perf/x86/intel/cqm: Return cached counter value from IRQ context
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel_cqm.c
1 /*
2 * Intel Cache Quality-of-Service Monitoring (CQM) support.
3 *
4 * Based very, very heavily on work by Peter Zijlstra.
5 */
6
7 #include <linux/perf_event.h>
8 #include <linux/slab.h>
9 #include <asm/cpu_device_id.h>
10 #include "perf_event.h"
11
12 #define MSR_IA32_PQR_ASSOC 0x0c8f
13 #define MSR_IA32_QM_CTR 0x0c8e
14 #define MSR_IA32_QM_EVTSEL 0x0c8d
15
16 static u32 cqm_max_rmid = -1;
17 static unsigned int cqm_l3_scale; /* supposedly cacheline size */
18
19 /**
20 * struct intel_pqr_state - State cache for the PQR MSR
21 * @rmid: The cached Resource Monitoring ID
22 * @closid: The cached Class Of Service ID
23 * @rmid_usecnt: The usage counter for rmid
24 *
25 * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
26 * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
27 * contains both parts, so we need to cache them.
28 *
29 * The cache also helps to avoid pointless updates if the value does
30 * not change.
31 */
32 struct intel_pqr_state {
33 u32 rmid;
34 u32 closid;
35 int rmid_usecnt;
36 };
37
38 /*
39 * The cached intel_pqr_state is strictly per CPU and can never be
40 * updated from a remote CPU. Both functions which modify the state
41 * (intel_cqm_event_start and intel_cqm_event_stop) are called with
42 * interrupts disabled, which is sufficient for the protection.
43 */
44 static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
45
46 /*
47 * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
48 * Also protects event->hw.cqm_rmid
49 *
50 * Hold either for stability, both for modification of ->hw.cqm_rmid.
51 */
52 static DEFINE_MUTEX(cache_mutex);
53 static DEFINE_RAW_SPINLOCK(cache_lock);
54
55 /*
56 * Groups of events that have the same target(s), one RMID per group.
57 */
58 static LIST_HEAD(cache_groups);
59
60 /*
61 * Mask of CPUs for reading CQM values. We only need one per-socket.
62 */
63 static cpumask_t cqm_cpumask;
64
65 #define RMID_VAL_ERROR (1ULL << 63)
66 #define RMID_VAL_UNAVAIL (1ULL << 62)
67
68 #define QOS_L3_OCCUP_EVENT_ID (1 << 0)
69
70 #define QOS_EVENT_MASK QOS_L3_OCCUP_EVENT_ID
71
72 /*
73 * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
74 *
75 * This rmid is always free and is guaranteed to have an associated
76 * near-zero occupancy value, i.e. no cachelines are tagged with this
77 * RMID, once __intel_cqm_rmid_rotate() returns.
78 */
79 static u32 intel_cqm_rotation_rmid;
80
81 #define INVALID_RMID (-1)
82
83 /*
84 * Is @rmid valid for programming the hardware?
85 *
86 * rmid 0 is reserved by the hardware for all non-monitored tasks, which
87 * means that we should never come across an rmid with that value.
88 * Likewise, an rmid value of -1 is used to indicate "no rmid currently
89 * assigned" and is used as part of the rotation code.
90 */
91 static inline bool __rmid_valid(u32 rmid)
92 {
93 if (!rmid || rmid == INVALID_RMID)
94 return false;
95
96 return true;
97 }
98
99 static u64 __rmid_read(u32 rmid)
100 {
101 u64 val;
102
103 /*
104 * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
105 * it just says that to increase confusion.
106 */
107 wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
108 rdmsrl(MSR_IA32_QM_CTR, val);
109
110 /*
111 * Aside from the ERROR and UNAVAIL bits, assume this thing returns
112 * the number of cachelines tagged with @rmid.
113 */
114 return val;
115 }
116
117 enum rmid_recycle_state {
118 RMID_YOUNG = 0,
119 RMID_AVAILABLE,
120 RMID_DIRTY,
121 };
122
123 struct cqm_rmid_entry {
124 u32 rmid;
125 enum rmid_recycle_state state;
126 struct list_head list;
127 unsigned long queue_time;
128 };
129
130 /*
131 * cqm_rmid_free_lru - A least recently used list of RMIDs.
132 *
133 * Oldest entry at the head, newest (most recently used) entry at the
134 * tail. This list is never traversed, it's only used to keep track of
135 * the lru order. That is, we only pick entries of the head or insert
136 * them on the tail.
137 *
138 * All entries on the list are 'free', and their RMIDs are not currently
139 * in use. To mark an RMID as in use, remove its entry from the lru
140 * list.
141 *
142 *
143 * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
144 *
145 * This list is contains RMIDs that no one is currently using but that
146 * may have a non-zero occupancy value associated with them. The
147 * rotation worker moves RMIDs from the limbo list to the free list once
148 * the occupancy value drops below __intel_cqm_threshold.
149 *
150 * Both lists are protected by cache_mutex.
151 */
152 static LIST_HEAD(cqm_rmid_free_lru);
153 static LIST_HEAD(cqm_rmid_limbo_lru);
154
155 /*
156 * We use a simple array of pointers so that we can lookup a struct
157 * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
158 * and __put_rmid() from having to worry about dealing with struct
159 * cqm_rmid_entry - they just deal with rmids, i.e. integers.
