Merge commit '4cb38750d49010ae72e718d46605ac9ba5a851b4' into stable/for-linus-3.6
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel.c
1 /*
2 * Per core/cpu state
3 *
4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15
16 #include <asm/hardirq.h>
17 #include <asm/apic.h>
18
19 #include "perf_event.h"
20
21 /*
22 * Intel PerfMon, used on Core and later.
23 */
24 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
25 {
26 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
27 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
28 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
29 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
30 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
31 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
32 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
33 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
34 };
35
36 static struct event_constraint intel_core_event_constraints[] __read_mostly =
37 {
38 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
39 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
40 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
41 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
42 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
43 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
44 EVENT_CONSTRAINT_END
45 };
46
47 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
48 {
49 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
50 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
51 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
52 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
53 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
54 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
55 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
56 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
57 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
58 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
59 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
60 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
61 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
62 EVENT_CONSTRAINT_END
63 };
64
65 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
66 {
67 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
68 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
69 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
70 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
71 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
72 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
73 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
74 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
75 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
76 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
77 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
78 EVENT_CONSTRAINT_END
79 };
80
81 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
82 {
83 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
84 EVENT_EXTRA_END
85 };
86
87 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
88 {
89 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
90 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
91 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
92 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
93 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
94 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
95 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
96 EVENT_CONSTRAINT_END
97 };
98
99 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
100 {
101 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
102 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
103 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
104 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
105 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
106 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
107 EVENT_CONSTRAINT_END
108 };
109
110 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
111 {
112 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
113 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
114 EVENT_EXTRA_END
115 };
116
117 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
118 {
119 EVENT_CONSTRAINT_END
120 };
121
122 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
123 {
124 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
125 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
126 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
127 EVENT_CONSTRAINT_END
128 };
129
130 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
131 INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
132 INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
133 EVENT_EXTRA_END
134 };
135
136 static u64 intel_pmu_event_map(int hw_event)
137 {
138 return intel_perfmon_event_map[hw_event];
139 }
140
141 static __initconst const u64 snb_hw_cache_event_ids
142 [PERF_COUNT_HW_CACHE_MAX]
143 [PERF_COUNT_HW_CACHE_OP_MAX]
144 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
145 {
146 [ C(L1D) ] = {
147 [ C(OP_READ) ] = {
148 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
149 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
150 },
151 [ C(OP_WRITE) ] = {
152 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
153 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
154 },
155 [ C(OP_PREFETCH) ] = {
156 [ C(RESULT_ACCESS) ] = 0x0,
157 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
158 },
159 },
160 [ C(L1I ) ] = {
161 [ C(OP_READ) ] = {
162 [ C(RESULT_ACCESS) ] = 0x0,
163 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
164 },
165 [ C(OP_WRITE) ] = {
166 [ C(RESULT_ACCESS) ] = -1,
167 [ C(RESULT_MISS) ] = -1,
168 },
169 [ C(OP_PREFETCH) ] = {
170 [ C(RESULT_ACCESS) ] = 0x0,
171 [ C(RESULT_MISS) ] = 0x0,
172 },
173 },
174 [ C(LL ) ] = {
175 [ C(OP_READ) ] = {
176 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
177 [ C(RESULT_ACCESS) ] = 0x01b7,
178 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
179 [ C(RESULT_MISS) ] = 0x01b7,
180 },
181 [ C(OP_WRITE) ] = {
182 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
183 [ C(RESULT_ACCESS) ] = 0x01b7,
184 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
185 [ C(RESULT_MISS) ] = 0x01b7,
186 },
187 [ C(OP_PREFETCH) ] = {
188 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
189 [ C(RESULT_ACCESS) ] = 0x01b7,
190 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
191 [ C(RESULT_MISS) ] = 0x01b7,
192 },
193 },
194 [ C(DTLB) ] = {
195 [ C(OP_READ) ] = {
196 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
197 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
198 },
199 [ C(OP_WRITE) ] = {
200 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
201 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
202 },
203 [ C(OP_PREFETCH) ] = {
204 [ C(RESULT_ACCESS) ] = 0x0,
205 [ C(RESULT_MISS) ] = 0x0,
206 },
207 },
208 [ C(ITLB) ] = {
209 [ C(OP_READ) ] = {
210 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
211 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
212 },
213 [ C(OP_WRITE) ] = {
214 [ C(RESULT_ACCESS) ] = -1,
215 [ C(RESULT_MISS) ] = -1,
216 },
217 [ C(OP_PREFETCH) ] = {
218 [ C(RESULT_ACCESS) ] = -1,
219 [ C(RESULT_MISS) ] = -1,
220 },
221 },
222 [ C(BPU ) ] = {
223 [ C(OP_READ) ] = {
224 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
225 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
226 },
227 [ C(OP_WRITE) ] = {
228 [ C(RESULT_ACCESS) ] = -1,
229 [ C(RESULT_MISS) ] = -1,
230 },
231 [ C(OP_PREFETCH) ] = {
232 [ C(RESULT_ACCESS) ] = -1,
233 [ C(RESULT_MISS) ] = -1,
234 },
235 },
236 [ C(NODE) ] = {
237 [ C(OP_READ) ] = {
238 [ C(RESULT_ACCESS) ] = -1,
239 [ C(RESULT_MISS) ] = -1,
240 },
241 [ C(OP_WRITE) ] = {
242 [ C(RESULT_ACCESS) ] = -1,
243 [ C(RESULT_MISS) ] = -1,
244 },
245 [ C(OP_PREFETCH) ] = {
246 [ C(RESULT_ACCESS) ] = -1,
247 [ C(RESULT_MISS) ] = -1,
248 },
249 },
250
251 };
252
253 static __initconst const u64 westmere_hw_cache_event_ids
254 [PERF_COUNT_HW_CACHE_MAX]
255 [PERF_COUNT_HW_CACHE_OP_MAX]
256 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
257 {
258 [ C(L1D) ] = {
259 [ C(OP_READ) ] = {
260 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
261 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
262 },
263 [ C(OP_WRITE) ] = {
264 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
265 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
266 },
267 [ C(OP_PREFETCH) ] = {
268 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
269 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
270 },
271 },
272 [ C(L1I ) ] = {
273 [ C(OP_READ) ] = {
274 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
275 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
276 },
277 [ C(OP_WRITE) ] = {
278 [ C(RESULT_ACCESS) ] = -1,
279 [ C(RESULT_MISS) ] = -1,
280 },
281 [ C(OP_PREFETCH) ] = {
282 [ C(RESULT_ACCESS) ] = 0x0,
283 [ C(RESULT_MISS) ] = 0x0,
284 },
285 },
286 [ C(LL ) ] = {
287 [ C(OP_READ) ] = {
288 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
289 [ C(RESULT_ACCESS) ] = 0x01b7,
290 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
291 [ C(RESULT_MISS) ] = 0x01b7,
292 },
293 /*
294 * Use RFO, not WRITEBACK, because a write miss would typically occur
295 * on RFO.
