0x0,
712 },
713 },
714 [ C(L1I ) ] = {
715 [ C(OP_READ) ] = {
716 [ C(RESULT_ACCESS) ] = 0x0,
717 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
718 },
719 [ C(OP_WRITE) ] = {
720 [ C(RESULT_ACCESS) ] = -1,
721 [ C(RESULT_MISS) ] = -1,
722 },
723 [ C(OP_PREFETCH) ] = {
724 [ C(RESULT_ACCESS) ] = 0x0,
725 [ C(RESULT_MISS) ] = 0x0,
726 },
727 },
728 [ C(LL ) ] = {
729 [ C(OP_READ) ] = {
730 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
731 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
732 },
733 [ C(OP_WRITE) ] = {
734 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
735 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
736 },
737 [ C(OP_PREFETCH) ] = {
738 [ C(RESULT_ACCESS) ] = 0x0,
739 [ C(RESULT_MISS) ] = 0x0,
740 },
741 },
742 [ C(DTLB) ] = {
743 [ C(OP_READ) ] = {
744 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
745 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
746 },
747 [ C(OP_WRITE) ] = {
748 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
749 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
750 },
751 [ C(OP_PREFETCH) ] = {
752 [ C(RESULT_ACCESS) ] = 0x0,
753 [ C(RESULT_MISS) ] = 0x0,
754 },
755 },
756 [ C(ITLB) ] = {
757 [ C(OP_READ) ] = {
758 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
759 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
760 },
761 [ C(OP_WRITE) ] = {
762 [ C(RESULT_ACCESS) ] = -1,
763 [ C(RESULT_MISS) ] = -1,
764 },
765 [ C(OP_PREFETCH) ] = {
766 [ C(RESULT_ACCESS) ] = -1,
767 [ C(RESULT_MISS) ] = -1,
768 },
769 },
770 [ C(BPU ) ] = {
771 [ C(OP_READ) ] = {
772 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
773 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
774 },
775 [ C(OP_WRITE) ] = {
776 [ C(RESULT_ACCESS) ] = -1,
777 [ C(RESULT_MISS) ] = -1,
778 },
779 [ C(OP_PREFETCH) ] = {
780 [ C(RESULT_ACCESS) ] = -1,
781 [ C(RESULT_MISS) ] = -1,
782 },
783 },
784 [ C(NODE) ] = {
785 [ C(OP_READ) ] = {
786 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
787 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
788 },
789 [ C(OP_WRITE) ] = {
790 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
791 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
792 },
793 [ C(OP_PREFETCH) ] = {
794 [ C(RESULT_ACCESS) ] = 0x0,
795 [ C(RESULT_MISS) ] = 0x0,
796 },
797 },
798 };
799
800 static __initconst const u64 hsw_hw_cache_extra_regs
801 [PERF_COUNT_HW_CACHE_MAX]
802 [PERF_COUNT_HW_CACHE_OP_MAX]
803 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
804 {
805 [ C(LL ) ] = {
806 [ C(OP_READ) ] = {
807 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
808 HSW_LLC_ACCESS,
809 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
810 HSW_L3_MISS|HSW_ANY_SNOOP,
811 },
812 [ C(OP_WRITE) ] = {
813 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
814 HSW_LLC_ACCESS,
815 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
816 HSW_L3_MISS|HSW_ANY_SNOOP,
817 },
818 [ C(OP_PREFETCH) ] = {
819 [ C(RESULT_ACCESS) ] = 0x0,
820 [ C(RESULT_MISS) ] = 0x0,
821 },
822 },
823 [ C(NODE) ] = {
824 [ C(OP_READ) ] = {
825 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
826 HSW_L3_MISS_LOCAL_DRAM|
827 HSW_SNOOP_DRAM,
828 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
829 HSW_L3_MISS_REMOTE|
830 HSW_SNOOP_DRAM,
831 },
832 [ C(OP_WRITE) ] = {
833 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
834 HSW_L3_MISS_LOCAL_DRAM|
835 HSW_SNOOP_DRAM,
836 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
837 HSW_L3_MISS_REMOTE|
838 HSW_SNOOP_DRAM,
839 },
840 [ C(OP_PREFETCH) ] = {
841 [ C(RESULT_ACCESS) ] = 0x0,
842 [ C(RESULT_MISS) ] = 0x0,
843 },
844 },
845 };
846
847 static __initconst const u64 westmere_hw_cache_event_ids
848 [PERF_COUNT_HW_CACHE_MAX]
849 [PERF_COUNT_HW_CACHE_OP_MAX]
850 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
851 {
852 [ C(L1D) ] = {
853 [ C(OP_READ) ] = {
854 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
855 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
856 },
857 [ C(OP_WRITE) ] = {
858 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
859 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
860 },
861 [ C(OP_PREFETCH) ] = {
862 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
863 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
864 },
865 },
866 [ C(L1I ) ] = {
867 [ C(OP_READ) ] = {
868 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
869 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
870 },
871 [ C(OP_WRITE) ] = {
872 [ C(RESULT_ACCESS) ] = -1,
873 [ C(RESULT_MISS) ] = -1,
874 },
875 [ C(OP_PREFETCH) ] = {
876 [ C(RESULT_ACCESS) ] = 0x0,
877 [ C(RESULT_MISS) ] = 0x0,
878 },
879 },
880 [ C(LL ) ] = {
881 [ C(OP_READ) ] = {
882 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
883 [ C(RESULT_ACCESS) ] = 0x01b7,
884 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
885 [ C(RESULT_MISS) ] = 0x01b7,
886 },
887 /*
888 * Use RFO, not WRITEBACK, because a write miss would typically occur
889 * on RFO.
890 */
891 [ C(OP_WRITE) ] = {
892 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
893 [ C(RESULT_ACCESS) ] = 0x01b7,
894 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
895 [ C(RESULT_MISS) ] = 0x01b7,
896 },
897 [ C(OP_PREFETCH) ] = {
898 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
899 [ C(RESULT_ACCESS) ] = 0x01b7,
900 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
901 [ C(RESULT_MISS) ] = 0x01b7,
902 },
903 },
904 [ C(DTLB) ] = {
905 [ C(OP_READ) ] = {
906 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
907 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
908 },
909 [ C(OP_WRITE) ] = {
910 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
911 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
912 },
913 [ C(OP_PREFETCH) ] = {
914 [ C(RESULT_ACCESS) ] = 0x0,
915 [ C(RESULT_MISS) ] = 0x0,
916 },
917 },
918 [ C(ITLB) ] = {
919 [ C(OP_READ) ] = {
920 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
921 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
922 },
923 [ C(OP_WRITE) ] = {
924 [ C(RESULT_ACCESS) ] = -1,
925 [ C(RESULT_MISS) ] = -1,
926 },
927 [ C(OP_PREFETCH) ] = {
928 [ C(RESULT_ACCESS) ] = -1,
929 [ C(RESULT_MISS) ] = -1,
930 },
931 },
932 [ C(BPU ) ] = {
933 [ C(OP_READ) ] = {
934 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
935 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
936 },
937 [ C(OP_WRITE) ] = {
938 [ C(RESULT_ACCESS) ] = -1,
939 [ C(RESULT_MISS) ] = -1,
940 },
941 [ C(OP_PREFETCH) ] = {
942 [ C(RESULT_ACCESS) ] = -1,
943 [ C(RESULT_MISS) ] = -1,
944 },
945 },
946 [ C(NODE) ] = {
947 [ C(OP_READ) ] = {
948 [ C(RESULT_ACCESS) ] = 0x01b7,
949 [ C(RESULT_MISS) ] = 0x01b7,
950 },
951 [ C(OP_WRITE) ] = {
952 [ C(RESULT_ACCESS) ] = 0x01b7,
953 [ C(RESULT_MISS) ] = 0x01b7,
954 },
955 [ C(OP_PREFETCH) ] = {
956 [ C(RESULT_ACCESS) ] = 0x01b7,
957 [ C(RESULT_MISS) ] = 0x01b7,
958 },
959 },
960 };
961
962 /*
963 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
964 * See IA32 SDM Vol 3B 30.6.1.3
965 */
966
967 #define NHM_DMND_DATA_RD (1 << 0)
968 #define NHM_DMND_RFO (1 << 1)
969 #define NHM_DMND_IFETCH (1 << 2)
970 #define NHM_DMND_WB (1 << 3)
971 #define NHM_PF_DATA_RD (1 << 4)
972 #define NHM_PF_DATA_RFO (1 << 5)
973 #define NHM_PF_IFETCH (1 << 6)
974 #define NHM_OFFCORE_OTHER (1 << 7)
975 #define NHM_UNCORE_HIT (1 << 8)
976 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
977 #define NHM_OTHER_CORE_HITM (1 << 10)
978 /* reserved */
979 #define NHM_REMOTE_CACHE_FWD (1 << 12)
980 #define NHM_REMOTE_DRAM (1 << 13)
981 #define NHM_LOCAL_DRAM (1 << 14)
982 #define NHM_NON_DRAM (1 << 15)
983
984 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
985 #define NHM_REMOTE (NHM_REMOTE_DRAM)
986
987 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
988 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
989 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
990
991 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
992 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
993 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
994
995 static __initconst const u64 nehalem_hw_cache_extra_regs
996 [PERF_COUNT_HW_CACHE_MAX]
997 [PERF_COUNT_HW_CACHE_OP_MAX]
998 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
999 {
1000 [ C(LL ) ] = {
1001 [ C(OP_READ) ] = {
1002 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1003 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1004 },
1005 [ C(OP_WRITE) ] = {
1006 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1007 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1008 },
1009 [ C(OP_PREFETCH) ] = {
1010 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1011 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1012 },
1013 },
1014 [ C(NODE) ] = {
1015 [ C(OP_READ) ] = {
1016 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1017 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1018 },
1019 [ C(OP_WRITE) ] = {
1020 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1021 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1022 },
1023 [ C(OP_PREFETCH) ] = {
1024 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1025 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1026 },
1027 },
1028 };
1029
1030 static __initconst const u64 nehalem_hw_cache_event_ids
1031 [PERF_COUNT_HW_CACHE_MAX]
1032 [PERF_COUNT_HW_CACHE_OP_MAX]
1033 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1034 {
1035 [ C(L1D) ] = {
1036 [ C(OP_READ) ] = {
1037 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1038 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1039 },
1040 [ C(OP_WRITE) ] = {
1041 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1042 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1043 },
1044 [ C(OP_PREFETCH) ] = {
1045 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1046 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1047 },
1048 },
1049 [ C(L1I ) ] = {
1050 [ C(OP_READ) ] = {
1051 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1052 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1053 },
1054 [ C(OP_WRITE) ] = {
1055 [ C(RESULT_ACCESS) ] = -1,
1056 [ C(RESULT_MISS) ] = -1,
1057 },
1058 [ C(OP_PREFETCH) ] = {
1059 [ C(RESULT_ACCESS) ] = 0x0,
1060 [ C(RESULT_MISS) ] = 0x0,
1061 },
1062 },
1063 [ C(LL ) ] = {
1064 [ C(OP_READ) ] = {
1065 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1066 [ C(RESULT_ACCESS) ] = 0x01b7,
1067 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1068 [ C(RESULT_MISS) ] = 0x01b7,
1069 },
1070 /*
1071 * Use RFO, not WRITEBACK, because a write miss would typically occur
1072 * on RFO.