160 *
161 * Once this array is initialized it is read-only. No locks are required
162 * to access it.
163 *
164 * All entries for all RMIDs can be looked up in the this array at all
165 * times.
166 */
167 static struct cqm_rmid_entry **cqm_rmid_ptrs;
168
169 static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
170 {
171 struct cqm_rmid_entry *entry;
172
173 entry = cqm_rmid_ptrs[rmid];
174 WARN_ON(entry->rmid != rmid);
175
176 return entry;
177 }
178
179 /*
180 * Returns < 0 on fail.
181 *
182 * We expect to be called with cache_mutex held.
183 */
184 static u32 __get_rmid(void)
185 {
186 struct cqm_rmid_entry *entry;
187
188 lockdep_assert_held(&cache_mutex);
189
190 if (list_empty(&cqm_rmid_free_lru))
191 return INVALID_RMID;
192
193 entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
194 list_del(&entry->list);
195
196 return entry->rmid;
197 }
198
199 static void __put_rmid(u32 rmid)
200 {
201 struct cqm_rmid_entry *entry;
202
203 lockdep_assert_held(&cache_mutex);
204
205 WARN_ON(!__rmid_valid(rmid));
206 entry = __rmid_entry(rmid);
207
208 entry->queue_time = jiffies;
209 entry->state = RMID_YOUNG;
210
211 list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
212 }
213
214 static int intel_cqm_setup_rmid_cache(void)
215 {
216 struct cqm_rmid_entry *entry;
217 unsigned int nr_rmids;
218 int r = 0;
219
220 nr_rmids = cqm_max_rmid + 1;
221 cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) *
222 nr_rmids, GFP_KERNEL);
223 if (!cqm_rmid_ptrs)
224 return -ENOMEM;
225
226 for (; r <= cqm_max_rmid; r++) {
227 struct cqm_rmid_entry *entry;
228
229 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
230 if (!entry)
231 goto fail;
232
233 INIT_LIST_HEAD(&entry->list);
234 entry->rmid = r;
235 cqm_rmid_ptrs[r] = entry;
236
237 list_add_tail(&entry->list, &cqm_rmid_free_lru);
238 }
239
240 /*
241 * RMID 0 is special and is always allocated. It's used for all
242 * tasks that are not monitored.
243 */
244 entry = __rmid_entry(0);
245 list_del(&entry->list);
246
247 mutex_lock(&cache_mutex);
248 intel_cqm_rotation_rmid = __get_rmid();
249 mutex_unlock(&cache_mutex);
250
251 return 0;
252 fail:
253 while (r--)
254 kfree(cqm_rmid_ptrs[r]);
255
256 kfree(cqm_rmid_ptrs);
257 return -ENOMEM;
258 }
259
260 /*
261 * Determine if @a and @b measure the same set of tasks.
262 *
263 * If @a and @b measure the same set of tasks then we want to share a
264 * single RMID.
265 */
266 static bool __match_event(struct perf_event *a, struct perf_event *b)
267 {
268 /* Per-cpu and task events don't mix */
269 if ((a->attach_state & PERF_ATTACH_TASK) !=
270 (b->attach_state & PERF_ATTACH_TASK))
271 return false;
272
273 #ifdef CONFIG_CGROUP_PERF
274 if (a->cgrp != b->cgrp)
275 return false;
276 #endif
277
278 /* If not task event, we're machine wide */
279 if (!(b->attach_state & PERF_ATTACH_TASK))
280 return true;
281
282 /*
283 * Events that target same task are placed into the same cache group.
284 */
285 if (a->hw.target == b->hw.target)
286 return true;
287
288 /*
289 * Are we an inherited event?
290 */
291 if (b->parent == a)
292 return true;
293
294 return false;
295 }
296
297 #ifdef CONFIG_CGROUP_PERF
298 static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
299 {
300 if (event->attach_state & PERF_ATTACH_TASK)
301 return perf_cgroup_from_task(event->hw.target);
302
303 return event->cgrp;
304 }
305 #endif
306
307 /*
308 * Determine if @a's tasks intersect with @b's tasks
309 *
310 * There are combinations of events that we explicitly prohibit,
311 *
312 * PROHIBITS
313 * system-wide -> cgroup and task
314 * cgroup -> system-wide
315 * -> task in cgroup
316 * task -> system-wide
317 * -> task in cgroup
318 *
319 * Call this function before allocating an RMID.
320 */
321 static bool __conflict_event(struct perf_event *a, struct perf_event *b)
322 {
323 #ifdef CONFIG_CGROUP_PERF
324 /*
325 * We can have any number of cgroups but only one system-wide
326 * event at a time.
327 */
328 if (a->cgrp && b->cgrp) {
329 struct perf_cgroup *ac = a->cgrp;
330 struct perf_cgroup *bc = b->cgrp;
331
332 /*
333 * This condition should have been caught in
334 * __match_event() and we should be sharing an RMID.