296 */
297 [ C(OP_WRITE) ] = {
298 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
299 [ C(RESULT_ACCESS) ] = 0x01b7,
300 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
301 [ C(RESULT_MISS) ] = 0x01b7,
302 },
303 [ C(OP_PREFETCH) ] = {
304 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
305 [ C(RESULT_ACCESS) ] = 0x01b7,
306 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
307 [ C(RESULT_MISS) ] = 0x01b7,
308 },
309 },
310 [ C(DTLB) ] = {
311 [ C(OP_READ) ] = {
312 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
313 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
314 },
315 [ C(OP_WRITE) ] = {
316 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
317 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
318 },
319 [ C(OP_PREFETCH) ] = {
320 [ C(RESULT_ACCESS) ] = 0x0,
321 [ C(RESULT_MISS) ] = 0x0,
322 },
323 },
324 [ C(ITLB) ] = {
325 [ C(OP_READ) ] = {
326 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
327 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
328 },
329 [ C(OP_WRITE) ] = {
330 [ C(RESULT_ACCESS) ] = -1,
331 [ C(RESULT_MISS) ] = -1,
332 },
333 [ C(OP_PREFETCH) ] = {
334 [ C(RESULT_ACCESS) ] = -1,
335 [ C(RESULT_MISS) ] = -1,
336 },
337 },
338 [ C(BPU ) ] = {
339 [ C(OP_READ) ] = {
340 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
341 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
342 },
343 [ C(OP_WRITE) ] = {
344 [ C(RESULT_ACCESS) ] = -1,
345 [ C(RESULT_MISS) ] = -1,
346 },
347 [ C(OP_PREFETCH) ] = {
348 [ C(RESULT_ACCESS) ] = -1,
349 [ C(RESULT_MISS) ] = -1,
350 },
351 },
352 [ C(NODE) ] = {
353 [ C(OP_READ) ] = {
354 [ C(RESULT_ACCESS) ] = 0x01b7,
355 [ C(RESULT_MISS) ] = 0x01b7,
356 },
357 [ C(OP_WRITE) ] = {
358 [ C(RESULT_ACCESS) ] = 0x01b7,
359 [ C(RESULT_MISS) ] = 0x01b7,
360 },
361 [ C(OP_PREFETCH) ] = {
362 [ C(RESULT_ACCESS) ] = 0x01b7,
363 [ C(RESULT_MISS) ] = 0x01b7,
364 },
365 },
366 };
367
368 /*
369 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
370 * See IA32 SDM Vol 3B 30.6.1.3
371 */
372
373 #define NHM_DMND_DATA_RD (1 << 0)
374 #define NHM_DMND_RFO (1 << 1)
375 #define NHM_DMND_IFETCH (1 << 2)
376 #define NHM_DMND_WB (1 << 3)
377 #define NHM_PF_DATA_RD (1 << 4)
378 #define NHM_PF_DATA_RFO (1 << 5)
379 #define NHM_PF_IFETCH (1 << 6)
380 #define NHM_OFFCORE_OTHER (1 << 7)
381 #define NHM_UNCORE_HIT (1 << 8)
382 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
383 #define NHM_OTHER_CORE_HITM (1 << 10)
384 /* reserved */
385 #define NHM_REMOTE_CACHE_FWD (1 << 12)
386 #define NHM_REMOTE_DRAM (1 << 13)
387 #define NHM_LOCAL_DRAM (1 << 14)
388 #define NHM_NON_DRAM (1 << 15)
389
390 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
391 #define NHM_REMOTE (NHM_REMOTE_DRAM)
392
393 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
394 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
395 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
396
397 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
398 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
399 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
400
401 static __initconst const u64 nehalem_hw_cache_extra_regs
402 [PERF_COUNT_HW_CACHE_MAX]
403 [PERF_COUNT_HW_CACHE_OP_MAX]
404 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
405 {
406 [ C(LL ) ] = {
407 [ C(OP_READ) ] = {
408 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
409 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
410 },
411 [ C(OP_WRITE) ] = {
412 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
413 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
414 },
415 [ C(OP_PREFETCH) ] = {
416 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
417 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
418 },
419 },
420 [ C(NODE) ] = {
421 [ C(OP_READ) ] = {
422 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
423 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
424 },
425 [ C(OP_WRITE) ] = {
426 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
427 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
428 },
429 [ C(OP_PREFETCH) ] = {
430 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
431 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
432 },
433 },
434 };
435
436 static __initconst const u64 nehalem_hw_cache_event_ids
437 [PERF_COUNT_HW_CACHE_MAX]
438 [PERF_COUNT_HW_CACHE_OP_MAX]
439 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
440 {
441 [ C(L1D) ] = {
442 [ C(OP_READ) ] = {
443 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
444 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
445 },
446 [ C(OP_WRITE) ] = {
447 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
448 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
449 },
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
452 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
453 },
454 },
455 [ C(L1I ) ] = {
456 [ C(OP_READ) ] = {
457 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
458 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
459 },
460 [ C(OP_WRITE) ] = {
461 [ C(RESULT_ACCESS) ] = -1,
462 [ C(RESULT_MISS) ] = -1,
463 },
464 [ C(OP_PREFETCH) ] = {
465 [ C(RESULT_ACCESS) ] = 0x0,
466 [ C(RESULT_MISS) ] = 0x0,
467 },
468 },
469 [ C(LL ) ] = {
470 [ C(OP_READ) ] = {
471 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
472 [ C(RESULT_ACCESS) ] = 0x01b7,
473 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
474 [ C(RESULT_MISS) ] = 0x01b7,
475 },
476 /*
477 * Use RFO, not WRITEBACK, because a write miss would typically occur
478 * on RFO.