1073 */
1074 [ C(OP_WRITE) ] = {
1075 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1076 [ C(RESULT_ACCESS) ] = 0x01b7,
1077 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1078 [ C(RESULT_MISS) ] = 0x01b7,
1079 },
1080 [ C(OP_PREFETCH) ] = {
1081 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1082 [ C(RESULT_ACCESS) ] = 0x01b7,
1083 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1084 [ C(RESULT_MISS) ] = 0x01b7,
1085 },
1086 },
1087 [ C(DTLB) ] = {
1088 [ C(OP_READ) ] = {
1089 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1090 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1091 },
1092 [ C(OP_WRITE) ] = {
1093 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1094 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1095 },
1096 [ C(OP_PREFETCH) ] = {
1097 [ C(RESULT_ACCESS) ] = 0x0,
1098 [ C(RESULT_MISS) ] = 0x0,
1099 },
1100 },
1101 [ C(ITLB) ] = {
1102 [ C(OP_READ) ] = {
1103 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1104 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1105 },
1106 [ C(OP_WRITE) ] = {
1107 [ C(RESULT_ACCESS) ] = -1,
1108 [ C(RESULT_MISS) ] = -1,
1109 },
1110 [ C(OP_PREFETCH) ] = {
1111 [ C(RESULT_ACCESS) ] = -1,
1112 [ C(RESULT_MISS) ] = -1,
1113 },
1114 },
1115 [ C(BPU ) ] = {
1116 [ C(OP_READ) ] = {
1117 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1118 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1119 },
1120 [ C(OP_WRITE) ] = {
1121 [ C(RESULT_ACCESS) ] = -1,
1122 [ C(RESULT_MISS) ] = -1,
1123 },
1124 [ C(OP_PREFETCH) ] = {
1125 [ C(RESULT_ACCESS) ] = -1,
1126 [ C(RESULT_MISS) ] = -1,
1127 },
1128 },
1129 [ C(NODE) ] = {
1130 [ C(OP_READ) ] = {
1131 [ C(RESULT_ACCESS) ] = 0x01b7,
1132 [ C(RESULT_MISS) ] = 0x01b7,
1133 },
1134 [ C(OP_WRITE) ] = {
1135 [ C(RESULT_ACCESS) ] = 0x01b7,
1136 [ C(RESULT_MISS) ] = 0x01b7,
1137 },
1138 [ C(OP_PREFETCH) ] = {
1139 [ C(RESULT_ACCESS) ] = 0x01b7,
1140 [ C(RESULT_MISS) ] = 0x01b7,
1141 },
1142 },
1143 };
1144
1145 static __initconst const u64 core2_hw_cache_event_ids
1146 [PERF_COUNT_HW_CACHE_MAX]
1147 [PERF_COUNT_HW_CACHE_OP_MAX]
1148 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1149 {
1150 [ C(L1D) ] = {
1151 [ C(OP_READ) ] = {
1152 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1153 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1154 },
1155 [ C(OP_WRITE) ] = {
1156 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1157 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1158 },
1159 [ C(OP_PREFETCH) ] = {
1160 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1161 [ C(RESULT_MISS) ] = 0,
1162 },
1163 },
1164 [ C(L1I ) ] = {
1165 [ C(OP_READ) ] = {
1166 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1167 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1168 },
1169 [ C(OP_WRITE) ] = {
1170 [ C(RESULT_ACCESS) ] = -1,
1171 [ C(RESULT_MISS) ] = -1,
1172 },
1173 [ C(OP_PREFETCH) ] = {
1174 [ C(RESULT_ACCESS) ] = 0,
1175 [ C(RESULT_MISS) ] = 0,
1176 },
1177 },
1178 [ C(LL ) ] = {
1179 [ C(OP_READ) ] = {
1180 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1181 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1182 },
1183 [ C(OP_WRITE) ] = {
1184 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1185 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1186 },
1187 [ C(OP_PREFETCH) ] = {
1188 [ C(RESULT_ACCESS) ] = 0,
1189 [ C(RESULT_MISS) ] = 0,
1190 },
1191 },
1192 [ C(DTLB) ] = {
1193 [ C(OP_READ) ] = {
1194 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1195 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1196 },
1197 [ C(OP_WRITE) ] = {
1198 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1199 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1200 },
1201 [ C(OP_PREFETCH) ] = {
1202 [ C(RESULT_ACCESS) ] = 0,
1203 [ C(RESULT_MISS) ] = 0,
1204 },
1205 },
1206 [ C(ITLB) ] = {
1207 [ C(OP_READ) ] = {
1208 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1209 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1210 },
1211 [ C(OP_WRITE) ] = {
1212 [ C(RESULT_ACCESS) ] = -1,
1213 [ C(RESULT_MISS) ] = -1,
1214 },
1215 [ C(OP_PREFETCH) ] = {
1216 [ C(RESULT_ACCESS) ] = -1,
1217 [ C(RESULT_MISS) ] = -1,
1218 },
1219 },
1220 [ C(BPU ) ] = {
1221 [ C(OP_READ) ] = {
1222 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1223 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1224 },
1225 [ C(OP_WRITE) ] = {
1226 [ C(RESULT_ACCESS) ] = -1,
1227 [ C(RESULT_MISS) ] = -1,
1228 },
1229 [ C(OP_PREFETCH) ] = {
1230 [ C(RESULT_ACCESS) ] = -1,
1231 [ C(RESULT_MISS) ] = -1,
1232 },
1233 },
1234 };
1235
1236 static __initconst const u64 atom_hw_cache_event_ids
1237 [PERF_COUNT_HW_CACHE_MAX]
1238 [PERF_COUNT_HW_CACHE_OP_MAX]
1239 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1240 {
1241 [ C(L1D) ] = {
1242 [ C(OP_READ) ] = {
1243 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1244 [ C(RESULT_MISS) ] = 0,
1245 },
1246 [ C(OP_WRITE) ] = {
1247 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1248 [ C(RESULT_MISS) ] = 0,
1249 },
1250 [ C(OP_PREFETCH) ] = {
1251 [ C(RESULT_ACCESS) ] = 0x0,
1252 [ C(RESULT_MISS) ] = 0,
1253 },
1254 },
1255 [ C(L1I ) ] = {
1256 [ C(OP_READ) ] = {
1257 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1258 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1259 },
1260 [ C(OP_WRITE) ] = {
1261 [ C(RESULT_ACCESS) ] = -1,
1262 [ C(RESULT_MISS) ] = -1,
1263 },
1264 [ C(OP_PREFETCH) ] = {
1265 [ C(RESULT_ACCESS) ] = 0,
1266 [ C(RESULT_MISS) ] = 0,
1267 },
1268 },
1269 [ C(LL ) ] = {
1270 [ C(OP_READ) ] = {
1271 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1272 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1273 },
1274 [ C(OP_WRITE) ] = {
1275 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1276 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1277 },
1278 [ C(OP_PREFETCH) ] = {
1279 [ C(RESULT_ACCESS) ] = 0,
1280 [ C(RESULT_MISS) ] = 0,
1281 },
1282 },
1283 [ C(DTLB) ] = {
1284 [ C(OP_READ) ] = {
1285 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1286 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1287 },
1288 [ C(OP_WRITE) ] = {
1289 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1290 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1291 },
1292 [ C(OP_PREFETCH) ] = {
1293 [ C(RESULT_ACCESS) ] = 0,
1294 [ C(RESULT_MISS) ] = 0,
1295 },
1296 },
1297 [ C(ITLB) ] = {
1298 [ C(OP_READ) ] = {
1299 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1300 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1301 },
1302 [ C(OP_WRITE) ] = {
1303 [ C(RESULT_ACCESS) ] = -1,
1304 [ C(RESULT_MISS) ] = -1,
1305 },
1306 [ C(OP_PREFETCH) ] = {
1307 [ C(RESULT_ACCESS) ] = -1,
1308 [ C(RESULT_MISS) ] = -1,
1309 },
1310 },
1311 [ C(BPU ) ] = {
1312 [ C(OP_READ) ] = {
1313 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1314 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1315 },
1316 [ C(OP_WRITE) ] = {
1317 [ C(RESULT_ACCESS) ] = -1,
1318 [ C(RESULT_MISS) ] = -1,
1319 },
1320 [ C(OP_PREFETCH) ] = {
1321 [ C(RESULT_ACCESS) ] = -1,
1322 [ C(RESULT_MISS) ] = -1,
1323 },
1324 },
1325 };
1326
1327 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1328 {
1329 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1330 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1331 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1332 EVENT_EXTRA_END
1333 };
1334
1335 #define SLM_DMND_READ SNB_DMND_DATA_RD
1336 #define SLM_DMND_WRITE SNB_DMND_RFO
1337 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1338
1339 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1340 #define SLM_LLC_ACCESS SNB_RESP_ANY
1341 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1342
1343 static __initconst const u64 slm_hw_cache_extra_regs
1344 [PERF_COUNT_HW_CACHE_MAX]
1345 [PERF_COUNT_HW_CACHE_OP_MAX]
1346 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1347 {
1348 [ C(LL ) ] = {
1349 [ C(OP_READ) ] = {
1350 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1351 [ C(RESULT_MISS) ] = 0,
1352 },
1353 [ C(OP_WRITE) ] = {
1354 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1355 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1356 },
1357 [ C(OP_PREFETCH) ] = {
1358 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1359 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1360 },
1361 },
1362 };
1363
1364 static __initconst const u64 slm_hw_cache_event_ids
1365 [PERF_COUNT_HW_CACHE_MAX]
1366 [PERF_COUNT_HW_CACHE_OP_MAX]
1367 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1368 {
1369 [ C(L1D) ] = {
1370 [ C(OP_READ) ] = {
1371 [ C(RESULT_ACCESS) ] = 0,
1372 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1373 },
1374 [ C(OP_WRITE) ] = {
1375 [ C(RESULT_ACCESS) ] = 0,
1376 [ C(RESULT_MISS) ] = 0,
1377 },
1378 [ C(OP_PREFETCH) ] = {
1379 [ C(RESULT_ACCESS) ] = 0,
1380 [ C(RESULT_MISS) ] = 0,
1381 },
1382 },
1383 [ C(L1I ) ] = {
1384 [ C(OP_READ) ] = {
1385 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1386 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1387 },
1388 [ C(OP_WRITE) ] = {
1389 [ C(RESULT_ACCESS) ] = -1,
1390 [ C(RESULT_MISS) ] = -1,
1391 },
1392 [ C(OP_PREFETCH) ] = {
1393 [ C(RESULT_ACCESS) ] = 0,
1394 [ C(RESULT_MISS) ] = 0,
1395 },
1396 },
1397 [ C(LL ) ] = {
1398 [ C(OP_READ) ] = {
1399 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1400 [ C(RESULT_ACCESS) ] = 0x01b7,
1401 [ C(RESULT_MISS) ] = 0,
1402 },
1403 [ C(OP_WRITE) ] = {
1404 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1405 [ C(RESULT_ACCESS) ] = 0x01b7,
1406 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1407 [ C(RESULT_MISS) ] = 0x01b7,
1408 },
1409 [ C(OP_PREFETCH) ] = {
1410 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1411 [ C(RESULT_ACCESS) ] = 0x01b7,
1412 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1413 [ C(RESULT_MISS) ] = 0x01b7,
1414 },
1415 },
1416 [ C(DTLB) ] = {
1417 [ C(OP_READ) ] = {
1418 [ C(RESULT_ACCESS) ] = 0,
1419 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1420 },
1421 [ C(OP_WRITE) ] = {
1422 [ C(RESULT_ACCESS) ] = 0,
1423 [ C(RESULT_MISS) ] = 0,
1424 },
1425 [ C(OP_PREFETCH) ] = {
1426 [ C(RESULT_ACCESS) ] = 0,
1427 [ C(RESULT_MISS) ] = 0,
1428 },
1429 },
1430 [ C(ITLB) ] = {
1431 [ C(OP_READ) ] = {
1432 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1433 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1434 },
1435 [ C(OP_WRITE) ] = {
1436 [ C(RESULT_ACCESS) ] = -1,
1437 [ C(RESULT_MISS) ] = -1,
1438 },
1439 [ C(OP_PREFETCH) ] = {
1440 [ C(RESULT_ACCESS) ] = -1,
1441 [ C(RESULT_MISS) ] = -1,
1442 },
1443 },
1444 [ C(BPU ) ] = {
1445 [ C(OP_READ) ] = {
1446 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1447 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1448 },
1449 [ C(OP_WRITE) ] = {
1450 [ C(RESULT_ACCESS) ] = -1,
1451 [ C(RESULT_MISS) ] = -1,
1452 },
1453 [ C(OP_PREFETCH) ] = {
1454 [ C(RESULT_ACCESS) ] = -1,
1455 [ C(RESULT_MISS) ] = -1,
1456 },
1457 },
1458 };
1459
1460 /*
1461 * Use from PMIs where the LBRs are already disabled.