335 */
336 WARN_ON_ONCE(ac == bc);
337
338 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
339 cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
340 return true;
341
342 return false;
343 }
344
345 if (a->cgrp || b->cgrp) {
346 struct perf_cgroup *ac, *bc;
347
348 /*
349 * cgroup and system-wide events are mutually exclusive
350 */
351 if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
352 (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
353 return true;
354
355 /*
356 * Ensure neither event is part of the other's cgroup
357 */
358 ac = event_to_cgroup(a);
359 bc = event_to_cgroup(b);
360 if (ac == bc)
361 return true;
362
363 /*
364 * Must have cgroup and non-intersecting task events.
365 */
366 if (!ac || !bc)
367 return false;
368
369 /*
370 * We have cgroup and task events, and the task belongs
371 * to a cgroup. Check for for overlap.
372 */
373 if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
374 cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
375 return true;
376
377 return false;
378 }
379 #endif
380 /*
381 * If one of them is not a task, same story as above with cgroups.
382 */
383 if (!(a->attach_state & PERF_ATTACH_TASK) ||
384 !(b->attach_state & PERF_ATTACH_TASK))
385 return true;
386
387 /*
388 * Must be non-overlapping.
389 */
390 return false;
391 }
392
393 struct rmid_read {
394 u32 rmid;
395 atomic64_t value;
396 };
397
398 static void __intel_cqm_event_count(void *info);
399
400 /*
401 * Exchange the RMID of a group of events.
402 */
403 static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
404 {
405 struct perf_event *event;
406 struct list_head *head = &group->hw.cqm_group_entry;
407 u32 old_rmid = group->hw.cqm_rmid;
408
409 lockdep_assert_held(&cache_mutex);
410
411 /*
412 * If our RMID is being deallocated, perform a read now.
413 */
414 if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
415 struct rmid_read rr = {
416 .value = ATOMIC64_INIT(0),
417 .rmid = old_rmid,
418 };
419
420 on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
421 &rr, 1);
422 local64_set(&group->count, atomic64_read(&rr.value));
423 }
424
425 raw_spin_lock_irq(&cache_lock);
426
427 group->hw.cqm_rmid = rmid;
428 list_for_each_entry(event, head, hw.cqm_group_entry)
429 event->hw.cqm_rmid = rmid;
430
431 raw_spin_unlock_irq(&cache_lock);
432
433 return old_rmid;
434 }
435
436 /*
437 * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
438 * cachelines are still tagged with RMIDs in limbo, we progressively
439 * increment the threshold until we find an RMID in limbo with <=
440 * __intel_cqm_threshold lines tagged. This is designed to mitigate the
441 * problem where cachelines tagged with an RMID are not steadily being
442 * evicted.
443 *
444 * On successful rotations we decrease the threshold back towards zero.
445 *
446 * __intel_cqm_max_threshold provides an upper bound on the threshold,
447 * and is measured in bytes because it's exposed to userland.
448 */
449 static unsigned int __intel_cqm_threshold;
450 static unsigned int __intel_cqm_max_threshold;
451
452 /*
453 * Test whether an RMID has a zero occupancy value on this cpu.
454 */
455 static void intel_cqm_stable(void *arg)
456 {
457 struct cqm_rmid_entry *entry;
458
459 list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
460 if (entry->state != RMID_AVAILABLE)
461 break;
462
463 if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
464 entry->state = RMID_DIRTY;
465 }
466 }
467
468 /*
469 * If we have group events waiting for an RMID that don't conflict with
470 * events already running, assign @rmid.
471 */
472 static bool intel_cqm_sched_in_event(u32 rmid)
473 {
474 struct perf_event *leader, *event;
475
476 lockdep_assert_held(&cache_mutex);
477
478 leader = list_first_entry(&cache_groups, struct perf_event,
479 hw.cqm_groups_entry);
480 event = leader;
481
482 list_for_each_entry_continue(event, &cache_groups,
483 hw.cqm_groups_entry) {
484 if (__rmid_valid(event->hw.cqm_rmid))
485 continue;
486
487 if (__conflict_event(event, leader))
488 continue;
489
490 intel_cqm_xchg_rmid(event, rmid);
491 return true;
492 }
493
494 return false;
495 }
496
497 /*
498 * Initially use this constant for both the limbo queue time and the
499 * rotation timer interval, pmu::hrtimer_interval_ms.
500 *
501 * They don't need to be the same, but the two are related since if you
502 * rotate faster than you recycle RMIDs, you may run out of available
503 * RMIDs.
504 */
505 #define RMID_DEFAULT_QUEUE_TIME 250 /* ms */
506
507 static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
508
509 /*
510 * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
511 * @nr_available: number of freeable RMIDs on the limbo list
512 *
513 * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
514 * cachelines are tagged with those RMIDs. After this we can reuse them
515 * and know that the current set of active RMIDs is stable.
516 *
517 * Return %true or %false depending on whether stabilization needs to be
518 * reattempted.
519 *
520 * If we return %true then @nr_available is updated to indicate the
521 * number of RMIDs on the limbo list that have been queued for the
522 * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
523 * are above __intel_cqm_threshold.