479 */
480 [ C(OP_WRITE) ] = {
481 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
482 [ C(RESULT_ACCESS) ] = 0x01b7,
483 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
484 [ C(RESULT_MISS) ] = 0x01b7,
485 },
486 [ C(OP_PREFETCH) ] = {
487 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
488 [ C(RESULT_ACCESS) ] = 0x01b7,
489 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
490 [ C(RESULT_MISS) ] = 0x01b7,
491 },
492 },
493 [ C(DTLB) ] = {
494 [ C(OP_READ) ] = {
495 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
496 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
497 },
498 [ C(OP_WRITE) ] = {
499 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
500 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
501 },
502 [ C(OP_PREFETCH) ] = {
503 [ C(RESULT_ACCESS) ] = 0x0,
504 [ C(RESULT_MISS) ] = 0x0,
505 },
506 },
507 [ C(ITLB) ] = {
508 [ C(OP_READ) ] = {
509 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
510 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
511 },
512 [ C(OP_WRITE) ] = {
513 [ C(RESULT_ACCESS) ] = -1,
514 [ C(RESULT_MISS) ] = -1,
515 },
516 [ C(OP_PREFETCH) ] = {
517 [ C(RESULT_ACCESS) ] = -1,
518 [ C(RESULT_MISS) ] = -1,
519 },
520 },
521 [ C(BPU ) ] = {
522 [ C(OP_READ) ] = {
523 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
524 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
525 },
526 [ C(OP_WRITE) ] = {
527 [ C(RESULT_ACCESS) ] = -1,
528 [ C(RESULT_MISS) ] = -1,
529 },
530 [ C(OP_PREFETCH) ] = {
531 [ C(RESULT_ACCESS) ] = -1,
532 [ C(RESULT_MISS) ] = -1,
533 },
534 },
535 [ C(NODE) ] = {
536 [ C(OP_READ) ] = {
537 [ C(RESULT_ACCESS) ] = 0x01b7,
538 [ C(RESULT_MISS) ] = 0x01b7,
539 },
540 [ C(OP_WRITE) ] = {
541 [ C(RESULT_ACCESS) ] = 0x01b7,
542 [ C(RESULT_MISS) ] = 0x01b7,
543 },
544 [ C(OP_PREFETCH) ] = {
545 [ C(RESULT_ACCESS) ] = 0x01b7,
546 [ C(RESULT_MISS) ] = 0x01b7,
547 },
548 },
549 };
550
551 static __initconst const u64 core2_hw_cache_event_ids
552 [PERF_COUNT_HW_CACHE_MAX]
553 [PERF_COUNT_HW_CACHE_OP_MAX]
554 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
555 {
556 [ C(L1D) ] = {
557 [ C(OP_READ) ] = {
558 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
559 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
560 },
561 [ C(OP_WRITE) ] = {
562 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
563 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
564 },
565 [ C(OP_PREFETCH) ] = {
566 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
567 [ C(RESULT_MISS) ] = 0,
568 },
569 },
570 [ C(L1I ) ] = {
571 [ C(OP_READ) ] = {
572 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
573 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
574 },
575 [ C(OP_WRITE) ] = {
576 [ C(RESULT_ACCESS) ] = -1,
577 [ C(RESULT_MISS) ] = -1,
578 },
579 [ C(OP_PREFETCH) ] = {
580 [ C(RESULT_ACCESS) ] = 0,
581 [ C(RESULT_MISS) ] = 0,
582 },
583 },
584 [ C(LL ) ] = {
585 [ C(OP_READ) ] = {
586 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
587 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
588 },
589 [ C(OP_WRITE) ] = {
590 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
591 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
592 },
593 [ C(OP_PREFETCH) ] = {
594 [ C(RESULT_ACCESS) ] = 0,
595 [ C(RESULT_MISS) ] = 0,
596 },
597 },
598 [ C(DTLB) ] = {
599 [ C(OP_READ) ] = {
600 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
601 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
602 },
603 [ C(OP_WRITE) ] = {
604 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
605 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
606 },
607 [ C(OP_PREFETCH) ] = {
608 [ C(RESULT_ACCESS) ] = 0,
609 [ C(RESULT_MISS) ] = 0,
610 },
611 },
612 [ C(ITLB) ] = {
613 [ C(OP_READ) ] = {
614 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
615 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
616 },
617 [ C(OP_WRITE) ] = {
618 [ C(RESULT_ACCESS) ] = -1,
619 [ C(RESULT_MISS) ] = -1,
620 },
621 [ C(OP_PREFETCH) ] = {
622 [ C(RESULT_ACCESS) ] = -1,
623 [ C(RESULT_MISS) ] = -1,
624 },
625 },
626 [ C(BPU ) ] = {
627 [ C(OP_READ) ] = {
628 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
629 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
630 },
631 [ C(OP_WRITE) ] = {
632 [ C(RESULT_ACCESS) ] = -1,
633 [ C(RESULT_MISS) ] = -1,
634 },
635 [ C(OP_PREFETCH) ] = {
636 [ C(RESULT_ACCESS) ] = -1,
637 [ C(RESULT_MISS) ] = -1,
638 },
639 },
640 };
641
642 static __initconst const u64 atom_hw_cache_event_ids
643 [PERF_COUNT_HW_CACHE_MAX]
644 [PERF_COUNT_HW_CACHE_OP_MAX]
645 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
646 {
647 [ C(L1D) ] = {
648 [ C(OP_READ) ] = {
649 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
650 [ C(RESULT_MISS) ] = 0,
651 },
652 [ C(OP_WRITE) ] = {
653 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
654 [ C(RESULT_MISS) ] = 0,
655 },
656 [ C(OP_PREFETCH) ] = {
657 [ C(RESULT_ACCESS) ] = 0x0,
658 [ C(RESULT_MISS) ] = 0,
659 },
660 },
661 [ C(L1I ) ] = {
662 [ C(OP_READ) ] = {
663 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
664 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
665 },
666 [ C(OP_WRITE) ] = {
667 [ C(RESULT_ACCESS) ] = -1,
668 [ C(RESULT_MISS) ] = -1,
669 },
670 [ C(OP_PREFETCH) ] = {
671 [ C(RESULT_ACCESS) ] = 0,
672 [ C(RESULT_MISS) ] = 0,
673 },
674 },
675 [ C(LL ) ] = {
676 [ C(OP_READ) ] = {
677 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
678 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
679 },
680 [ C(OP_WRITE) ] = {
681 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
682 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
683 },
684 [ C(OP_PREFETCH) ] = {
685 [ C(RESULT_ACCESS) ] = 0,
686 [ C(RESULT_MISS) ] = 0,
687 },
688 },
689 [ C(DTLB) ] = {
690 [ C(OP_READ) ] = {
691 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
692 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
693 },
694 [ C(OP_WRITE) ] = {
695 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
696 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
697 },
698 [ C(OP_PREFETCH) ] = {
699 [ C(RESULT_ACCESS) ] = 0,
700 [ C(RESULT_MISS) ] = 0,
701 },
702 },
703 [ C(ITLB) ] = {
704 [ C(OP_READ) ] = {
705 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
706 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
707 },
708 [ C(OP_WRITE) ] = {
709 [ C(RESULT_ACCESS) ] = -1,
710 [ C(RESULT_MISS) ] = -1,
711 },
712 [ C(OP_PREFETCH) ] = {
713 [ C(RESULT_ACCESS) ] = -1,
714 [ C(RESULT_MISS) ] = -1,
715 },
716 },
717 [ C(BPU ) ] = {
718 [ C(OP_READ) ] = {
719 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
720 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
721 },
722 [ C(OP_WRITE) ] = {
723 [ C(RESULT_ACCESS) ] = -1,
724 [ C(RESULT_MISS) ] = -1,
725 },
726 [ C(OP_PREFETCH) ] = {
727 [ C(RESULT_ACCESS) ] = -1,
728 [ C(RESULT_MISS) ] = -1,
729 },
730 },
731 };
732
733 static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
734 {
735 /* user explicitly requested branch sampling */
736 if (has_branch_stack(event))
737 return true;
738
739 /* implicit branch sampling to correct PEBS skid */
740 if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
741 return true;
742
743 return false;
744 }
745
746 static void intel_pmu_disable_all(void)
747 {
748 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
749
750 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
751
752 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
753 intel_pmu_disable_bts();
754
755 intel_pmu_pebs_disable_all();
756 intel_pmu_lbr_disable_all();
757 }
758
759 static void intel_pmu_enable_all(int added)
760 {
761 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
762
763 intel_pmu_pebs_enable_all();
764 intel_pmu_lbr_enable_all();
765 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
766 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
767
768 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
769 struct perf_event *event =
770 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
771
772 if (WARN_ON_ONCE(!event))
773 return;
774
775 intel_pmu_enable_bts(event->hw.config);
776 }
777 }
778
779 /*
780 * Workaround for:
781 * Intel Errata AAK100 (model 26)
782 * Intel Errata AAP53 (model 30)
783 * Intel Errata BD53 (model 44)
784 *
785 * The official story:
786 * These chips need to be 'reset' when adding counters by programming the
787 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
788 * in sequence on the same PMC or on different PMCs.