1462 */
1463 static void __intel_pmu_disable_all(void)
1464 {
1465 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1466
1467 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1468
1469 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1470 intel_pmu_disable_bts();
1471 else
1472 intel_bts_disable_local();
1473
1474 intel_pmu_pebs_disable_all();
1475 }
1476
1477 static void intel_pmu_disable_all(void)
1478 {
1479 __intel_pmu_disable_all();
1480 intel_pmu_lbr_disable_all();
1481 }
1482
1483 static void __intel_pmu_enable_all(int added, bool pmi)
1484 {
1485 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1486
1487 intel_pmu_pebs_enable_all();
1488 intel_pmu_lbr_enable_all(pmi);
1489 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1490 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1491
1492 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1493 struct perf_event *event =
1494 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1495
1496 if (WARN_ON_ONCE(!event))
1497 return;
1498
1499 intel_pmu_enable_bts(event->hw.config);
1500 } else
1501 intel_bts_enable_local();
1502 }
1503
1504 static void intel_pmu_enable_all(int added)
1505 {
1506 __intel_pmu_enable_all(added, false);
1507 }
1508
1509 /*
1510 * Workaround for:
1511 * Intel Errata AAK100 (model 26)
1512 * Intel Errata AAP53 (model 30)
1513 * Intel Errata BD53 (model 44)
1514 *
1515 * The official story:
1516 * These chips need to be 'reset' when adding counters by programming the
1517 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1518 * in sequence on the same PMC or on different PMCs.
1519 *
1520 * In practise it appears some of these events do in fact count, and
1521 * we need to programm all 4 events.
1522 */
1523 static void intel_pmu_nhm_workaround(void)
1524 {
1525 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1526 static const unsigned long nhm_magic[4] = {
1527 0x4300B5,
1528 0x4300D2,
1529 0x4300B1,
1530 0x4300B1
1531 };
1532 struct perf_event *event;
1533 int i;
1534
1535 /*
1536 * The Errata requires below steps:
1537 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1538 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1539 * the corresponding PMCx;
1540 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1541 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1542 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1543 */
1544
1545 /*
1546 * The real steps we choose are a little different from above.
1547 * A) To reduce MSR operations, we don't run step 1) as they
1548 * are already cleared before this function is called;
1549 * B) Call x86_perf_event_update to save PMCx before configuring
1550 * PERFEVTSELx with magic number;
1551 * C) With step 5), we do clear only when the PERFEVTSELx is
1552 * not used currently.
1553 * D) Call x86_perf_event_set_period to restore PMCx;
1554 */
1555
1556 /* We always operate 4 pairs of PERF Counters */
1557 for (i = 0; i < 4; i++) {
1558 event = cpuc->events[i];
1559 if (event)
1560 x86_perf_event_update(event);
1561 }
1562
1563 for (i = 0; i < 4; i++) {
1564 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1565 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1566 }
1567
1568 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1569 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1570
1571 for (i = 0; i < 4; i++) {
1572 event = cpuc->events[i];
1573
1574 if (event) {
1575 x86_perf_event_set_period(event);
1576 __x86_pmu_enable_event(&event->hw,
1577 ARCH_PERFMON_EVENTSEL_ENABLE);
1578 } else
1579 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1580 }
1581 }
1582
1583 static void intel_pmu_nhm_enable_all(int added)
1584 {
1585 if (added)
1586 intel_pmu_nhm_workaround();
1587 intel_pmu_enable_all(added);
1588 }
1589
1590 static inline u64 intel_pmu_get_status(void)
1591 {
1592 u64 status;
1593
1594 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1595
1596 return status;
1597 }
1598
1599 static inline void intel_pmu_ack_status(u64 ack)
1600 {
1601 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1602 }
1603
1604 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1605 {
1606 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1607 u64 ctrl_val, mask;
1608
1609 mask = 0xfULL << (idx * 4);
1610
1611 rdmsrl(hwc->config_base, ctrl_val);
1612 ctrl_val &= ~mask;
1613 wrmsrl(hwc->config_base, ctrl_val);
1614 }
1615
1616 static inline bool event_is_checkpointed(struct perf_event *event)
1617 {
1618 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1619 }
1620
1621 static void intel_pmu_disable_event(struct perf_event *event)
1622 {
1623 struct hw_perf_event *hwc = &event->hw;
1624 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1625
1626 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1627 intel_pmu_disable_bts();
1628 intel_pmu_drain_bts_buffer();
1629 return;
1630 }
1631
1632 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1633 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1634 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1635
1636 /*
1637 * must disable before any actual event
1638 * because any event may be combined with LBR
1639 */
1640 if (needs_branch_stack(event))
1641 intel_pmu_lbr_disable(event);
1642
1643 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1644 intel_pmu_disable_fixed(hwc);
1645 return;
1646 }
1647
1648 x86_pmu_disable_event(event);
1649
1650 if (unlikely(event->attr.precise_ip))
1651 intel_pmu_pebs_disable(event);
1652 }
1653
1654 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1655 {
1656 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1657 u64 ctrl_val, bits, mask;
1658
1659 /*
1660 * Enable IRQ generation (0x8),
1661 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1662 * if requested:
1663 */
1664 bits = 0x8ULL;
1665 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1666 bits |= 0x2;
1667 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1668 bits |= 0x1;
1669
1670 /*
1671 * ANY bit is supported in v3 and up
1672 */
1673 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1674 bits |= 0x4;
1675
1676 bits <<= (idx * 4);
1677 mask = 0xfULL << (idx * 4);
1678
1679 rdmsrl(hwc->config_base, ctrl_val);
1680 ctrl_val &= ~mask;
1681 ctrl_val |= bits;
1682 wrmsrl(hwc->config_base, ctrl_val);
1683 }
1684
1685 static void intel_pmu_enable_event(struct perf_event *event)
1686 {
1687 struct hw_perf_event *hwc = &event->hw;
1688 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1689
1690 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1691 if (!__this_cpu_read(cpu_hw_events.enabled))
1692 return;
1693
1694 intel_pmu_enable_bts(hwc->config);
1695 return;
1696 }
1697 /*
1698 * must enabled before any actual event
1699 * because any event may be combined with LBR
1700 */
1701 if (needs_branch_stack(event))
1702 intel_pmu_lbr_enable(event);
1703
1704 if (event->attr.exclude_host)
1705 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1706 if (event->attr.exclude_guest)
1707 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1708
1709 if (unlikely(event_is_checkpointed(event)))
1710 cpuc->intel_cp_status |= (1ull << hwc->idx);
1711
1712 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1713 intel_pmu_enable_fixed(hwc);
1714 return;
1715 }
1716
1717 if (unlikely(event->attr.precise_ip))
1718 intel_pmu_pebs_enable(event);
1719
1720 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1721 }
1722
1723 /*
1724 * Save and restart an expired event. Called by NMI contexts,
1725 * so it has to be careful about preempting normal event ops:
1726 */
1727 int intel_pmu_save_and_restart(struct perf_event *event)
1728 {
1729 x86_perf_event_update(event);
1730 /*
1731 * For a checkpointed counter always reset back to 0. This
1732 * avoids a situation where the counter overflows, aborts the
1733 * transaction and is then set back to shortly before the
1734 * overflow, and overflows and aborts again.
1735 */
1736 if (unlikely(event_is_checkpointed(event))) {
1737 /* No race with NMIs because the counter should not be armed */
1738 wrmsrl(event->hw.event_base, 0);
1739 local64_set(&event->hw.prev_count, 0);
1740 }
1741 return x86_perf_event_set_period(event);
1742 }
1743
1744 static void intel_pmu_reset(void)
1745 {
1746 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1747 unsigned long flags;
1748 int idx;
1749
1750 if (!x86_pmu.num_counters)
1751 return;
1752
1753 local_irq_save(flags);
1754
1755 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1756
1757 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1758 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1759 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
1760 }
1761 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1762 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1763
1764 if (ds)
1765 ds->bts_index = ds->bts_buffer_base;
1766
1767 /* Ack all overflows and disable fixed counters */
1768 if (x86_pmu.version >= 2) {
1769 intel_pmu_ack_status(intel_pmu_get_status());
1770 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1771 }
1772
1773 /* Reset LBRs and LBR freezing */
1774 if (x86_pmu.lbr_nr) {
1775 update_debugctlmsr(get_debugctlmsr() &
1776 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1777 }
1778
1779 local_irq_restore(flags);
1780 }
1781
1782 /*
1783 * This handler is triggered by the local APIC, so the APIC IRQ handling
1784 * rules apply:
1785 */
1786 static int intel_pmu_handle_irq(struct pt_regs *regs)
1787 {
1788 struct perf_sample_data data;
1789 struct cpu_hw_events *cpuc;
1790 int bit, loops;
1791 u64 status;
1792 int handled;
1793
1794 cpuc = this_cpu_ptr(&cpu_hw_events);
1795
1796 /*
1797 * No known reason to not always do late ACK,
1798 * but just in case do it opt-in.