524 */
525 static bool intel_cqm_rmid_stabilize(unsigned int *available)
526 {
527 struct cqm_rmid_entry *entry, *tmp;
528
529 lockdep_assert_held(&cache_mutex);
530
531 *available = 0;
532 list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
533 unsigned long min_queue_time;
534 unsigned long now = jiffies;
535
536 /*
537 * We hold RMIDs placed into limbo for a minimum queue
538 * time. Before the minimum queue time has elapsed we do
539 * not recycle RMIDs.
540 *
541 * The reasoning is that until a sufficient time has
542 * passed since we stopped using an RMID, any RMID
543 * placed onto the limbo list will likely still have
544 * data tagged in the cache, which means we'll probably
545 * fail to recycle it anyway.
546 *
547 * We can save ourselves an expensive IPI by skipping
548 * any RMIDs that have not been queued for the minimum
549 * time.
550 */
551 min_queue_time = entry->queue_time +
552 msecs_to_jiffies(__rmid_queue_time_ms);
553
554 if (time_after(min_queue_time, now))
555 break;
556
557 entry->state = RMID_AVAILABLE;
558 (*available)++;
559 }
560
561 /*
562 * Fast return if none of the RMIDs on the limbo list have been
563 * sitting on the queue for the minimum queue time.
564 */
565 if (!*available)
566 return false;
567
568 /*
569 * Test whether an RMID is free for each package.
570 */
571 on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
572
573 list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
574 /*
575 * Exhausted all RMIDs that have waited min queue time.
576 */
577 if (entry->state == RMID_YOUNG)
578 break;
579
580 if (entry->state == RMID_DIRTY)
581 continue;
582
583 list_del(&entry->list); /* remove from limbo */
584
585 /*
586 * The rotation RMID gets priority if it's
587 * currently invalid. In which case, skip adding
588 * the RMID to the the free lru.
589 */
590 if (!__rmid_valid(intel_cqm_rotation_rmid)) {
591 intel_cqm_rotation_rmid = entry->rmid;
592 continue;
593 }
594
595 /*
596 * If we have groups waiting for RMIDs, hand
597 * them one now provided they don't conflict.
598 */
599 if (intel_cqm_sched_in_event(entry->rmid))
600 continue;
601
602 /*
603 * Otherwise place it onto the free list.
604 */
605 list_add_tail(&entry->list, &cqm_rmid_free_lru);
606 }
607
608
609 return __rmid_valid(intel_cqm_rotation_rmid);
610 }
611
612 /*
613 * Pick a victim group and move it to the tail of the group list.
614 * @next: The first group without an RMID
615 */
616 static void __intel_cqm_pick_and_rotate(struct perf_event *next)
617 {
618 struct perf_event *rotor;
619 u32 rmid;
620
621 lockdep_assert_held(&cache_mutex);
622
623 rotor = list_first_entry(&cache_groups, struct perf_event,
624 hw.cqm_groups_entry);
625
626 /*
627 * The group at the front of the list should always have a valid
628 * RMID. If it doesn't then no groups have RMIDs assigned and we
629 * don't need to rotate the list.
630 */
631 if (next == rotor)
632 return;
633
634 rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
635 __put_rmid(rmid);
636
637 list_rotate_left(&cache_groups);
638 }
639
640 /*
641 * Deallocate the RMIDs from any events that conflict with @event, and
642 * place them on the back of the group list.
643 */
644 static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
645 {
646 struct perf_event *group, *g;
647 u32 rmid;
648
649 lockdep_assert_held(&cache_mutex);
650
651 list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
652 if (group == event)
653 continue;
654
655 rmid = group->hw.cqm_rmid;
656
657 /*
658 * Skip events that don't have a valid RMID.
659 */
660 if (!__rmid_valid(rmid))
661 continue;
662
663 /*
664 * No conflict? No problem! Leave the event alone.
665 */
666 if (!__conflict_event(group, event))
667 continue;
668
669 intel_cqm_xchg_rmid(group, INVALID_RMID);
670 __put_rmid(rmid);
671 }
672 }
673
674 /*
675 * Attempt to rotate the groups and assign new RMIDs.
676 *
677 * We rotate for two reasons,
678 * 1. To handle the scheduling of conflicting events
679 * 2. To recycle RMIDs
680 *
681 * Rotating RMIDs is complicated because the hardware doesn't give us
682 * any clues.
683 *
684 * There's problems with the hardware interface; when you change the
685 * task:RMID map cachelines retain their 'old' tags, giving a skewed
686 * picture. In order to work around this, we must always keep one free
687 * RMID - intel_cqm_rotation_rmid.
688 *
689 * Rotation works by taking away an RMID from a group (the old RMID),
690 * and assigning the free RMID to another group (the new RMID). We must
691 * then wait for the old RMID to not be used (no cachelines tagged).
692 * This ensure that all cachelines are tagged with 'active' RMIDs. At
693 * this point we can start reading values for the new RMID and treat the
694 * old RMID as the free RMID for the next rotation.
695 *
696 * Return %true or %false depending on whether we did any rotating.
697 */
698 static bool __intel_cqm_rmid_rotate(void)
699 {
700 struct perf_event *group, *start = NULL;
701 unsigned int threshold_limit;
702 unsigned int nr_needed = 0;
703 unsigned int nr_available;
704 bool rotated = false;
705
706 mutex_lock(&cache_mutex);
707
708 again:
709 /*
710 * Fast path through this function if there are no groups and no
711 * RMIDs that need cleaning.