789 *
790 * In practise it appears some of these events do in fact count, and
791 * we need to programm all 4 events.
792 */
793 static void intel_pmu_nhm_workaround(void)
794 {
795 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
796 static const unsigned long nhm_magic[4] = {
797 0x4300B5,
798 0x4300D2,
799 0x4300B1,
800 0x4300B1
801 };
802 struct perf_event *event;
803 int i;
804
805 /*
806 * The Errata requires below steps:
807 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
808 * 2) Configure 4 PERFEVTSELx with the magic events and clear
809 * the corresponding PMCx;
810 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
811 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
812 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
813 */
814
815 /*
816 * The real steps we choose are a little different from above.
817 * A) To reduce MSR operations, we don't run step 1) as they
818 * are already cleared before this function is called;
819 * B) Call x86_perf_event_update to save PMCx before configuring
820 * PERFEVTSELx with magic number;
821 * C) With step 5), we do clear only when the PERFEVTSELx is
822 * not used currently.
823 * D) Call x86_perf_event_set_period to restore PMCx;
824 */
825
826 /* We always operate 4 pairs of PERF Counters */
827 for (i = 0; i < 4; i++) {
828 event = cpuc->events[i];
829 if (event)
830 x86_perf_event_update(event);
831 }
832
833 for (i = 0; i < 4; i++) {
834 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
835 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
836 }
837
838 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
839 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
840
841 for (i = 0; i < 4; i++) {
842 event = cpuc->events[i];
843
844 if (event) {
845 x86_perf_event_set_period(event);
846 __x86_pmu_enable_event(&event->hw,
847 ARCH_PERFMON_EVENTSEL_ENABLE);
848 } else
849 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
850 }
851 }
852
853 static void intel_pmu_nhm_enable_all(int added)
854 {
855 if (added)
856 intel_pmu_nhm_workaround();
857 intel_pmu_enable_all(added);
858 }
859
860 static inline u64 intel_pmu_get_status(void)
861 {
862 u64 status;
863
864 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
865
866 return status;
867 }
868
869 static inline void intel_pmu_ack_status(u64 ack)
870 {
871 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
872 }
873
874 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
875 {
876 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
877 u64 ctrl_val, mask;
878
879 mask = 0xfULL << (idx * 4);
880
881 rdmsrl(hwc->config_base, ctrl_val);
882 ctrl_val &= ~mask;
883 wrmsrl(hwc->config_base, ctrl_val);
884 }
885
886 static void intel_pmu_disable_event(struct perf_event *event)
887 {
888 struct hw_perf_event *hwc = &event->hw;
889 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
890
891 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
892 intel_pmu_disable_bts();
893 intel_pmu_drain_bts_buffer();
894 return;
895 }
896
897 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
898 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
899
900 /*
901 * must disable before any actual event
902 * because any event may be combined with LBR
903 */
904 if (intel_pmu_needs_lbr_smpl(event))
905 intel_pmu_lbr_disable(event);
906
907 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
908 intel_pmu_disable_fixed(hwc);
909 return;
910 }
911
912 x86_pmu_disable_event(event);
913
914 if (unlikely(event->attr.precise_ip))
915 intel_pmu_pebs_disable(event);
916 }
917
918 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
919 {
920 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
921 u64 ctrl_val, bits, mask;
922
923 /*
924 * Enable IRQ generation (0x8),
925 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
926 * if requested:
927 */
928 bits = 0x8ULL;
929 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
930 bits |= 0x2;
931 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
932 bits |= 0x1;
933
934 /*
935 * ANY bit is supported in v3 and up
936 */
937 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
938 bits |= 0x4;
939
940 bits <<= (idx * 4);
941 mask = 0xfULL << (idx * 4);
942
943 rdmsrl(hwc->config_base, ctrl_val);
944 ctrl_val &= ~mask;
945 ctrl_val |= bits;
946 wrmsrl(hwc->config_base, ctrl_val);
947 }
948
949 static void intel_pmu_enable_event(struct perf_event *event)
950 {
951 struct hw_perf_event *hwc = &event->hw;
952 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
953
954 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
955 if (!__this_cpu_read(cpu_hw_events.enabled))
956 return;
957
958 intel_pmu_enable_bts(hwc->config);
959 return;
960 }
961 /*
962 * must enabled before any actual event
963 * because any event may be combined with LBR
964 */
965 if (intel_pmu_needs_lbr_smpl(event))
966 intel_pmu_lbr_enable(event);
967
968 if (event->attr.exclude_host)
969 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
970 if (event->attr.exclude_guest)
971 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
972
973 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
974 intel_pmu_enable_fixed(hwc);
975 return;
976 }
977
978 if (unlikely(event->attr.precise_ip))
979 intel_pmu_pebs_enable(event);
980
981 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
982 }
983
984 /*
985 * Save and restart an expired event. Called by NMI contexts,
986 * so it has to be careful about preempting normal event ops:
987 */
988 int intel_pmu_save_and_restart(struct perf_event *event)
989 {
990 x86_perf_event_update(event);
991 return x86_perf_event_set_period(event);
992 }
993
994 static void intel_pmu_reset(void)
995 {
996 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
997 unsigned long flags;
998 int idx;
999
1000 if (!x86_pmu.num_counters)
1001 return;
1002
1003 local_irq_save(flags);
1004
1005 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1006
1007 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1008 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1009 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
1010 }
1011 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1012 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1013
1014 if (ds)
1015 ds->bts_index = ds->bts_buffer_base;
1016
1017 local_irq_restore(flags);
1018 }
1019
1020 /*
1021 * This handler is triggered by the local APIC, so the APIC IRQ handling
1022 * rules apply:
1023 */
1024 static int intel_pmu_handle_irq(struct pt_regs *regs)
1025 {
1026 struct perf_sample_data data;
1027 struct cpu_hw_events *cpuc;
1028 int bit, loops;
1029 u64 status;
1030 int handled;
1031
1032 cpuc = &__get_cpu_var(cpu_hw_events);
1033
1034 /*
1035 * Some chipsets need to unmask the LVTPC in a particular spot
1036 * inside the nmi handler. As a result, the unmasking was pushed
1037 * into all the nmi handlers.
1038 *
1039 * This handler doesn't seem to have any issues with the unmasking
1040 * so it was left at the top.