1799 */
1800 if (!x86_pmu.late_ack)
1801 apic_write(APIC_LVTPC, APIC_DM_NMI);
1802 __intel_pmu_disable_all();
1803 handled = intel_pmu_drain_bts_buffer();
1804 handled += intel_bts_interrupt();
1805 status = intel_pmu_get_status();
1806 if (!status)
1807 goto done;
1808
1809 loops = 0;
1810 again:
1811 intel_pmu_lbr_read();
1812 intel_pmu_ack_status(status);
1813 if (++loops > 100) {
1814 static bool warned = false;
1815 if (!warned) {
1816 WARN(1, "perfevents: irq loop stuck!\n");
1817 perf_event_print_debug();
1818 warned = true;
1819 }
1820 intel_pmu_reset();
1821 goto done;
1822 }
1823
1824 inc_irq_stat(apic_perf_irqs);
1825
1826
1827 /*
1828 * Ignore a range of extra bits in status that do not indicate
1829 * overflow by themselves.
1830 */
1831 status &= ~(GLOBAL_STATUS_COND_CHG |
1832 GLOBAL_STATUS_ASIF |
1833 GLOBAL_STATUS_LBRS_FROZEN);
1834 if (!status)
1835 goto done;
1836
1837 /*
1838 * PEBS overflow sets bit 62 in the global status register
1839 */
1840 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1841 handled++;
1842 x86_pmu.drain_pebs(regs);
1843 }
1844
1845 /*
1846 * Intel PT
1847 */
1848 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1849 handled++;
1850 intel_pt_interrupt();
1851 }
1852
1853 /*
1854 * Checkpointed counters can lead to 'spurious' PMIs because the
1855 * rollback caused by the PMI will have cleared the overflow status
1856 * bit. Therefore always force probe these counters.
1857 */
1858 status |= cpuc->intel_cp_status;
1859
1860 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1861 struct perf_event *event = cpuc->events[bit];
1862
1863 handled++;
1864
1865 if (!test_bit(bit, cpuc->active_mask))
1866 continue;
1867
1868 if (!intel_pmu_save_and_restart(event))
1869 continue;
1870
1871 perf_sample_data_init(&data, 0, event->hw.last_period);
1872
1873 if (has_branch_stack(event))
1874 data.br_stack = &cpuc->lbr_stack;
1875
1876 if (perf_event_overflow(event, &data, regs))
1877 x86_pmu_stop(event, 0);
1878 }
1879
1880 /*
1881 * Repeat if there is more work to be done:
1882 */
1883 status = intel_pmu_get_status();
1884 if (status)
1885 goto again;
1886
1887 done:
1888 __intel_pmu_enable_all(0, true);
1889 /*
1890 * Only unmask the NMI after the overflow counters
1891 * have been reset. This avoids spurious NMIs on
1892 * Haswell CPUs.
1893 */
1894 if (x86_pmu.late_ack)
1895 apic_write(APIC_LVTPC, APIC_DM_NMI);
1896 return handled;
1897 }
1898
1899 static struct event_constraint *
1900 intel_bts_constraints(struct perf_event *event)
1901 {
1902 struct hw_perf_event *hwc = &event->hw;
1903 unsigned int hw_event, bts_event;
1904
1905 if (event->attr.freq)
1906 return NULL;
1907
1908 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1909 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1910
1911 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1912 return &bts_constraint;
1913
1914 return NULL;
1915 }
1916
1917 static int intel_alt_er(int idx, u64 config)
1918 {
1919 int alt_idx;
1920 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1921 return idx;
1922
1923 if (idx == EXTRA_REG_RSP_0)
1924 alt_idx = EXTRA_REG_RSP_1;
1925
1926 if (idx == EXTRA_REG_RSP_1)
1927 alt_idx = EXTRA_REG_RSP_0;
1928
1929 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
1930 return idx;
1931
1932 return alt_idx;
1933 }
1934
1935 static void intel_fixup_er(struct perf_event *event, int idx)
1936 {
1937 event->hw.extra_reg.idx = idx;
1938
1939 if (idx == EXTRA_REG_RSP_0) {
1940 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1941 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1942 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1943 } else if (idx == EXTRA_REG_RSP_1) {
1944 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1945 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1946 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1947 }
1948 }
1949
1950 /*
1951 * manage allocation of shared extra msr for certain events
1952 *
1953 * sharing can be:
1954 * per-cpu: to be shared between the various events on a single PMU
1955 * per-core: per-cpu + shared by HT threads
1956 */
1957 static struct event_constraint *
1958 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1959 struct perf_event *event,
1960 struct hw_perf_event_extra *reg)
1961 {
1962 struct event_constraint *c = &emptyconstraint;
1963 struct er_account *era;
1964 unsigned long flags;
1965 int idx = reg->idx;
1966
1967 /*
1968 * reg->alloc can be set due to existing state, so for fake cpuc we
1969 * need to ignore this, otherwise we might fail to allocate proper fake
1970 * state for this extra reg constraint. Also see the comment below.
1971 */
1972 if (reg->alloc && !cpuc->is_fake)
1973 return NULL; /* call x86_get_event_constraint() */
1974
1975 again:
1976 era = &cpuc->shared_regs->regs[idx];
1977 /*
1978 * we use spin_lock_irqsave() to avoid lockdep issues when
1979 * passing a fake cpuc
1980 */
1981 raw_spin_lock_irqsave(&era->lock, flags);
1982
1983 if (!atomic_read(&era->ref) || era->config == reg->config) {
1984
1985 /*
1986 * If its a fake cpuc -- as per validate_{group,event}() we
1987 * shouldn't touch event state and we can avoid doing so
1988 * since both will only call get_event_constraints() once
1989 * on each event, this avoids the need for reg->alloc.
1990 *
1991 * Not doing the ER fixup will only result in era->reg being
1992 * wrong, but since we won't actually try and program hardware
1993 * this isn't a problem either.
1994 */
1995 if (!cpuc->is_fake) {
1996 if (idx != reg->idx)
1997 intel_fixup_er(event, idx);
1998
1999 /*
2000 * x86_schedule_events() can call get_event_constraints()
2001 * multiple times on events in the case of incremental
2002 * scheduling(). reg->alloc ensures we only do the ER
2003 * allocation once.
2004 */
2005 reg->alloc = 1;
2006 }
2007
2008 /* lock in msr value */
2009 era->config = reg->config;
2010 era->reg = reg->reg;
2011
2012 /* one more user */
2013 atomic_inc(&era->ref);
2014
2015 /*
2016 * need to call x86_get_event_constraint()
2017 * to check if associated event has constraints
2018 */
2019 c = NULL;
2020 } else {
2021 idx = intel_alt_er(idx, reg->config);
2022 if (idx != reg->idx) {
2023 raw_spin_unlock_irqrestore(&era->lock, flags);
2024 goto again;
2025 }
2026 }
2027 raw_spin_unlock_irqrestore(&era->lock, flags);
2028
2029 return c;
2030 }
2031
2032 static void
2033 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2034 struct hw_perf_event_extra *reg)
2035 {
2036 struct er_account *era;
2037
2038 /*
2039 * Only put constraint if extra reg was actually allocated. Also takes
2040 * care of event which do not use an extra shared reg.
2041 *
2042 * Also, if this is a fake cpuc we shouldn't touch any event state
2043 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2044 * either since it'll be thrown out.
2045 */
2046 if (!reg->alloc || cpuc->is_fake)
2047 return;
2048
2049 era = &cpuc->shared_regs->regs[reg->idx];
2050
2051 /* one fewer user */
2052 atomic_dec(&era->ref);
2053
2054 /* allocate again next time */
2055 reg->alloc = 0;
2056 }
2057
2058 static struct event_constraint *
2059 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2060 struct perf_event *event)
2061 {
2062 struct event_constraint *c = NULL, *d;
2063 struct hw_perf_event_extra *xreg, *breg;
2064
2065 xreg = &event->hw.extra_reg;
2066 if (xreg->idx != EXTRA_REG_NONE) {
2067 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2068 if (c == &emptyconstraint)
2069 return c;
2070 }
2071 breg = &event->hw.branch_reg;
2072 if (breg->idx != EXTRA_REG_NONE) {
2073 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2074 if (d == &emptyconstraint) {
2075 __intel_shared_reg_put_constraints(cpuc, xreg);
2076 c = d;
2077 }
2078 }
2079 return c;
2080 }
2081
2082 struct event_constraint *
2083 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2084 struct perf_event *event)
2085 {
2086 struct event_constraint *c;
2087
2088 if (x86_pmu.event_constraints) {
2089 for_each_event_constraint(c, x86_pmu.event_constraints) {
2090 if ((event->hw.config & c->cmask) == c->code) {
2091 event->hw.flags |= c->flags;
2092 return c;
2093 }
2094 }
2095 }
2096
2097 return &unconstrained;
2098 }
2099
2100 static struct event_constraint *
2101 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2102 struct perf_event *event)
2103 {
2104 struct event_constraint *c;
2105
2106 c = intel_bts_constraints(event);
2107 if (c)
2108 return c;
2109
2110 c = intel_shared_regs_constraints(cpuc, event);
2111 if (c)
2112 return c;
2113
2114 c = intel_pebs_constraints(event);
2115 if (c)
2116 return c;
2117
2118 return x86_get_event_constraints(cpuc, idx, event);
2119 }
2120
2121 static void
2122 intel_start_scheduling(struct cpu_hw_events *cpuc)
2123 {
2124 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2125 struct intel_excl_states *xl;
2126 int tid = cpuc->excl_thread_id;
2127
2128 /*
2129 * nothing needed if in group validation mode
2130 */
2131 if (cpuc->is_fake || !is_ht_workaround_enabled())
2132 return;
2133
2134 /*
2135 * no exclusion needed
2136 */
2137 if (WARN_ON_ONCE(!excl_cntrs))
2138 return;
2139
2140 xl = &excl_cntrs->states[tid];
2141
2142 xl->sched_started = true;
2143 /*
2144 * lock shared state until we are done scheduling
2145 * in stop_event_scheduling()
2146 * makes scheduling appear as a transaction
2147 */
2148 raw_spin_lock(&excl_cntrs->lock);
2149 }
2150
2151 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2152 {
2153 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2154 struct event_constraint *c = cpuc->event_constraint[idx];
2155 struct intel_excl_states *xl;
2156 int tid = cpuc->excl_thread_id;
2157
2158 if (cpuc->is_fake || !is_ht_workaround_enabled())
2159 return;
2160
2161 if (WARN_ON_ONCE(!excl_cntrs))
2162 return;
2163
2164 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2165 return;
2166
2167 xl = &excl_cntrs->states[tid];
2168
2169 lockdep_assert_held(&excl_cntrs->lock);
2170
2171 if (c->flags & PERF_X86_EVENT_EXCL)
2172 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2173 else
2174 xl->state[cntr] = INTEL_EXCL_SHARED;
2175 }
2176
2177 static void
2178 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2179 {
2180 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2181 struct intel_excl_states *xl;
2182 int tid = cpuc->excl_thread_id;
2183
2184 /*
2185 * nothing needed if in group validation mode
2186 */
2187 if (cpuc->is_fake || !is_ht_workaround_enabled())
2188 return;
2189 /*
2190 * no exclusion needed
2191 */
2192 if (WARN_ON_ONCE(!excl_cntrs))
2193 return;
2194
2195 xl = &excl_cntrs->states[tid];
2196
2197 xl->sched_started = false;
2198 /*
2199 * release shared state lock (acquired in intel_start_scheduling())
2200 */
2201 raw_spin_unlock(&excl_cntrs->lock);
2202 }
2203
2204 static struct event_constraint *
2205 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2206 int idx, struct event_constraint *c)
2207 {
2208 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2209 struct intel_excl_states *xlo;
2210 int tid = cpuc->excl_thread_id;
2211 int is_excl, i;
2212
2213 /*
2214 * validating a group does not require
2215 * enforcing cross-thread exclusion
2216 */
2217 if (cpuc->is_fake || !is_ht_workaround_enabled())
2218 return c;
2219
2220 /*
2221 * no exclusion needed
2222 */
2223 if (WARN_ON_ONCE(!excl_cntrs))
2224 return c;
2225
2226 /*
2227 * because we modify the constraint, we need
2228 * to make a copy. Static constraints come
2229 * from static const tables.