712 */
713 if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
714 goto out;
715
716 list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
717 if (!__rmid_valid(group->hw.cqm_rmid)) {
718 if (!start)
719 start = group;
720 nr_needed++;
721 }
722 }
723
724 /*
725 * We have some event groups, but they all have RMIDs assigned
726 * and no RMIDs need cleaning.
727 */
728 if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
729 goto out;
730
731 if (!nr_needed)
732 goto stabilize;
733
734 /*
735 * We have more event groups without RMIDs than available RMIDs,
736 * or we have event groups that conflict with the ones currently
737 * scheduled.
738 *
739 * We force deallocate the rmid of the group at the head of
740 * cache_groups. The first event group without an RMID then gets
741 * assigned intel_cqm_rotation_rmid. This ensures we always make
742 * forward progress.
743 *
744 * Rotate the cache_groups list so the previous head is now the
745 * tail.
746 */
747 __intel_cqm_pick_and_rotate(start);
748
749 /*
750 * If the rotation is going to succeed, reduce the threshold so
751 * that we don't needlessly reuse dirty RMIDs.
752 */
753 if (__rmid_valid(intel_cqm_rotation_rmid)) {
754 intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
755 intel_cqm_rotation_rmid = __get_rmid();
756
757 intel_cqm_sched_out_conflicting_events(start);
758
759 if (__intel_cqm_threshold)
760 __intel_cqm_threshold--;
761 }
762
763 rotated = true;
764
765 stabilize:
766 /*
767 * We now need to stablize the RMID we freed above (if any) to
768 * ensure that the next time we rotate we have an RMID with zero
769 * occupancy value.
770 *
771 * Alternatively, if we didn't need to perform any rotation,
772 * we'll have a bunch of RMIDs in limbo that need stabilizing.
773 */
774 threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
775
776 while (intel_cqm_rmid_stabilize(&nr_available) &&
777 __intel_cqm_threshold < threshold_limit) {
778 unsigned int steal_limit;
779
780 /*
781 * Don't spin if nobody is actively waiting for an RMID,
782 * the rotation worker will be kicked as soon as an
783 * event needs an RMID anyway.
784 */
785 if (!nr_needed)
786 break;
787
788 /* Allow max 25% of RMIDs to be in limbo. */
789 steal_limit = (cqm_max_rmid + 1) / 4;
790
791 /*
792 * We failed to stabilize any RMIDs so our rotation
793 * logic is now stuck. In order to make forward progress
794 * we have a few options:
795 *
796 * 1. rotate ("steal") another RMID
797 * 2. increase the threshold
798 * 3. do nothing
799 *
800 * We do both of 1. and 2. until we hit the steal limit.
801 *
802 * The steal limit prevents all RMIDs ending up on the
803 * limbo list. This can happen if every RMID has a
804 * non-zero occupancy above threshold_limit, and the
805 * occupancy values aren't dropping fast enough.
806 *
807 * Note that there is prioritisation at work here - we'd
808 * rather increase the number of RMIDs on the limbo list
809 * than increase the threshold, because increasing the
810 * threshold skews the event data (because we reuse
811 * dirty RMIDs) - threshold bumps are a last resort.
812 */
813 if (nr_available < steal_limit)
814 goto again;
815
816 __intel_cqm_threshold++;
817 }
818
819 out:
820 mutex_unlock(&cache_mutex);
821 return rotated;
822 }
823
824 static void intel_cqm_rmid_rotate(struct work_struct *work);
825
826 static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
827
828 static struct pmu intel_cqm_pmu;
829
830 static void intel_cqm_rmid_rotate(struct work_struct *work)
831 {
832 unsigned long delay;
833
834 __intel_cqm_rmid_rotate();
835
836 delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
837 schedule_delayed_work(&intel_cqm_rmid_work, delay);
838 }
839
840 /*
841 * Find a group and setup RMID.
842 *
843 * If we're part of a group, we use the group's RMID.
844 */
845 static void intel_cqm_setup_event(struct perf_event *event,
846 struct perf_event **group)
847 {
848 struct perf_event *iter;
849 bool conflict = false;
850 u32 rmid;
851
852 list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
853 rmid = iter->hw.cqm_rmid;
854
855 if (__match_event(iter, event)) {
856 /* All tasks in a group share an RMID */
857 event->hw.cqm_rmid = rmid;
858 *group = iter;
859 return;
860 }
861
862 /*
863 * We only care about conflicts for events that are
864 * actually scheduled in (and hence have a valid RMID).
865 */
866 if (__conflict_event(iter, event) && __rmid_valid(rmid))
867 conflict = true;
868 }
869
870 if (conflict)
871 rmid = INVALID_RMID;
872 else
873 rmid = __get_rmid();
874
875 event->hw.cqm_rmid = rmid;
876 }
877
878 static void intel_cqm_event_read(struct perf_event *event)
879 {
880 unsigned long flags;
881 u32 rmid;
882 u64 val;
883
884 /*
885 * Task events are handled by intel_cqm_event_count().