1041 */
1042 apic_write(APIC_LVTPC, APIC_DM_NMI);
1043
1044 intel_pmu_disable_all();
1045 handled = intel_pmu_drain_bts_buffer();
1046 status = intel_pmu_get_status();
1047 if (!status) {
1048 intel_pmu_enable_all(0);
1049 return handled;
1050 }
1051
1052 loops = 0;
1053 again:
1054 intel_pmu_ack_status(status);
1055 if (++loops > 100) {
1056 WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1057 perf_event_print_debug();
1058 intel_pmu_reset();
1059 goto done;
1060 }
1061
1062 inc_irq_stat(apic_perf_irqs);
1063
1064 intel_pmu_lbr_read();
1065
1066 /*
1067 * PEBS overflow sets bit 62 in the global status register
1068 */
1069 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1070 handled++;
1071 x86_pmu.drain_pebs(regs);
1072 }
1073
1074 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1075 struct perf_event *event = cpuc->events[bit];
1076
1077 handled++;
1078
1079 if (!test_bit(bit, cpuc->active_mask))
1080 continue;
1081
1082 if (!intel_pmu_save_and_restart(event))
1083 continue;
1084
1085 perf_sample_data_init(&data, 0, event->hw.last_period);
1086
1087 if (has_branch_stack(event))
1088 data.br_stack = &cpuc->lbr_stack;
1089
1090 if (perf_event_overflow(event, &data, regs))
1091 x86_pmu_stop(event, 0);
1092 }
1093
1094 /*
1095 * Repeat if there is more work to be done:
1096 */
1097 status = intel_pmu_get_status();
1098 if (status)
1099 goto again;
1100
1101 done:
1102 intel_pmu_enable_all(0);
1103 return handled;
1104 }
1105
1106 static struct event_constraint *
1107 intel_bts_constraints(struct perf_event *event)
1108 {
1109 struct hw_perf_event *hwc = &event->hw;
1110 unsigned int hw_event, bts_event;
1111
1112 if (event->attr.freq)
1113 return NULL;
1114
1115 hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1116 bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1117
1118 if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1119 return &bts_constraint;
1120
1121 return NULL;
1122 }
1123
1124 static int intel_alt_er(int idx)
1125 {
1126 if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1127 return idx;
1128
1129 if (idx == EXTRA_REG_RSP_0)
1130 return EXTRA_REG_RSP_1;
1131
1132 if (idx == EXTRA_REG_RSP_1)
1133 return EXTRA_REG_RSP_0;
1134
1135 return idx;
1136 }
1137
1138 static void intel_fixup_er(struct perf_event *event, int idx)
1139 {
1140 event->hw.extra_reg.idx = idx;
1141
1142 if (idx == EXTRA_REG_RSP_0) {
1143 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1144 event->hw.config |= 0x01b7;
1145 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1146 } else if (idx == EXTRA_REG_RSP_1) {
1147 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1148 event->hw.config |= 0x01bb;
1149 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1150 }
1151 }
1152
1153 /*
1154 * manage allocation of shared extra msr for certain events
1155 *
1156 * sharing can be:
1157 * per-cpu: to be shared between the various events on a single PMU
1158 * per-core: per-cpu + shared by HT threads
1159 */
1160 static struct event_constraint *
1161 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1162 struct perf_event *event,
1163 struct hw_perf_event_extra *reg)
1164 {
1165 struct event_constraint *c = &emptyconstraint;
1166 struct er_account *era;
1167 unsigned long flags;
1168 int idx = reg->idx;
1169
1170 /*
1171 * reg->alloc can be set due to existing state, so for fake cpuc we
1172 * need to ignore this, otherwise we might fail to allocate proper fake
1173 * state for this extra reg constraint. Also see the comment below.
1174 */
1175 if (reg->alloc && !cpuc->is_fake)
1176 return NULL; /* call x86_get_event_constraint() */
1177
1178 again:
1179 era = &cpuc->shared_regs->regs[idx];
1180 /*
1181 * we use spin_lock_irqsave() to avoid lockdep issues when
1182 * passing a fake cpuc
1183 */
1184 raw_spin_lock_irqsave(&era->lock, flags);
1185
1186 if (!atomic_read(&era->ref) || era->config == reg->config) {
1187
1188 /*
1189 * If its a fake cpuc -- as per validate_{group,event}() we
1190 * shouldn't touch event state and we can avoid doing so
1191 * since both will only call get_event_constraints() once
1192 * on each event, this avoids the need for reg->alloc.
1193 *
1194 * Not doing the ER fixup will only result in era->reg being
1195 * wrong, but since we won't actually try and program hardware
1196 * this isn't a problem either.
1197 */
1198 if (!cpuc->is_fake) {
1199 if (idx != reg->idx)
1200 intel_fixup_er(event, idx);
1201
1202 /*
1203 * x86_schedule_events() can call get_event_constraints()
1204 * multiple times on events in the case of incremental
1205 * scheduling(). reg->alloc ensures we only do the ER
1206 * allocation once.
1207 */
1208 reg->alloc = 1;
1209 }
1210
1211 /* lock in msr value */
1212 era->config = reg->config;
1213 era->reg = reg->reg;
1214
1215 /* one more user */
1216 atomic_inc(&era->ref);
1217
1218 /*
1219 * need to call x86_get_event_constraint()
1220 * to check if associated event has constraints
1221 */
1222 c = NULL;
1223 } else {
1224 idx = intel_alt_er(idx);
1225 if (idx != reg->idx) {
1226 raw_spin_unlock_irqrestore(&era->lock, flags);
1227 goto again;
1228 }
1229 }
1230 raw_spin_unlock_irqrestore(&era->lock, flags);
1231
1232 return c;
1233 }
1234
1235 static void
1236 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1237 struct hw_perf_event_extra *reg)
1238 {
1239 struct er_account *era;
1240
1241 /*
1242 * Only put constraint if extra reg was actually allocated. Also takes
1243 * care of event which do not use an extra shared reg.
1244 *
1245 * Also, if this is a fake cpuc we shouldn't touch any event state
1246 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1247 * either since it'll be thrown out.
1248 */
1249 if (!reg->alloc || cpuc->is_fake)
1250 return;
1251
1252 era = &cpuc->shared_regs->regs[reg->idx];
1253
1254 /* one fewer user */
1255 atomic_dec(&era->ref);
1256
1257 /* allocate again next time */
1258 reg->alloc = 0;
1259 }
1260
1261 static struct event_constraint *
1262 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1263 struct perf_event *event)
1264 {
1265 struct event_constraint *c = NULL, *d;
1266 struct hw_perf_event_extra *xreg, *breg;
1267
1268 xreg = &event->hw.extra_reg;
1269 if (xreg->idx != EXTRA_REG_NONE) {
1270 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1271 if (c == &emptyconstraint)
1272 return c;
1273 }
1274 breg = &event->hw.branch_reg;
1275 if (breg->idx != EXTRA_REG_NONE) {
1276 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1277 if (d == &emptyconstraint) {
1278 __intel_shared_reg_put_constraints(cpuc, xreg);
1279 c = d;
1280 }
1281 }
1282 return c;
1283 }
1284
1285 struct event_constraint *
1286 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1287 {
1288 struct event_constraint *c;
1289
1290 if (x86_pmu.event_constraints) {
1291 for_each_event_constraint(c, x86_pmu.event_constraints) {
1292 if ((event->hw.config & c->cmask) == c->code)
1293 return c;
1294 }
1295 }
1296
1297 return &unconstrained;
1298 }
1299
1300 static struct event_constraint *
1301 intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1302 {
1303 struct event_constraint *c;
1304
1305 c = intel_bts_constraints(event);
1306 if (c)
1307 return c;
1308
1309 c = intel_pebs_constraints(event);
1310 if (c)
1311 return c;
1312
1313 c = intel_shared_regs_constraints(cpuc, event);
1314 if (c)
1315 return c;
1316
1317 return x86_get_event_constraints(cpuc, event);
1318 }
1319
1320 static void
1321 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1322 struct perf_event *event)
1323 {
1324 struct hw_perf_event_extra *reg;
1325
1326 reg = &event->hw.extra_reg;
1327 if (reg->idx != EXTRA_REG_NONE)
1328 __intel_shared_reg_put_constraints(cpuc, reg);
1329
1330 reg = &event->hw.branch_reg;
1331 if (reg->idx != EXTRA_REG_NONE)
1332 __intel_shared_reg_put_constraints(cpuc, reg);
1333 }
1334
1335 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1336 struct perf_event *event)
1337 {
1338 intel_put_shared_regs_event_constraints(cpuc, event);
1339 }
1340
1341 static void intel_pebs_aliases_core2(struct perf_event *event)
1342 {
1343 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1344 /*
1345 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1346 * (0x003c) so that we can use it with PEBS.