2230 *
2231 * only needed when constraint has not yet
2232 * been cloned (marked dynamic)
2233 */
2234 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2235 struct event_constraint *cx;
2236
2237 /*
2238 * grab pre-allocated constraint entry
2239 */
2240 cx = &cpuc->constraint_list[idx];
2241
2242 /*
2243 * initialize dynamic constraint
2244 * with static constraint
2245 */
2246 *cx = *c;
2247
2248 /*
2249 * mark constraint as dynamic, so we
2250 * can free it later on
2251 */
2252 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2253 c = cx;
2254 }
2255
2256 /*
2257 * From here on, the constraint is dynamic.
2258 * Either it was just allocated above, or it
2259 * was allocated during a earlier invocation
2260 * of this function
2261 */
2262
2263 /*
2264 * state of sibling HT
2265 */
2266 xlo = &excl_cntrs->states[tid ^ 1];
2267
2268 /*
2269 * event requires exclusive counter access
2270 * across HT threads
2271 */
2272 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2273 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2274 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2275 if (!cpuc->n_excl++)
2276 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2277 }
2278
2279 /*
2280 * Modify static constraint with current dynamic
2281 * state of thread
2282 *
2283 * EXCLUSIVE: sibling counter measuring exclusive event
2284 * SHARED : sibling counter measuring non-exclusive event
2285 * UNUSED : sibling counter unused
2286 */
2287 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2288 /*
2289 * exclusive event in sibling counter
2290 * our corresponding counter cannot be used
2291 * regardless of our event
2292 */
2293 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2294 __clear_bit(i, c->idxmsk);
2295 /*
2296 * if measuring an exclusive event, sibling
2297 * measuring non-exclusive, then counter cannot
2298 * be used
2299 */
2300 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2301 __clear_bit(i, c->idxmsk);
2302 }
2303
2304 /*
2305 * recompute actual bit weight for scheduling algorithm
2306 */
2307 c->weight = hweight64(c->idxmsk64);
2308
2309 /*
2310 * if we return an empty mask, then switch
2311 * back to static empty constraint to avoid
2312 * the cost of freeing later on
2313 */
2314 if (c->weight == 0)
2315 c = &emptyconstraint;
2316
2317 return c;
2318 }
2319
2320 static struct event_constraint *
2321 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2322 struct perf_event *event)
2323 {
2324 struct event_constraint *c1 = NULL;
2325 struct event_constraint *c2;
2326
2327 if (idx >= 0) /* fake does < 0 */
2328 c1 = cpuc->event_constraint[idx];
2329
2330 /*
2331 * first time only
2332 * - static constraint: no change across incremental scheduling calls
2333 * - dynamic constraint: handled by intel_get_excl_constraints()
2334 */
2335 c2 = __intel_get_event_constraints(cpuc, idx, event);
2336 if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2337 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2338 c1->weight = c2->weight;
2339 c2 = c1;
2340 }
2341
2342 if (cpuc->excl_cntrs)
2343 return intel_get_excl_constraints(cpuc, event, idx, c2);
2344
2345 return c2;
2346 }
2347
2348 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2349 struct perf_event *event)
2350 {
2351 struct hw_perf_event *hwc = &event->hw;
2352 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2353 int tid = cpuc->excl_thread_id;
2354 struct intel_excl_states *xl;
2355
2356 /*
2357 * nothing needed if in group validation mode
2358 */
2359 if (cpuc->is_fake)
2360 return;
2361
2362 if (WARN_ON_ONCE(!excl_cntrs))
2363 return;
2364
2365 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2366 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2367 if (!--cpuc->n_excl)
2368 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2369 }
2370
2371 /*
2372 * If event was actually assigned, then mark the counter state as
2373 * unused now.
2374 */
2375 if (hwc->idx >= 0) {
2376 xl = &excl_cntrs->states[tid];
2377
2378 /*
2379 * put_constraint may be called from x86_schedule_events()
2380 * which already has the lock held so here make locking
2381 * conditional.
2382 */
2383 if (!xl->sched_started)
2384 raw_spin_lock(&excl_cntrs->lock);
2385
2386 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2387
2388 if (!xl->sched_started)
2389 raw_spin_unlock(&excl_cntrs->lock);
2390 }
2391 }
2392
2393 static void
2394 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2395 struct perf_event *event)
2396 {
2397 struct hw_perf_event_extra *reg;
2398
2399 reg = &event->hw.extra_reg;
2400 if (reg->idx != EXTRA_REG_NONE)
2401 __intel_shared_reg_put_constraints(cpuc, reg);
2402
2403 reg = &event->hw.branch_reg;
2404 if (reg->idx != EXTRA_REG_NONE)
2405 __intel_shared_reg_put_constraints(cpuc, reg);
2406 }
2407
2408 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2409 struct perf_event *event)
2410 {
2411 intel_put_shared_regs_event_constraints(cpuc, event);
2412
2413 /*
2414 * is PMU has exclusive counter restrictions, then
2415 * all events are subject to and must call the
2416 * put_excl_constraints() routine
2417 */
2418 if (cpuc->excl_cntrs)
2419 intel_put_excl_constraints(cpuc, event);
2420 }
2421
2422 static void intel_pebs_aliases_core2(struct perf_event *event)
2423 {
2424 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2425 /*
2426 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2427 * (0x003c) so that we can use it with PEBS.
2428 *
2429 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2430 * PEBS capable. However we can use INST_RETIRED.ANY_P
2431 * (0x00c0), which is a PEBS capable event, to get the same
2432 * count.
2433 *
2434 * INST_RETIRED.ANY_P counts the number of cycles that retires
2435 * CNTMASK instructions. By setting CNTMASK to a value (16)
2436 * larger than the maximum number of instructions that can be
2437 * retired per cycle (4) and then inverting the condition, we
2438 * count all cycles that retire 16 or less instructions, which
2439 * is every cycle.
2440 *
2441 * Thereby we gain a PEBS capable cycle counter.
2442 */
2443 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2444
2445 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2446 event->hw.config = alt_config;
2447 }
2448 }
2449
2450 static void intel_pebs_aliases_snb(struct perf_event *event)
2451 {
2452 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2453 /*
2454 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2455 * (0x003c) so that we can use it with PEBS.
2456 *
2457 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2458 * PEBS capable. However we can use UOPS_RETIRED.ALL
2459 * (0x01c2), which is a PEBS capable event, to get the same
2460 * count.
2461 *
2462 * UOPS_RETIRED.ALL counts the number of cycles that retires
2463 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2464 * larger than the maximum number of micro-ops that can be
2465 * retired per cycle (4) and then inverting the condition, we
2466 * count all cycles that retire 16 or less micro-ops, which
2467 * is every cycle.
2468 *
2469 * Thereby we gain a PEBS capable cycle counter.
2470 */
2471 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2472
2473 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2474 event->hw.config = alt_config;
2475 }
2476 }
2477
2478 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2479 {
2480 unsigned long flags = x86_pmu.free_running_flags;
2481
2482 if (event->attr.use_clockid)
2483 flags &= ~PERF_SAMPLE_TIME;
2484 return flags;
2485 }
2486
2487 static int intel_pmu_hw_config(struct perf_event *event)
2488 {
2489 int ret = x86_pmu_hw_config(event);
2490
2491 if (ret)
2492 return ret;
2493
2494 if (event->attr.precise_ip) {
2495 if (!event->attr.freq) {
2496 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2497 if (!(event->attr.sample_type &
2498 ~intel_pmu_free_running_flags(event)))
2499 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2500 }
2501 if (x86_pmu.pebs_aliases)
2502 x86_pmu.pebs_aliases(event);
2503 }
2504
2505 if (needs_branch_stack(event)) {
2506 ret = intel_pmu_setup_lbr_filter(event);
2507 if (ret)
2508 return ret;
2509
2510 /*
2511 * BTS is set up earlier in this path, so don't account twice
2512 */
2513 if (!intel_pmu_has_bts(event)) {
2514 /* disallow lbr if conflicting events are present */
2515 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2516 return -EBUSY;
2517
2518 event->destroy = hw_perf_lbr_event_destroy;
2519 }
2520 }
2521
2522 if (event->attr.type != PERF_TYPE_RAW)
2523 return 0;
2524
2525 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2526 return 0;
2527
2528 if (x86_pmu.version < 3)
2529 return -EINVAL;
2530
2531 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2532 return -EACCES;
2533
2534 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2535
2536 return 0;
2537 }
2538
2539 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2540 {
2541 if (x86_pmu.guest_get_msrs)
2542 return x86_pmu.guest_get_msrs(nr);
2543 *nr = 0;
2544 return NULL;
2545 }
2546 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2547
2548 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2549 {
2550 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2551 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2552
2553 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2554 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2555 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2556 /*
2557 * If PMU counter has PEBS enabled it is not enough to disable counter
2558 * on a guest entry since PEBS memory write can overshoot guest entry
2559 * and corrupt guest memory. Disabling PEBS solves the problem.