886 */
887 if (event->cpu == -1)
888 return;
889
890 raw_spin_lock_irqsave(&cache_lock, flags);
891 rmid = event->hw.cqm_rmid;
892
893 if (!__rmid_valid(rmid))
894 goto out;
895
896 val = __rmid_read(rmid);
897
898 /*
899 * Ignore this reading on error states and do not update the value.
900 */
901 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
902 goto out;
903
904 local64_set(&event->count, val);
905 out:
906 raw_spin_unlock_irqrestore(&cache_lock, flags);
907 }
908
909 static void __intel_cqm_event_count(void *info)
910 {
911 struct rmid_read *rr = info;
912 u64 val;
913
914 val = __rmid_read(rr->rmid);
915
916 if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
917 return;
918
919 atomic64_add(val, &rr->value);
920 }
921
922 static inline bool cqm_group_leader(struct perf_event *event)
923 {
924 return !list_empty(&event->hw.cqm_groups_entry);
925 }
926
927 static u64 intel_cqm_event_count(struct perf_event *event)
928 {
929 unsigned long flags;
930 struct rmid_read rr = {
931 .value = ATOMIC64_INIT(0),
932 };
933
934 /*
935 * We only need to worry about task events. System-wide events
936 * are handled like usual, i.e. entirely with
937 * intel_cqm_event_read().
938 */
939 if (event->cpu != -1)
940 return __perf_event_count(event);
941
942 /*
943 * Only the group leader gets to report values. This stops us
944 * reporting duplicate values to userspace, and gives us a clear
945 * rule for which task gets to report the values.
946 *
947 * Note that it is impossible to attribute these values to
948 * specific packages - we forfeit that ability when we create
949 * task events.
950 */
951 if (!cqm_group_leader(event))
952 return 0;
953
954 /*
955 * Getting up-to-date values requires an SMP IPI which is not
956 * possible if we're being called in interrupt context. Return
957 * the cached values instead.
958 */
959 if (unlikely(in_interrupt()))
960 goto out;
961
962 /*
963 * Notice that we don't perform the reading of an RMID
964 * atomically, because we can't hold a spin lock across the
965 * IPIs.
966 *
967 * Speculatively perform the read, since @event might be
968 * assigned a different (possibly invalid) RMID while we're
969 * busying performing the IPI calls. It's therefore necessary to
970 * check @event's RMID afterwards, and if it has changed,
971 * discard the result of the read.
972 */
973 rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
974
975 if (!__rmid_valid(rr.rmid))
976 goto out;
977
978 on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
979
980 raw_spin_lock_irqsave(&cache_lock, flags);
981 if (event->hw.cqm_rmid == rr.rmid)
982 local64_set(&event->count, atomic64_read(&rr.value));
983 raw_spin_unlock_irqrestore(&cache_lock, flags);
984 out:
985 return __perf_event_count(event);
986 }
987
988 static void intel_cqm_event_start(struct perf_event *event, int mode)
989 {
990 struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
991 u32 rmid = event->hw.cqm_rmid;
992
993 if (!(event->hw.cqm_state & PERF_HES_STOPPED))
994 return;
995
996 event->hw.cqm_state &= ~PERF_HES_STOPPED;
997
998 if (state->rmid_usecnt++) {
999 if (!WARN_ON_ONCE(state->rmid != rmid))
1000 return;
1001 } else {
1002 WARN_ON_ONCE(state->rmid);
1003 }
1004
1005 state->rmid = rmid;
1006 wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
1007 }
1008
1009 static void intel_cqm_event_stop(struct perf_event *event, int mode)
1010 {
1011 struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1012
1013 if (event->hw.cqm_state & PERF_HES_STOPPED)
1014 return;
1015
1016 event->hw.cqm_state |= PERF_HES_STOPPED;
1017
1018 intel_cqm_event_read(event);
1019
1020 if (!--state->rmid_usecnt) {
1021 state->rmid = 0;
1022 wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
1023 } else {
1024 WARN_ON_ONCE(!state->rmid);
1025 }
1026 }
1027
1028 static int intel_cqm_event_add(struct perf_event *event, int mode)
1029 {
1030 unsigned long flags;
1031 u32 rmid;
1032
1033 raw_spin_lock_irqsave(&cache_lock, flags);
1034
1035 event->hw.cqm_state = PERF_HES_STOPPED;
1036 rmid = event->hw.cqm_rmid;
1037
1038 if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1039 intel_cqm_event_start(event, mode);
1040
1041 raw_spin_unlock_irqrestore(&cache_lock, flags);
1042
1043 return 0;
1044 }
1045
1046 static void intel_cqm_event_destroy(struct perf_event *event)
1047 {
1048 struct perf_event *group_other = NULL;
1049
1050 mutex_lock(&cache_mutex);
1051
1052 /*
1053 * If there's another event in this group...
1054 */
1055 if (!list_empty(&event->hw.cqm_group_entry)) {
1056 group_other = list_first_entry(&event->hw.cqm_group_entry,
1057 struct perf_event,
1058 hw.cqm_group_entry);
1059 list_del(&event->hw.cqm_group_entry);
1060 }
1061
1062 /*
1063 * And we're the group leader..