1347 *
1348 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1349 * PEBS capable. However we can use INST_RETIRED.ANY_P
1350 * (0x00c0), which is a PEBS capable event, to get the same
1351 * count.
1352 *
1353 * INST_RETIRED.ANY_P counts the number of cycles that retires
1354 * CNTMASK instructions. By setting CNTMASK to a value (16)
1355 * larger than the maximum number of instructions that can be
1356 * retired per cycle (4) and then inverting the condition, we
1357 * count all cycles that retire 16 or less instructions, which
1358 * is every cycle.
1359 *
1360 * Thereby we gain a PEBS capable cycle counter.
1361 */
1362 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1363
1364 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1365 event->hw.config = alt_config;
1366 }
1367 }
1368
1369 static void intel_pebs_aliases_snb(struct perf_event *event)
1370 {
1371 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1372 /*
1373 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1374 * (0x003c) so that we can use it with PEBS.
1375 *
1376 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1377 * PEBS capable. However we can use UOPS_RETIRED.ALL
1378 * (0x01c2), which is a PEBS capable event, to get the same
1379 * count.
1380 *
1381 * UOPS_RETIRED.ALL counts the number of cycles that retires
1382 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1383 * larger than the maximum number of micro-ops that can be
1384 * retired per cycle (4) and then inverting the condition, we
1385 * count all cycles that retire 16 or less micro-ops, which
1386 * is every cycle.
1387 *
1388 * Thereby we gain a PEBS capable cycle counter.
1389 */
1390 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1391
1392 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1393 event->hw.config = alt_config;
1394 }
1395 }
1396
1397 static int intel_pmu_hw_config(struct perf_event *event)
1398 {
1399 int ret = x86_pmu_hw_config(event);
1400
1401 if (ret)
1402 return ret;
1403
1404 if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1405 x86_pmu.pebs_aliases(event);
1406
1407 if (intel_pmu_needs_lbr_smpl(event)) {
1408 ret = intel_pmu_setup_lbr_filter(event);
1409 if (ret)
1410 return ret;
1411 }
1412
1413 if (event->attr.type != PERF_TYPE_RAW)
1414 return 0;
1415
1416 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1417 return 0;
1418
1419 if (x86_pmu.version < 3)
1420 return -EINVAL;
1421
1422 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1423 return -EACCES;
1424
1425 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1426
1427 return 0;
1428 }
1429
1430 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1431 {
1432 if (x86_pmu.guest_get_msrs)
1433 return x86_pmu.guest_get_msrs(nr);
1434 *nr = 0;
1435 return NULL;
1436 }
1437 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1438
1439 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1440 {
1441 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1442 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1443
1444 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1445 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1446 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1447
1448 *nr = 1;
1449 return arr;
1450 }
1451
1452 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1453 {
1454 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1455 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1456 int idx;
1457
1458 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1459 struct perf_event *event = cpuc->events[idx];
1460
1461 arr[idx].msr = x86_pmu_config_addr(idx);
1462 arr[idx].host = arr[idx].guest = 0;
1463
1464 if (!test_bit(idx, cpuc->active_mask))
1465 continue;
1466
1467 arr[idx].host = arr[idx].guest =
1468 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1469
1470 if (event->attr.exclude_host)
1471 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1472 else if (event->attr.exclude_guest)
1473 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1474 }
1475
1476 *nr = x86_pmu.num_counters;
1477 return arr;
1478 }
1479
1480 static void core_pmu_enable_event(struct perf_event *event)
1481 {
1482 if (!event->attr.exclude_host)
1483 x86_pmu_enable_event(event);
1484 }
1485
1486 static void core_pmu_enable_all(int added)
1487 {
1488 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1489 int idx;
1490
1491 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1492 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1493
1494 if (!test_bit(idx, cpuc->active_mask) ||
1495 cpuc->events[idx]->attr.exclude_host)
1496 continue;
1497
1498 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1499 }
1500 }
1501
1502 PMU_FORMAT_ATTR(event, "config:0-7" );
1503 PMU_FORMAT_ATTR(umask, "config:8-15" );
1504 PMU_FORMAT_ATTR(edge, "config:18" );
1505 PMU_FORMAT_ATTR(pc, "config:19" );
1506 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
1507 PMU_FORMAT_ATTR(inv, "config:23" );
1508 PMU_FORMAT_ATTR(cmask, "config:24-31" );
1509
1510 static struct attribute *intel_arch_formats_attr[] = {
1511 &format_attr_event.attr,
1512 &format_attr_umask.attr,
1513 &format_attr_edge.attr,
1514 &format_attr_pc.attr,
1515 &format_attr_inv.attr,
1516 &format_attr_cmask.attr,
1517 NULL,
1518 };
1519
1520 static __initconst const struct x86_pmu core_pmu = {
1521 .name = "core",
1522 .handle_irq = x86_pmu_handle_irq,
1523 .disable_all = x86_pmu_disable_all,
1524 .enable_all = core_pmu_enable_all,
1525 .enable = core_pmu_enable_event,
1526 .disable = x86_pmu_disable_event,
1527 .hw_config = x86_pmu_hw_config,
1528 .schedule_events = x86_schedule_events,
1529 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1530 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1531 .event_map = intel_pmu_event_map,
1532 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1533 .apic = 1,
1534 /*
1535 * Intel PMCs cannot be accessed sanely above 32 bit width,
1536 * so we install an artificial 1<<31 period regardless of
1537 * the generic event period:
1538 */
1539 .max_period = (1ULL << 31) - 1,
1540 .get_event_constraints = intel_get_event_constraints,
1541 .put_event_constraints = intel_put_event_constraints,
1542 .event_constraints = intel_core_event_constraints,
1543 .guest_get_msrs = core_guest_get_msrs,
1544 .format_attrs = intel_arch_formats_attr,
1545 };
1546
1547 struct intel_shared_regs *allocate_shared_regs(int cpu)
1548 {
1549 struct intel_shared_regs *regs;
1550 int i;
1551
1552 regs = kzalloc_node(sizeof(struct intel_shared_regs),
1553 GFP_KERNEL, cpu_to_node(cpu));
1554 if (regs) {
1555 /*
1556 * initialize the locks to keep lockdep happy
1557 */
1558 for (i = 0; i < EXTRA_REG_MAX; i++)
1559 raw_spin_lock_init(&regs->regs[i].lock);
1560
1561 regs->core_id = -1;
1562 }
1563 return regs;
1564 }
1565
1566 static int intel_pmu_cpu_prepare(int cpu)
1567 {
1568 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1569
1570 if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1571 return NOTIFY_OK;
1572
1573 cpuc->shared_regs = allocate_shared_regs(cpu);
1574 if (!cpuc->shared_regs)
1575 return NOTIFY_BAD;
1576
1577 return NOTIFY_OK;
1578 }
1579
1580 static void intel_pmu_cpu_starting(int cpu)
1581 {
1582 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1583 int core_id = topology_core_id(cpu);
1584 int i;
1585
1586 init_debug_store_on_cpu(cpu);
1587 /*
1588 * Deal with CPUs that don't clear their LBRs on power-up.