2560 */
2561 arr[1].msr = MSR_IA32_PEBS_ENABLE;
2562 arr[1].host = cpuc->pebs_enabled;
2563 arr[1].guest = 0;
2564
2565 *nr = 2;
2566 return arr;
2567 }
2568
2569 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2570 {
2571 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2572 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2573 int idx;
2574
2575 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2576 struct perf_event *event = cpuc->events[idx];
2577
2578 arr[idx].msr = x86_pmu_config_addr(idx);
2579 arr[idx].host = arr[idx].guest = 0;
2580
2581 if (!test_bit(idx, cpuc->active_mask))
2582 continue;
2583
2584 arr[idx].host = arr[idx].guest =
2585 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2586
2587 if (event->attr.exclude_host)
2588 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2589 else if (event->attr.exclude_guest)
2590 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2591 }
2592
2593 *nr = x86_pmu.num_counters;
2594 return arr;
2595 }
2596
2597 static void core_pmu_enable_event(struct perf_event *event)
2598 {
2599 if (!event->attr.exclude_host)
2600 x86_pmu_enable_event(event);
2601 }
2602
2603 static void core_pmu_enable_all(int added)
2604 {
2605 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2606 int idx;
2607
2608 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2609 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2610
2611 if (!test_bit(idx, cpuc->active_mask) ||
2612 cpuc->events[idx]->attr.exclude_host)
2613 continue;
2614
2615 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2616 }
2617 }
2618
2619 static int hsw_hw_config(struct perf_event *event)
2620 {
2621 int ret = intel_pmu_hw_config(event);
2622
2623 if (ret)
2624 return ret;
2625 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2626 return 0;
2627 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2628
2629 /*
2630 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2631 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2632 * this combination.
2633 */
2634 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2635 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2636 event->attr.precise_ip > 0))
2637 return -EOPNOTSUPP;
2638
2639 if (event_is_checkpointed(event)) {
2640 /*
2641 * Sampling of checkpointed events can cause situations where
2642 * the CPU constantly aborts because of a overflow, which is
2643 * then checkpointed back and ignored. Forbid checkpointing
2644 * for sampling.
2645 *
2646 * But still allow a long sampling period, so that perf stat
2647 * from KVM works.
2648 */
2649 if (event->attr.sample_period > 0 &&
2650 event->attr.sample_period < 0x7fffffff)
2651 return -EOPNOTSUPP;
2652 }
2653 return 0;
2654 }
2655
2656 static struct event_constraint counter2_constraint =
2657 EVENT_CONSTRAINT(0, 0x4, 0);
2658
2659 static struct event_constraint *
2660 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2661 struct perf_event *event)
2662 {
2663 struct event_constraint *c;
2664
2665 c = intel_get_event_constraints(cpuc, idx, event);
2666
2667 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2668 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2669 if (c->idxmsk64 & (1U << 2))
2670 return &counter2_constraint;
2671 return &emptyconstraint;
2672 }
2673
2674 return c;
2675 }
2676
2677 /*
2678 * Broadwell:
2679 *
2680 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2681 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2682 * the two to enforce a minimum period of 128 (the smallest value that has bits
2683 * 0-5 cleared and >= 100).
2684 *
2685 * Because of how the code in x86_perf_event_set_period() works, the truncation
2686 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2687 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2688 *
2689 * Therefore the effective (average) period matches the requested period,
2690 * despite coarser hardware granularity.
2691 */
2692 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2693 {
2694 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2695 X86_CONFIG(.event=0xc0, .umask=0x01)) {
2696 if (left < 128)
2697 left = 128;
2698 left &= ~0x3fu;
2699 }
2700 return left;
2701 }
2702
2703 PMU_FORMAT_ATTR(event, "config:0-7" );
2704 PMU_FORMAT_ATTR(umask, "config:8-15" );
2705 PMU_FORMAT_ATTR(edge, "config:18" );
2706 PMU_FORMAT_ATTR(pc, "config:19" );
2707 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
2708 PMU_FORMAT_ATTR(inv, "config:23" );
2709 PMU_FORMAT_ATTR(cmask, "config:24-31" );
2710 PMU_FORMAT_ATTR(in_tx, "config:32");
2711 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2712
2713 static struct attribute *intel_arch_formats_attr[] = {
2714 &format_attr_event.attr,
2715 &format_attr_umask.attr,
2716 &format_attr_edge.attr,
2717 &format_attr_pc.attr,
2718 &format_attr_inv.attr,
2719 &format_attr_cmask.attr,
2720 NULL,
2721 };
2722
2723 ssize_t intel_event_sysfs_show(char *page, u64 config)
2724 {
2725 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2726
2727 return x86_event_sysfs_show(page, config, event);
2728 }
2729
2730 struct intel_shared_regs *allocate_shared_regs(int cpu)
2731 {
2732 struct intel_shared_regs *regs;
2733 int i;
2734
2735 regs = kzalloc_node(sizeof(struct intel_shared_regs),
2736 GFP_KERNEL, cpu_to_node(cpu));
2737 if (regs) {
2738 /*
2739 * initialize the locks to keep lockdep happy
2740 */
2741 for (i = 0; i < EXTRA_REG_MAX; i++)
2742 raw_spin_lock_init(&regs->regs[i].lock);
2743
2744 regs->core_id = -1;
2745 }
2746 return regs;
2747 }
2748
2749 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2750 {
2751 struct intel_excl_cntrs *c;
2752
2753 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2754 GFP_KERNEL, cpu_to_node(cpu));
2755 if (c) {
2756 raw_spin_lock_init(&c->lock);
2757 c->core_id = -1;
2758 }
2759 return c;
2760 }
2761
2762 static int intel_pmu_cpu_prepare(int cpu)
2763 {
2764 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2765
2766 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2767 cpuc->shared_regs = allocate_shared_regs(cpu);
2768 if (!cpuc->shared_regs)
2769 goto err;
2770 }
2771
2772 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2773 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2774
2775 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2776 if (!cpuc->constraint_list)
2777 goto err_shared_regs;
2778
2779 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2780 if (!cpuc->excl_cntrs)
2781 goto err_constraint_list;
2782
2783 cpuc->excl_thread_id = 0;
2784 }
2785
2786 return NOTIFY_OK;
2787
2788 err_constraint_list:
2789 kfree(cpuc->constraint_list);
2790 cpuc->constraint_list = NULL;
2791
2792 err_shared_regs:
2793 kfree(cpuc->shared_regs);
2794 cpuc->shared_regs = NULL;
2795
2796 err:
2797 return NOTIFY_BAD;
2798 }
2799
2800 static void intel_pmu_cpu_starting(int cpu)
2801 {
2802 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2803 int core_id = topology_core_id(cpu);
2804 int i;
2805
2806 init_debug_store_on_cpu(cpu);
2807 /*
2808 * Deal with CPUs that don't clear their LBRs on power-up.
2809 */
2810 intel_pmu_lbr_reset();
2811
2812 cpuc->lbr_sel = NULL;
2813
2814 if (!cpuc->shared_regs)
2815 return;
2816
2817 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2818 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2819
2820 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2821 struct intel_shared_regs *pc;
2822
2823 pc = per_cpu(cpu_hw_events, i).shared_regs;
2824 if (pc && pc->core_id == core_id) {
2825 *onln = cpuc->shared_regs;
2826 cpuc->shared_regs = pc;
2827 break;
2828 }
2829 }
2830 cpuc->shared_regs->core_id = core_id;
2831 cpuc->shared_regs->refcnt++;
2832 }
2833
2834 if (x86_pmu.lbr_sel_map)
2835 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2836
2837 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2838 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2839 struct intel_excl_cntrs *c;
2840
2841 c = per_cpu(cpu_hw_events, i).excl_cntrs;
2842 if (c && c->core_id == core_id) {
2843 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2844 cpuc->excl_cntrs = c;
2845 cpuc->excl_thread_id = 1;
2846 break;
2847 }
2848 }
2849 cpuc->excl_cntrs->core_id = core_id;
2850 cpuc->excl_cntrs->refcnt++;
2851 }
2852 }
2853
2854 static void free_excl_cntrs(int cpu)
2855 {
2856 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2857 struct intel_excl_cntrs *c;
2858
2859 c = cpuc->excl_cntrs;
2860 if (c) {
2861 if (c->core_id == -1 || --c->refcnt == 0)
2862 kfree(c);
2863 cpuc->excl_cntrs = NULL;
2864 kfree(cpuc->constraint_list);
2865 cpuc->constraint_list = NULL;
2866 }
2867 }
2868
2869 static void intel_pmu_cpu_dying(int cpu)
2870 {
2871 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2872 struct intel_shared_regs *pc;
2873
2874 pc = cpuc->shared_regs;
2875 if (pc) {
2876 if (pc->core_id == -1 || --pc->refcnt == 0)
2877 kfree(pc);
2878 cpuc->shared_regs = NULL;
2879 }
2880
2881 free_excl_cntrs(cpu);
2882
2883 fini_debug_store_on_cpu(cpu);
2884 }
2885
2886 static void intel_pmu_sched_task(struct perf_event_context *ctx,
2887 bool sched_in)
2888 {
2889 if (x86_pmu.pebs_active)
2890 intel_pmu_pebs_sched_task(ctx, sched_in);
2891 if (x86_pmu.lbr_nr)
2892 intel_pmu_lbr_sched_task(ctx, sched_in);
2893 }
2894
2895 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2896
2897 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2898
2899 PMU_FORMAT_ATTR(frontend, "config1:0-23");
2900
2901 static struct attribute *intel_arch3_formats_attr[] = {
2902 &format_attr_event.attr,
2903 &format_attr_umask.attr,
2904 &format_attr_edge.attr,
2905 &format_attr_pc.attr,
2906 &format_attr_any.attr,
2907 &format_attr_inv.attr,
2908 &format_attr_cmask.attr,
2909 &format_attr_in_tx.attr,
2910 &format_attr_in_tx_cp.attr,
2911
2912 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2913 &format_attr_ldlat.attr, /* PEBS load latency */
2914 NULL,
2915 };
2916
2917 static struct attribute *skl_format_attr[] = {
2918 &format_attr_frontend.attr,
2919 NULL,
2920 };
2921
2922 static __initconst const struct x86_pmu core_pmu = {
2923 .name = "core",
2924 .handle_irq = x86_pmu_handle_irq,
2925 .disable_all = x86_pmu_disable_all,
2926 .enable_all = core_pmu_enable_all,
2927 .enable = core_pmu_enable_event,
2928 .disable = x86_pmu_disable_event,
2929 .hw_config = x86_pmu_hw_config,
2930 .schedule_events = x86_schedule_events,
2931 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2932 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2933 .event_map = intel_pmu_event_map,
2934 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2935 .apic = 1,
2936 .free_running_flags = PEBS_FREERUNNING_FLAGS,
2937
2938 /*
2939 * Intel PMCs cannot be accessed sanely above 32-bit width,
2940 * so we install an artificial 1<<31 period regardless of
2941 * the generic event period:
2942 */
2943 .max_period = (1ULL<<31) - 1,
2944 .get_event_constraints = intel_get_event_constraints,
2945 .put_event_constraints = intel_put_event_constraints,
2946 .event_constraints = intel_core_event_constraints,
2947 .guest_get_msrs = core_guest_get_msrs,
2948 .format_attrs = intel_arch_formats_attr,
2949 .events_sysfs_show = intel_event_sysfs_show,
2950
2951 /*
2952 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2953 * together with PMU version 1 and thus be using core_pmu with
2954 * shared_regs. We need following callbacks here to allocate
2955 * it properly.