1064 */
1065 if (cqm_group_leader(event)) {
1066 /*
1067 * If there was a group_other, make that leader, otherwise
1068 * destroy the group and return the RMID.
1069 */
1070 if (group_other) {
1071 list_replace(&event->hw.cqm_groups_entry,
1072 &group_other->hw.cqm_groups_entry);
1073 } else {
1074 u32 rmid = event->hw.cqm_rmid;
1075
1076 if (__rmid_valid(rmid))
1077 __put_rmid(rmid);
1078 list_del(&event->hw.cqm_groups_entry);
1079 }
1080 }
1081
1082 mutex_unlock(&cache_mutex);
1083 }
1084
1085 static int intel_cqm_event_init(struct perf_event *event)
1086 {
1087 struct perf_event *group = NULL;
1088 bool rotate = false;
1089
1090 if (event->attr.type != intel_cqm_pmu.type)
1091 return -ENOENT;
1092
1093 if (event->attr.config & ~QOS_EVENT_MASK)
1094 return -EINVAL;
1095
1096 /* unsupported modes and filters */
1097 if (event->attr.exclude_user ||
1098 event->attr.exclude_kernel ||
1099 event->attr.exclude_hv ||
1100 event->attr.exclude_idle ||
1101 event->attr.exclude_host ||
1102 event->attr.exclude_guest ||
1103 event->attr.sample_period) /* no sampling */
1104 return -EINVAL;
1105
1106 INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1107 INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1108
1109 event->destroy = intel_cqm_event_destroy;
1110
1111 mutex_lock(&cache_mutex);
1112
1113 /* Will also set rmid */
1114 intel_cqm_setup_event(event, &group);
1115
1116 if (group) {
1117 list_add_tail(&event->hw.cqm_group_entry,
1118 &group->hw.cqm_group_entry);
1119 } else {
1120 list_add_tail(&event->hw.cqm_groups_entry,
1121 &cache_groups);
1122
1123 /*
1124 * All RMIDs are either in use or have recently been
1125 * used. Kick the rotation worker to clean/free some.
1126 *
1127 * We only do this for the group leader, rather than for
1128 * every event in a group to save on needless work.
1129 */
1130 if (!__rmid_valid(event->hw.cqm_rmid))
1131 rotate = true;
1132 }
1133
1134 mutex_unlock(&cache_mutex);
1135
1136 if (rotate)
1137 schedule_delayed_work(&intel_cqm_rmid_work, 0);
1138
1139 return 0;
1140 }
1141
1142 EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1143 EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1144 EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1145 EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1146 EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1147
1148 static struct attribute *intel_cqm_events_attr[] = {
1149 EVENT_PTR(intel_cqm_llc),
1150 EVENT_PTR(intel_cqm_llc_pkg),
1151 EVENT_PTR(intel_cqm_llc_unit),
1152 EVENT_PTR(intel_cqm_llc_scale),
1153 EVENT_PTR(intel_cqm_llc_snapshot),
1154 NULL,
1155 };
1156
1157 static struct attribute_group intel_cqm_events_group = {
1158 .name = "events",
1159 .attrs = intel_cqm_events_attr,
1160 };
1161
1162 PMU_FORMAT_ATTR(event, "config:0-7");
1163 static struct attribute *intel_cqm_formats_attr[] = {
1164 &format_attr_event.attr,
1165 NULL,
1166 };
1167
1168 static struct attribute_group intel_cqm_format_group = {
1169 .name = "format",
1170 .attrs = intel_cqm_formats_attr,
1171 };
1172
1173 static ssize_t
1174 max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1175 char *page)
1176 {
1177 ssize_t rv;
1178
1179 mutex_lock(&cache_mutex);
1180 rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1181 mutex_unlock(&cache_mutex);
1182
1183 return rv;
1184 }
1185
1186 static ssize_t
1187 max_recycle_threshold_store(struct device *dev,
1188 struct device_attribute *attr,
1189 const char *buf, size_t count)
1190 {
1191 unsigned int bytes, cachelines;
1192 int ret;
1193
1194 ret = kstrtouint(buf, 0, &bytes);
1195 if (ret)
1196 return ret;
1197
1198 mutex_lock(&cache_mutex);
1199
1200 __intel_cqm_max_threshold = bytes;
1201 cachelines = bytes / cqm_l3_scale;
1202
1203 /*
1204 * The new maximum takes effect immediately.