1589 */
1590 intel_pmu_lbr_reset();
1591
1592 cpuc->lbr_sel = NULL;
1593
1594 if (!cpuc->shared_regs)
1595 return;
1596
1597 if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1598 for_each_cpu(i, topology_thread_cpumask(cpu)) {
1599 struct intel_shared_regs *pc;
1600
1601 pc = per_cpu(cpu_hw_events, i).shared_regs;
1602 if (pc && pc->core_id == core_id) {
1603 cpuc->kfree_on_online = cpuc->shared_regs;
1604 cpuc->shared_regs = pc;
1605 break;
1606 }
1607 }
1608 cpuc->shared_regs->core_id = core_id;
1609 cpuc->shared_regs->refcnt++;
1610 }
1611
1612 if (x86_pmu.lbr_sel_map)
1613 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1614 }
1615
1616 static void intel_pmu_cpu_dying(int cpu)
1617 {
1618 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1619 struct intel_shared_regs *pc;
1620
1621 pc = cpuc->shared_regs;
1622 if (pc) {
1623 if (pc->core_id == -1 || --pc->refcnt == 0)
1624 kfree(pc);
1625 cpuc->shared_regs = NULL;
1626 }
1627
1628 fini_debug_store_on_cpu(cpu);
1629 }
1630
1631 static void intel_pmu_flush_branch_stack(void)
1632 {
1633 /*
1634 * Intel LBR does not tag entries with the
1635 * PID of the current task, then we need to
1636 * flush it on ctxsw
1637 * For now, we simply reset it
1638 */
1639 if (x86_pmu.lbr_nr)
1640 intel_pmu_lbr_reset();
1641 }
1642
1643 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1644
1645 static struct attribute *intel_arch3_formats_attr[] = {
1646 &format_attr_event.attr,
1647 &format_attr_umask.attr,
1648 &format_attr_edge.attr,
1649 &format_attr_pc.attr,
1650 &format_attr_any.attr,
1651 &format_attr_inv.attr,
1652 &format_attr_cmask.attr,
1653
1654 &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1655 NULL,
1656 };
1657
1658 static __initconst const struct x86_pmu intel_pmu = {
1659 .name = "Intel",
1660 .handle_irq = intel_pmu_handle_irq,
1661 .disable_all = intel_pmu_disable_all,
1662 .enable_all = intel_pmu_enable_all,
1663 .enable = intel_pmu_enable_event,
1664 .disable = intel_pmu_disable_event,
1665 .hw_config = intel_pmu_hw_config,
1666 .schedule_events = x86_schedule_events,
1667 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1668 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1669 .event_map = intel_pmu_event_map,
1670 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1671 .apic = 1,
1672 /*
1673 * Intel PMCs cannot be accessed sanely above 32 bit width,
1674 * so we install an artificial 1<<31 period regardless of
1675 * the generic event period:
1676 */
1677 .max_period = (1ULL << 31) - 1,
1678 .get_event_constraints = intel_get_event_constraints,
1679 .put_event_constraints = intel_put_event_constraints,
1680 .pebs_aliases = intel_pebs_aliases_core2,
1681
1682 .format_attrs = intel_arch3_formats_attr,
1683
1684 .cpu_prepare = intel_pmu_cpu_prepare,
1685 .cpu_starting = intel_pmu_cpu_starting,
1686 .cpu_dying = intel_pmu_cpu_dying,
1687 .guest_get_msrs = intel_guest_get_msrs,
1688 .flush_branch_stack = intel_pmu_flush_branch_stack,
1689 };
1690
1691 static __init void intel_clovertown_quirk(void)
1692 {
1693 /*
1694 * PEBS is unreliable due to:
1695 *
1696 * AJ67 - PEBS may experience CPL leaks
1697 * AJ68 - PEBS PMI may be delayed by one event
1698 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1699 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1700 *
1701 * AJ67 could be worked around by restricting the OS/USR flags.
1702 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1703 *
1704 * AJ106 could possibly be worked around by not allowing LBR
1705 * usage from PEBS, including the fixup.
1706 * AJ68 could possibly be worked around by always programming
1707 * a pebs_event_reset[0] value and coping with the lost events.
1708 *
1709 * But taken together it might just make sense to not enable PEBS on
1710 * these chips.
1711 */
1712 pr_warn("PEBS disabled due to CPU errata\n");
1713 x86_pmu.pebs = 0;
1714 x86_pmu.pebs_constraints = NULL;
1715 }
1716
1717 static int intel_snb_pebs_broken(int cpu)
1718 {
1719 u32 rev = UINT_MAX; /* default to broken for unknown models */
1720
1721 switch (cpu_data(cpu).x86_model) {
1722 case 42: /* SNB */
1723 rev = 0x28;
1724 break;
1725
1726 case 45: /* SNB-EP */
1727 switch (cpu_data(cpu).x86_mask) {
1728 case 6: rev = 0x618; break;
1729 case 7: rev = 0x70c; break;
1730 }
1731 }
1732
1733 return (cpu_data(cpu).microcode < rev);
1734 }
1735
1736 static void intel_snb_check_microcode(void)
1737 {
1738 int pebs_broken = 0;
1739 int cpu;
1740
1741 get_online_cpus();
1742 for_each_online_cpu(cpu) {
1743 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
1744 break;
1745 }
1746 put_online_cpus();
1747
1748 if (pebs_broken == x86_pmu.pebs_broken)
1749 return;
1750
1751 /*
1752 * Serialized by the microcode lock..