2956 */
2957 .cpu_prepare = intel_pmu_cpu_prepare,
2958 .cpu_starting = intel_pmu_cpu_starting,
2959 .cpu_dying = intel_pmu_cpu_dying,
2960 };
2961
2962 static __initconst const struct x86_pmu intel_pmu = {
2963 .name = "Intel",
2964 .handle_irq = intel_pmu_handle_irq,
2965 .disable_all = intel_pmu_disable_all,
2966 .enable_all = intel_pmu_enable_all,
2967 .enable = intel_pmu_enable_event,
2968 .disable = intel_pmu_disable_event,
2969 .hw_config = intel_pmu_hw_config,
2970 .schedule_events = x86_schedule_events,
2971 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
2972 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
2973 .event_map = intel_pmu_event_map,
2974 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
2975 .apic = 1,
2976 .free_running_flags = PEBS_FREERUNNING_FLAGS,
2977 /*
2978 * Intel PMCs cannot be accessed sanely above 32 bit width,
2979 * so we install an artificial 1<<31 period regardless of
2980 * the generic event period:
2981 */
2982 .max_period = (1ULL << 31) - 1,
2983 .get_event_constraints = intel_get_event_constraints,
2984 .put_event_constraints = intel_put_event_constraints,
2985 .pebs_aliases = intel_pebs_aliases_core2,
2986
2987 .format_attrs = intel_arch3_formats_attr,
2988 .events_sysfs_show = intel_event_sysfs_show,
2989
2990 .cpu_prepare = intel_pmu_cpu_prepare,
2991 .cpu_starting = intel_pmu_cpu_starting,
2992 .cpu_dying = intel_pmu_cpu_dying,
2993 .guest_get_msrs = intel_guest_get_msrs,
2994 .sched_task = intel_pmu_sched_task,
2995 };
2996
2997 static __init void intel_clovertown_quirk(void)
2998 {
2999 /*
3000 * PEBS is unreliable due to:
3001 *
3002 * AJ67 - PEBS may experience CPL leaks
3003 * AJ68 - PEBS PMI may be delayed by one event
3004 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3005 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3006 *
3007 * AJ67 could be worked around by restricting the OS/USR flags.
3008 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3009 *
3010 * AJ106 could possibly be worked around by not allowing LBR
3011 * usage from PEBS, including the fixup.
3012 * AJ68 could possibly be worked around by always programming
3013 * a pebs_event_reset[0] value and coping with the lost events.
3014 *
3015 * But taken together it might just make sense to not enable PEBS on
3016 * these chips.
3017 */
3018 pr_warn("PEBS disabled due to CPU errata\n");
3019 x86_pmu.pebs = 0;
3020 x86_pmu.pebs_constraints = NULL;
3021 }
3022
3023 static int intel_snb_pebs_broken(int cpu)
3024 {
3025 u32 rev = UINT_MAX; /* default to broken for unknown models */
3026
3027 switch (cpu_data(cpu).x86_model) {
3028 case 42: /* SNB */
3029 rev = 0x28;
3030 break;
3031
3032 case 45: /* SNB-EP */
3033 switch (cpu_data(cpu).x86_mask) {
3034 case 6: rev = 0x618; break;
3035 case 7: rev = 0x70c; break;
3036 }
3037 }
3038
3039 return (cpu_data(cpu).microcode < rev);
3040 }
3041
3042 static void intel_snb_check_microcode(void)
3043 {
3044 int pebs_broken = 0;
3045 int cpu;
3046
3047 get_online_cpus();
3048 for_each_online_cpu(cpu) {
3049 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3050 break;
3051 }
3052 put_online_cpus();
3053
3054 if (pebs_broken == x86_pmu.pebs_broken)
3055 return;
3056
3057 /*
3058 * Serialized by the microcode lock..
3059 */
3060 if (x86_pmu.pebs_broken) {
3061 pr_info("PEBS enabled due to microcode update\n");
3062 x86_pmu.pebs_broken = 0;
3063 } else {
3064 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3065 x86_pmu.pebs_broken = 1;
3066 }
3067 }
3068
3069 /*
3070 * Under certain circumstances, access certain MSR may cause #GP.
3071 * The function tests if the input MSR can be safely accessed.
3072 */
3073 static bool check_msr(unsigned long msr, u64 mask)
3074 {
3075 u64 val_old, val_new, val_tmp;
3076
3077 /*
3078 * Read the current value, change it and read it back to see if it
3079 * matches, this is needed to detect certain hardware emulators
3080 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3081 */
3082 if (rdmsrl_safe(msr, &val_old))
3083 return false;
3084
3085 /*
3086 * Only change the bits which can be updated by wrmsrl.
3087 */
3088 val_tmp = val_old ^ mask;
3089 if (wrmsrl_safe(msr, val_tmp) ||
3090 rdmsrl_safe(msr, &val_new))
3091 return false;
3092
3093 if (val_new != val_tmp)
3094 return false;
3095
3096 /* Here it's sure that the MSR can be safely accessed.
3097 * Restore the old value and return.
3098 */
3099 wrmsrl(msr, val_old);
3100
3101 return true;
3102 }
3103
3104 static __init void intel_sandybridge_quirk(void)
3105 {
3106 x86_pmu.check_microcode = intel_snb_check_microcode;
3107 intel_snb_check_microcode();
3108 }
3109
3110 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3111 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3112 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3113 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3114 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3115 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3116 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3117 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3118 };
3119
3120 static __init void intel_arch_events_quirk(void)
3121 {
3122 int bit;
3123
3124 /* disable event that reported as not presend by cpuid */
3125 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3126 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3127 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3128 intel_arch_events_map[bit].name);
3129 }
3130 }
3131
3132 static __init void intel_nehalem_quirk(void)
3133 {
3134 union cpuid10_ebx ebx;
3135
3136 ebx.full = x86_pmu.events_maskl;
3137 if (ebx.split.no_branch_misses_retired) {
3138 /*
3139 * Erratum AAJ80 detected, we work it around by using
3140 * the BR_MISP_EXEC.ANY event. This will over-count
3141 * branch-misses, but it's still much better than the
3142 * architectural event which is often completely bogus:
3143 */
3144 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3145 ebx.split.no_branch_misses_retired = 0;
3146 x86_pmu.events_maskl = ebx.full;
3147 pr_info("CPU erratum AAJ80 worked around\n");
3148 }
3149 }
3150
3151 /*
3152 * enable software workaround for errata:
3153 * SNB: BJ122
3154 * IVB: BV98
3155 * HSW: HSD29
3156 *
3157 * Only needed when HT is enabled. However detecting
3158 * if HT is enabled is difficult (model specific). So instead,
3159 * we enable the workaround in the early boot, and verify if
3160 * it is needed in a later initcall phase once we have valid
3161 * topology information to check if HT is actually enabled
3162 */
3163 static __init void intel_ht_bug(void)
3164 {
3165 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3166
3167 x86_pmu.start_scheduling = intel_start_scheduling;
3168 x86_pmu.commit_scheduling = intel_commit_scheduling;
3169 x86_pmu.stop_scheduling = intel_stop_scheduling;
3170 }
3171
3172 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
3173 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
3174
3175 /* Haswell special events */
3176 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
3177 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
3178 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
3179 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
3180 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
3181 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
3182 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
3183 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
3184 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
3185 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
3186 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
3187 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
3188
3189 static struct attribute *hsw_events_attrs[] = {
3190 EVENT_PTR(tx_start),
3191 EVENT_PTR(tx_commit),
3192 EVENT_PTR(tx_abort),
3193 EVENT_PTR(tx_capacity),
3194 EVENT_PTR(tx_conflict),
3195 EVENT_PTR(el_start),
3196 EVENT_PTR(el_commit),
3197 EVENT_PTR(el_abort),
3198 EVENT_PTR(el_capacity),
3199 EVENT_PTR(el_conflict),
3200 EVENT_PTR(cycles_t),
3201 EVENT_PTR(cycles_ct),
3202 EVENT_PTR(mem_ld_hsw),
3203 EVENT_PTR(mem_st_hsw),
3204 NULL
3205 };
3206
3207 __init int intel_pmu_init(void)
3208 {
3209 union cpuid10_edx edx;
3210 union cpuid10_eax eax;
3211 union cpuid10_ebx ebx;
3212 struct event_constraint *c;
3213 unsigned int unused;
3214 struct extra_reg *er;
3215 int version, i;
3216
3217 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3218 switch (boot_cpu_data.x86) {
3219 case 0x6:
3220 return p6_pmu_init();
3221 case 0xb:
3222 return knc_pmu_init();
3223 case 0xf:
3224 return p4_pmu_init();
3225 }
3226 return -ENODEV;
3227 }
3228
3229 /*
3230 * Check whether the Architectural PerfMon supports
3231 * Branch Misses Retired hw_event or not.