1205 */
1206 if (__intel_cqm_threshold > cachelines)
1207 __intel_cqm_threshold = cachelines;
1208
1209 mutex_unlock(&cache_mutex);
1210
1211 return count;
1212 }
1213
1214 static DEVICE_ATTR_RW(max_recycle_threshold);
1215
1216 static struct attribute *intel_cqm_attrs[] = {
1217 &dev_attr_max_recycle_threshold.attr,
1218 NULL,
1219 };
1220
1221 static const struct attribute_group intel_cqm_group = {
1222 .attrs = intel_cqm_attrs,
1223 };
1224
1225 static const struct attribute_group *intel_cqm_attr_groups[] = {
1226 &intel_cqm_events_group,
1227 &intel_cqm_format_group,
1228 &intel_cqm_group,
1229 NULL,
1230 };
1231
1232 static struct pmu intel_cqm_pmu = {
1233 .hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1234 .attr_groups = intel_cqm_attr_groups,
1235 .task_ctx_nr = perf_sw_context,
1236 .event_init = intel_cqm_event_init,
1237 .add = intel_cqm_event_add,
1238 .del = intel_cqm_event_stop,
1239 .start = intel_cqm_event_start,
1240 .stop = intel_cqm_event_stop,
1241 .read = intel_cqm_event_read,
1242 .count = intel_cqm_event_count,
1243 };
1244
1245 static inline void cqm_pick_event_reader(int cpu)
1246 {
1247 int phys_id = topology_physical_package_id(cpu);
1248 int i;
1249
1250 for_each_cpu(i, &cqm_cpumask) {
1251 if (phys_id == topology_physical_package_id(i))
1252 return; /* already got reader for this socket */
1253 }
1254
1255 cpumask_set_cpu(cpu, &cqm_cpumask);
1256 }
1257
1258 static void intel_cqm_cpu_prepare(unsigned int cpu)
1259 {
1260 struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
1261 struct cpuinfo_x86 *c = &cpu_data(cpu);
1262
1263 state->rmid = 0;
1264 state->closid = 0;
1265 state->rmid_usecnt = 0;
1266
1267 WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1268 WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1269 }
1270
1271 static void intel_cqm_cpu_exit(unsigned int cpu)
1272 {
1273 int phys_id = topology_physical_package_id(cpu);
1274 int i;
1275
1276 /*
1277 * Is @cpu a designated cqm reader?
1278 */
1279 if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1280 return;
1281
1282 for_each_online_cpu(i) {
1283 if (i == cpu)
1284 continue;
1285
1286 if (phys_id == topology_physical_package_id(i)) {
1287 cpumask_set_cpu(i, &cqm_cpumask);
1288 break;
1289 }
1290 }
1291 }
1292
1293 static int intel_cqm_cpu_notifier(struct notifier_block *nb,
1294 unsigned long action, void *hcpu)
1295 {
1296 unsigned int cpu = (unsigned long)hcpu;
1297
1298 switch (action & ~CPU_TASKS_FROZEN) {
1299 case CPU_UP_PREPARE:
1300 intel_cqm_cpu_prepare(cpu);
1301 break;
1302 case CPU_DOWN_PREPARE:
1303 intel_cqm_cpu_exit(cpu);
1304 break;
1305 case CPU_STARTING:
1306 cqm_pick_event_reader(cpu);
1307 break;
1308 }
1309
1310 return NOTIFY_OK;
1311 }
1312
1313 static const struct x86_cpu_id intel_cqm_match[] = {
1314 { .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1315 {}
1316 };
1317
1318 static int __init intel_cqm_init(void)
1319 {
1320 char *str, scale[20];
1321 int i, cpu, ret;
1322
1323 if (!x86_match_cpu(intel_cqm_match))
1324 return -ENODEV;
1325
1326 cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1327
1328 /*
1329 * It's possible that not all resources support the same number
1330 * of RMIDs. Instead of making scheduling much more complicated
1331 * (where we have to match a task's RMID to a cpu that supports
1332 * that many RMIDs) just find the minimum RMIDs supported across
1333 * all cpus.
1334 *
1335 * Also, check that the scales match on all cpus.
1336 */
1337 cpu_notifier_register_begin();
1338
1339 for_each_online_cpu(cpu) {
1340 struct cpuinfo_x86 *c = &cpu_data(cpu);
1341
1342 if (c->x86_cache_max_rmid < cqm_max_rmid)
1343 cqm_max_rmid = c->x86_cache_max_rmid;
1344
1345 if (c->x86_cache_occ_scale != cqm_l3_scale) {
1346 pr_err("Multiple LLC scale values, disabling\n");
1347 ret = -EINVAL;
1348 goto out;
1349 }
1350 }
1351
1352 /*
1353 * A reasonable upper limit on the max threshold is the number
1354 * of lines tagged per RMID if all RMIDs have the same number of
1355 * lines tagged in the LLC.
1356 *
1357 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1358 */
1359 __intel_cqm_max_threshold =
1360 boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1361
1362 snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1363 str = kstrdup(scale, GFP_KERNEL);
1364 if (!str) {
1365 ret = -ENOMEM;
1366 goto out;
1367 }
1368
1369 event_attr_intel_cqm_llc_scale.event_str = str;
1370
1371 ret = intel_cqm_setup_rmid_cache();
1372 if (ret)
1373 goto out;
1374
1375 for_each_online_cpu(i) {
1376 intel_cqm_cpu_prepare(i);
1377 cqm_pick_event_reader(i);
1378 }
1379
1380 __perf_cpu_notifier(intel_cqm_cpu_notifier);
1381
1382 ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1383 if (ret)
1384 pr_err("Intel CQM perf registration failed: %d\n", ret);
1385 else
1386 pr_info("Intel CQM monitoring enabled\n");
1387
1388 out:
1389 cpu_notifier_register_done();
1390
1391 return ret;
1392 }
1393 device_initcall(intel_cqm_init);
This page took 0.092635 seconds and 5 git commands to generate.