1753 */
1754 if (x86_pmu.pebs_broken) {
1755 pr_info("PEBS enabled due to microcode update\n");
1756 x86_pmu.pebs_broken = 0;
1757 } else {
1758 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
1759 x86_pmu.pebs_broken = 1;
1760 }
1761 }
1762
1763 static __init void intel_sandybridge_quirk(void)
1764 {
1765 x86_pmu.check_microcode = intel_snb_check_microcode;
1766 intel_snb_check_microcode();
1767 }
1768
1769 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1770 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1771 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1772 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1773 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1774 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1775 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1776 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1777 };
1778
1779 static __init void intel_arch_events_quirk(void)
1780 {
1781 int bit;
1782
1783 /* disable event that reported as not presend by cpuid */
1784 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1785 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1786 pr_warn("CPUID marked event: \'%s\' unavailable\n",
1787 intel_arch_events_map[bit].name);
1788 }
1789 }
1790
1791 static __init void intel_nehalem_quirk(void)
1792 {
1793 union cpuid10_ebx ebx;
1794
1795 ebx.full = x86_pmu.events_maskl;
1796 if (ebx.split.no_branch_misses_retired) {
1797 /*
1798 * Erratum AAJ80 detected, we work it around by using
1799 * the BR_MISP_EXEC.ANY event. This will over-count
1800 * branch-misses, but it's still much better than the
1801 * architectural event which is often completely bogus:
1802 */
1803 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1804 ebx.split.no_branch_misses_retired = 0;
1805 x86_pmu.events_maskl = ebx.full;
1806 pr_info("CPU erratum AAJ80 worked around\n");
1807 }
1808 }
1809
1810 __init int intel_pmu_init(void)
1811 {
1812 union cpuid10_edx edx;
1813 union cpuid10_eax eax;
1814 union cpuid10_ebx ebx;
1815 struct event_constraint *c;
1816 unsigned int unused;
1817 int version;
1818
1819 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1820 switch (boot_cpu_data.x86) {
1821 case 0x6:
1822 return p6_pmu_init();
1823 case 0xf:
1824 return p4_pmu_init();
1825 }
1826 return -ENODEV;
1827 }
1828
1829 /*
1830 * Check whether the Architectural PerfMon supports
1831 * Branch Misses Retired hw_event or not.
1832 */
1833 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1834 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1835 return -ENODEV;
1836
1837 version = eax.split.version_id;
1838 if (version < 2)
1839 x86_pmu = core_pmu;
1840 else
1841 x86_pmu = intel_pmu;
1842
1843 x86_pmu.version = version;
1844 x86_pmu.num_counters = eax.split.num_counters;
1845 x86_pmu.cntval_bits = eax.split.bit_width;
1846 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
1847
1848 x86_pmu.events_maskl = ebx.full;
1849 x86_pmu.events_mask_len = eax.split.mask_length;
1850
1851 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
1852
1853 /*
1854 * Quirk: v2 perfmon does not report fixed-purpose events, so
1855 * assume at least 3 events:
1856 */
1857 if (version > 1)
1858 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1859
1860 /*
1861 * v2 and above have a perf capabilities MSR
1862 */
1863 if (version > 1) {
1864 u64 capabilities;
1865
1866 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1867 x86_pmu.intel_cap.capabilities = capabilities;
1868 }
1869
1870 intel_ds_init();
1871
1872 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1873
1874 /*
1875 * Install the hw-cache-events table:
1876 */
1877 switch (boot_cpu_data.x86_model) {
1878 case 14: /* 65 nm core solo/duo, "Yonah" */
1879 pr_cont("Core events, ");
1880 break;
1881
1882 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1883 x86_add_quirk(intel_clovertown_quirk);
1884 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1885 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1886 case 29: /* six-core 45 nm xeon "Dunnington" */
1887 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1888 sizeof(hw_cache_event_ids));
1889
1890 intel_pmu_lbr_init_core();
1891
1892 x86_pmu.event_constraints = intel_core2_event_constraints;
1893 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1894 pr_cont("Core2 events, ");
1895 break;
1896
1897 case 26: /* 45 nm nehalem, "Bloomfield" */
1898 case 30: /* 45 nm nehalem, "Lynnfield" */
1899 case 46: /* 45 nm nehalem-ex, "Beckton" */
1900 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1901 sizeof(hw_cache_event_ids));
1902 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1903 sizeof(hw_cache_extra_regs));
1904
1905 intel_pmu_lbr_init_nhm();
1906
1907 x86_pmu.event_constraints = intel_nehalem_event_constraints;
1908 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1909 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1910 x86_pmu.extra_regs = intel_nehalem_extra_regs;
1911
1912 /* UOPS_ISSUED.STALLED_CYCLES */
1913 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1914 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1915 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1916 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1917 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1918
1919 x86_add_quirk(intel_nehalem_quirk);
1920
1921 pr_cont("Nehalem events, ");
1922 break;
1923
1924 case 28: /* Atom */
1925 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1926 sizeof(hw_cache_event_ids));
1927
1928 intel_pmu_lbr_init_atom();
1929
1930 x86_pmu.event_constraints = intel_gen_event_constraints;
1931 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1932 pr_cont("Atom events, ");
1933 break;
1934
1935 case 37: /* 32 nm nehalem, "Clarkdale" */
1936 case 44: /* 32 nm nehalem, "Gulftown" */
1937 case 47: /* 32 nm Xeon E7 */
1938 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
1939 sizeof(hw_cache_event_ids));
1940 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1941 sizeof(hw_cache_extra_regs));
1942
1943 intel_pmu_lbr_init_nhm();
1944
1945 x86_pmu.event_constraints = intel_westmere_event_constraints;
1946 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1947 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1948 x86_pmu.extra_regs = intel_westmere_extra_regs;
1949 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1950
1951 /* UOPS_ISSUED.STALLED_CYCLES */
1952 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1953 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1954 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1955 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1956 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1957
1958 pr_cont("Westmere events, ");
1959 break;
1960
1961 case 42: /* SandyBridge */
1962 case 45: /* SandyBridge, "Romely-EP" */
1963 x86_add_quirk(intel_sandybridge_quirk);
1964 case 58: /* IvyBridge */
1965 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
1966 sizeof(hw_cache_event_ids));
1967
1968 intel_pmu_lbr_init_snb();
1969
1970 x86_pmu.event_constraints = intel_snb_event_constraints;
1971 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
1972 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
1973 x86_pmu.extra_regs = intel_snb_extra_regs;
1974 /* all extra regs are per-cpu when HT is on */
1975 x86_pmu.er_flags |= ERF_HAS_RSP_1;
1976 x86_pmu.er_flags |= ERF_NO_HT_SHARING;
1977
1978 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1979 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1980 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1981 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1982 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1983 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
1984
1985 pr_cont("SandyBridge events, ");
1986 break;
1987
1988 default:
1989 switch (x86_pmu.version) {
1990 case 1:
1991 x86_pmu.event_constraints = intel_v1_event_constraints;
1992 pr_cont("generic architected perfmon v1, ");
1993 break;
1994 default:
1995 /*
1996 * default constraints for v2 and up
1997 */
1998 x86_pmu.event_constraints = intel_gen_event_constraints;
1999 pr_cont("generic architected perfmon, ");
2000 break;
2001 }
2002 }
2003
2004 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
2005 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
2006 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
2007 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
2008 }
2009 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2010
2011 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
2012 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
2013 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
2014 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
2015 }
2016
2017 x86_pmu.intel_ctrl |=
2018 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
2019
2020 if (x86_pmu.event_constraints) {
2021 /*
2022 * event on fixed counter2 (REF_CYCLES) only works on this
2023 * counter, so do not extend mask to generic counters
2024 */
2025 for_each_event_constraint(c, x86_pmu.event_constraints) {
2026 if (c->cmask != X86_RAW_EVENT_MASK
2027 || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
2028 continue;
2029 }
2030
2031 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
2032 c->weight += x86_pmu.num_counters;
2033 }
2034 }
2035
2036 return 0;
2037 }
This page took 0.071408 seconds and 6 git commands to generate.