3232 */
3233 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3234 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3235 return -ENODEV;
3236
3237 version = eax.split.version_id;
3238 if (version < 2)
3239 x86_pmu = core_pmu;
3240 else
3241 x86_pmu = intel_pmu;
3242
3243 x86_pmu.version = version;
3244 x86_pmu.num_counters = eax.split.num_counters;
3245 x86_pmu.cntval_bits = eax.split.bit_width;
3246 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
3247
3248 x86_pmu.events_maskl = ebx.full;
3249 x86_pmu.events_mask_len = eax.split.mask_length;
3250
3251 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3252
3253 /*
3254 * Quirk: v2 perfmon does not report fixed-purpose events, so
3255 * assume at least 3 events:
3256 */
3257 if (version > 1)
3258 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3259
3260 if (boot_cpu_has(X86_FEATURE_PDCM)) {
3261 u64 capabilities;
3262
3263 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3264 x86_pmu.intel_cap.capabilities = capabilities;
3265 }
3266
3267 intel_ds_init();
3268
3269 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3270
3271 /*
3272 * Install the hw-cache-events table:
3273 */
3274 switch (boot_cpu_data.x86_model) {
3275 case 14: /* 65nm Core "Yonah" */
3276 pr_cont("Core events, ");
3277 break;
3278
3279 case 15: /* 65nm Core2 "Merom" */
3280 x86_add_quirk(intel_clovertown_quirk);
3281 case 22: /* 65nm Core2 "Merom-L" */
3282 case 23: /* 45nm Core2 "Penryn" */
3283 case 29: /* 45nm Core2 "Dunnington (MP) */
3284 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3285 sizeof(hw_cache_event_ids));
3286
3287 intel_pmu_lbr_init_core();
3288
3289 x86_pmu.event_constraints = intel_core2_event_constraints;
3290 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3291 pr_cont("Core2 events, ");
3292 break;
3293
3294 case 30: /* 45nm Nehalem */
3295 case 26: /* 45nm Nehalem-EP */
3296 case 46: /* 45nm Nehalem-EX */
3297 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3298 sizeof(hw_cache_event_ids));
3299 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3300 sizeof(hw_cache_extra_regs));
3301
3302 intel_pmu_lbr_init_nhm();
3303
3304 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3305 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3306 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3307 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3308
3309 x86_pmu.cpu_events = nhm_events_attrs;
3310
3311 /* UOPS_ISSUED.STALLED_CYCLES */
3312 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3313 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3314 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3315 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3316 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3317
3318 x86_add_quirk(intel_nehalem_quirk);
3319
3320 pr_cont("Nehalem events, ");
3321 break;
3322
3323 case 28: /* 45nm Atom "Pineview" */
3324 case 38: /* 45nm Atom "Lincroft" */
3325 case 39: /* 32nm Atom "Penwell" */
3326 case 53: /* 32nm Atom "Cloverview" */
3327 case 54: /* 32nm Atom "Cedarview" */
3328 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3329 sizeof(hw_cache_event_ids));
3330
3331 intel_pmu_lbr_init_atom();
3332
3333 x86_pmu.event_constraints = intel_gen_event_constraints;
3334 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3335 pr_cont("Atom events, ");
3336 break;
3337
3338 case 55: /* 22nm Atom "Silvermont" */
3339 case 76: /* 14nm Atom "Airmont" */
3340 case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3341 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3342 sizeof(hw_cache_event_ids));
3343 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3344 sizeof(hw_cache_extra_regs));
3345
3346 intel_pmu_lbr_init_atom();
3347
3348 x86_pmu.event_constraints = intel_slm_event_constraints;
3349 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3350 x86_pmu.extra_regs = intel_slm_extra_regs;
3351 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3352 pr_cont("Silvermont events, ");
3353 break;
3354
3355 case 37: /* 32nm Westmere */
3356 case 44: /* 32nm Westmere-EP */
3357 case 47: /* 32nm Westmere-EX */
3358 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3359 sizeof(hw_cache_event_ids));
3360 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3361 sizeof(hw_cache_extra_regs));
3362
3363 intel_pmu_lbr_init_nhm();
3364
3365 x86_pmu.event_constraints = intel_westmere_event_constraints;
3366 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3367 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3368 x86_pmu.extra_regs = intel_westmere_extra_regs;
3369 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3370
3371 x86_pmu.cpu_events = nhm_events_attrs;
3372
3373 /* UOPS_ISSUED.STALLED_CYCLES */
3374 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3375 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3376 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3377 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3378 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3379
3380 pr_cont("Westmere events, ");
3381 break;
3382
3383 case 42: /* 32nm SandyBridge */
3384 case 45: /* 32nm SandyBridge-E/EN/EP */
3385 x86_add_quirk(intel_sandybridge_quirk);
3386 x86_add_quirk(intel_ht_bug);
3387 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3388 sizeof(hw_cache_event_ids));
3389 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3390 sizeof(hw_cache_extra_regs));
3391
3392 intel_pmu_lbr_init_snb();
3393
3394 x86_pmu.event_constraints = intel_snb_event_constraints;
3395 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3396 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3397 if (boot_cpu_data.x86_model == 45)
3398 x86_pmu.extra_regs = intel_snbep_extra_regs;
3399 else
3400 x86_pmu.extra_regs = intel_snb_extra_regs;
3401
3402
3403 /* all extra regs are per-cpu when HT is on */
3404 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3405 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3406
3407 x86_pmu.cpu_events = snb_events_attrs;
3408
3409 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3410 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3411 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3412 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3413 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3414 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3415
3416 pr_cont("SandyBridge events, ");
3417 break;
3418
3419 case 58: /* 22nm IvyBridge */
3420 case 62: /* 22nm IvyBridge-EP/EX */
3421 x86_add_quirk(intel_ht_bug);
3422 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3423 sizeof(hw_cache_event_ids));
3424 /* dTLB-load-misses on IVB is different than SNB */
3425 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3426
3427 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3428 sizeof(hw_cache_extra_regs));
3429
3430 intel_pmu_lbr_init_snb();
3431
3432 x86_pmu.event_constraints = intel_ivb_event_constraints;
3433 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3434 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3435 if (boot_cpu_data.x86_model == 62)
3436 x86_pmu.extra_regs = intel_snbep_extra_regs;
3437 else
3438 x86_pmu.extra_regs = intel_snb_extra_regs;
3439 /* all extra regs are per-cpu when HT is on */
3440 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3441 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3442
3443 x86_pmu.cpu_events = snb_events_attrs;
3444
3445 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3446 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3447 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3448
3449 pr_cont("IvyBridge events, ");
3450 break;
3451
3452
3453 case 60: /* 22nm Haswell Core */
3454 case 63: /* 22nm Haswell Server */
3455 case 69: /* 22nm Haswell ULT */
3456 case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3457 x86_add_quirk(intel_ht_bug);
3458 x86_pmu.late_ack = true;
3459 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3460 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3461
3462 intel_pmu_lbr_init_hsw();
3463
3464 x86_pmu.event_constraints = intel_hsw_event_constraints;
3465 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3466 x86_pmu.extra_regs = intel_snbep_extra_regs;
3467 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3468 /* all extra regs are per-cpu when HT is on */
3469 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3470 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3471
3472 x86_pmu.hw_config = hsw_hw_config;
3473 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3474 x86_pmu.cpu_events = hsw_events_attrs;
3475 x86_pmu.lbr_double_abort = true;
3476 pr_cont("Haswell events, ");
3477 break;
3478
3479 case 61: /* 14nm Broadwell Core-M */
3480 case 86: /* 14nm Broadwell Xeon D */
3481 case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3482 case 79: /* 14nm Broadwell Server */
3483 x86_pmu.late_ack = true;
3484 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3485 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3486
3487 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3488 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3489 BDW_L3_MISS|HSW_SNOOP_DRAM;
3490 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3491 HSW_SNOOP_DRAM;
3492 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3493 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3494 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3495 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3496
3497 intel_pmu_lbr_init_hsw();
3498
3499 x86_pmu.event_constraints = intel_bdw_event_constraints;
3500 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3501 x86_pmu.extra_regs = intel_snbep_extra_regs;
3502 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3503 /* all extra regs are per-cpu when HT is on */
3504 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3505 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3506
3507 x86_pmu.hw_config = hsw_hw_config;
3508 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3509 x86_pmu.cpu_events = hsw_events_attrs;
3510 x86_pmu.limit_period = bdw_limit_period;
3511 pr_cont("Broadwell events, ");
3512 break;
3513
3514 case 78: /* 14nm Skylake Mobile */
3515 case 94: /* 14nm Skylake Desktop */
3516 x86_pmu.late_ack = true;
3517 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3518 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3519 intel_pmu_lbr_init_skl();
3520
3521 x86_pmu.event_constraints = intel_skl_event_constraints;
3522 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3523 x86_pmu.extra_regs = intel_skl_extra_regs;
3524 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3525 /* all extra regs are per-cpu when HT is on */
3526 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3527 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3528
3529 x86_pmu.hw_config = hsw_hw_config;
3530 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3531 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3532 skl_format_attr);
3533 WARN_ON(!x86_pmu.format_attrs);
3534 x86_pmu.cpu_events = hsw_events_attrs;
3535 pr_cont("Skylake events, ");
3536 break;
3537
3538 default:
3539 switch (x86_pmu.version) {
3540 case 1:
3541 x86_pmu.event_constraints = intel_v1_event_constraints;
3542 pr_cont("generic architected perfmon v1, ");
3543 break;
3544 default:
3545 /*
3546 * default constraints for v2 and up
3547 */
3548 x86_pmu.event_constraints = intel_gen_event_constraints;
3549 pr_cont("generic architected perfmon, ");
3550 break;
3551 }
3552 }
3553
3554 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3555 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3556 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3557 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3558 }
3559 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3560
3561 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3562 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3563 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3564 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3565 }
3566
3567 x86_pmu.intel_ctrl |=
3568 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3569
3570 if (x86_pmu.event_constraints) {
3571 /*
3572 * event on fixed counter2 (REF_CYCLES) only works on this
3573 * counter, so do not extend mask to generic counters
3574 */
3575 for_each_event_constraint(c, x86_pmu.event_constraints) {
3576 if (c->cmask == FIXED_EVENT_FLAGS
3577 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3578 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3579 }
3580 c->idxmsk64 &=
3581 ~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3582 c->weight = hweight64(c->idxmsk64);
3583 }
3584 }
3585
3586 /*
3587 * Access LBR MSR may cause #GP under certain circumstances.
3588 * E.g. KVM doesn't support LBR MSR
3589 * Check all LBT MSR here.
3590 * Disable LBR access if any LBR MSRs can not be accessed.
3591 */
3592 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3593 x86_pmu.lbr_nr = 0;
3594 for (i = 0; i < x86_pmu.lbr_nr; i++) {
3595 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3596 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3597 x86_pmu.lbr_nr = 0;
3598 }
3599
3600 /*
3601 * Access extra MSR may cause #GP under certain circumstances.
3602 * E.g. KVM doesn't support offcore event
3603 * Check all extra_regs here.
3604 */
3605 if (x86_pmu.extra_regs) {
3606 for (er = x86_pmu.extra_regs; er->msr; er++) {
3607 er->extra_msr_access = check_msr(er->msr, 0x11UL);
3608 /* Disable LBR select mapping */
3609 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3610 x86_pmu.lbr_sel_map = NULL;
3611 }
3612 }
3613
3614 /* Support full width counters using alternative MSR range */
3615 if (x86_pmu.intel_cap.full_width_write) {
3616 x86_pmu.max_period = x86_pmu.cntval_mask;
3617 x86_pmu.perfctr = MSR_IA32_PMC0;
3618 pr_cont("full-width counters, ");
3619 }
3620
3621 return 0;
3622 }
3623
3624 /*
3625 * HT bug: phase 2 init
3626 * Called once we have valid topology information to check
3627 * whether or not HT is enabled
3628 * If HT is off, then we disable the workaround
3629 */
3630 static __init int fixup_ht_bug(void)
3631 {
3632 int cpu = smp_processor_id();
3633 int w, c;
3634 /*
3635 * problem not present on this CPU model, nothing to do
3636 */
3637 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3638 return 0;
3639
3640 w = cpumask_weight(topology_sibling_cpumask(cpu));
3641 if (w > 1) {
3642 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3643 return 0;
3644 }
3645
3646 if (lockup_detector_suspend() != 0) {
3647 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3648 return 0;
3649 }
3650
3651 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3652
3653 x86_pmu.start_scheduling = NULL;
3654 x86_pmu.commit_scheduling = NULL;
3655 x86_pmu.stop_scheduling = NULL;
3656
3657 lockup_detector_resume();
3658
3659 get_online_cpus();
3660
3661 for_each_online_cpu(c) {
3662 free_excl_cntrs(c);
3663 }
3664
3665 put_online_cpus();
3666 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3667 return 0;
3668 }
3669 subsys_initcall(fixup_ht_bug)
This page took 0.153674 seconds and 5 git commands to generate.