72529c237e6ef48eb1652b33e43e997c9fa642fb
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel_ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE 24
12
13 #define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE PAGE_SIZE
15 #define PEBS_FIXUP_SIZE PAGE_SIZE
16
17 /*
18 * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21 u32 flags, ip;
22 u32 ax, bc, cx, dx;
23 u32 si, di, bp, sp;
24 };
25
26 */
27
28 union intel_x86_pebs_dse {
29 u64 val;
30 struct {
31 unsigned int ld_dse:4;
32 unsigned int ld_stlb_miss:1;
33 unsigned int ld_locked:1;
34 unsigned int ld_reserved:26;
35 };
36 struct {
37 unsigned int st_l1d_hit:1;
38 unsigned int st_reserved1:3;
39 unsigned int st_stlb_miss:1;
40 unsigned int st_locked:1;
41 unsigned int st_reserved2:26;
42 };
43 };
44
45
46 /*
47 * Map PEBS Load Latency Data Source encodings to generic
48 * memory data source information
49 */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 static const u64 pebs_data_source[] = {
55 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
56 OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */
57 OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
58 OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
59 OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
60 OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
61 OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
62 OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
63 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
64 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
65 OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
66 OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
67 OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
68 OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
69 OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */
70 OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
71 };
72
73 static u64 precise_store_data(u64 status)
74 {
75 union intel_x86_pebs_dse dse;
76 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
77
78 dse.val = status;
79
80 /*
81 * bit 4: TLB access
82 * 1 = stored missed 2nd level TLB
83 *
84 * so it either hit the walker or the OS
85 * otherwise hit 2nd level TLB
86 */
87 if (dse.st_stlb_miss)
88 val |= P(TLB, MISS);
89 else
90 val |= P(TLB, HIT);
91
92 /*
93 * bit 0: hit L1 data cache
94 * if not set, then all we know is that
95 * it missed L1D
96 */
97 if (dse.st_l1d_hit)
98 val |= P(LVL, HIT);
99 else
100 val |= P(LVL, MISS);
101
102 /*
103 * bit 5: Locked prefix
104 */
105 if (dse.st_locked)
106 val |= P(LOCK, LOCKED);
107
108 return val;
109 }
110
111 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 {
113 union perf_mem_data_src dse;
114
115 dse.val = PERF_MEM_NA;
116
117 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
118 dse.mem_op = PERF_MEM_OP_STORE;
119 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
120 dse.mem_op = PERF_MEM_OP_LOAD;
121
122 /*
123 * L1 info only valid for following events:
124 *
125 * MEM_UOPS_RETIRED.STLB_MISS_STORES
126 * MEM_UOPS_RETIRED.LOCK_STORES
127 * MEM_UOPS_RETIRED.SPLIT_STORES
128 * MEM_UOPS_RETIRED.ALL_STORES
129 */
130 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
131 if (status & 1)
132 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
133 else
134 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
135 }
136 return dse.val;
137 }
138
139 static u64 load_latency_data(u64 status)
140 {
141 union intel_x86_pebs_dse dse;
142 u64 val;
143 int model = boot_cpu_data.x86_model;
144 int fam = boot_cpu_data.x86;
145
146 dse.val = status;
147
148 /*
149 * use the mapping table for bit 0-3
150 */
151 val = pebs_data_source[dse.ld_dse];
152
153 /*
154 * Nehalem models do not support TLB, Lock infos
155 */
156 if (fam == 0x6 && (model == 26 || model == 30
157 || model == 31 || model == 46)) {
158 val |= P(TLB, NA) | P(LOCK, NA);
159 return val;
160 }
161 /*
162 * bit 4: TLB access
163 * 0 = did not miss 2nd level TLB
164 * 1 = missed 2nd level TLB
165 */
166 if (dse.ld_stlb_miss)
167 val |= P(TLB, MISS) | P(TLB, L2);
168 else
169 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
170
171 /*
172 * bit 5: locked prefix
173 */
174 if (dse.ld_locked)
175 val |= P(LOCK, LOCKED);
176
177 return val;
178 }
179
180 struct pebs_record_core {
181 u64 flags, ip;
182 u64 ax, bx, cx, dx;
183 u64 si, di, bp, sp;
184 u64 r8, r9, r10, r11;
185 u64 r12, r13, r14, r15;
186 };
187
188 struct pebs_record_nhm {
189 u64 flags, ip;
190 u64 ax, bx, cx, dx;
191 u64 si, di, bp, sp;
192 u64 r8, r9, r10, r11;
193 u64 r12, r13, r14, r15;
194 u64 status, dla, dse, lat;
195 };
196
197 /*
198 * Same as pebs_record_nhm, with two additional fields.
199 */
200 struct pebs_record_hsw {
201 u64 flags, ip;
202 u64 ax, bx, cx, dx;
203 u64 si, di, bp, sp;
204 u64 r8, r9, r10, r11;
205 u64 r12, r13, r14, r15;
206 u64 status, dla, dse, lat;
207 u64 real_ip, tsx_tuning;
208 };
209
210 union hsw_tsx_tuning {
211 struct {
212 u32 cycles_last_block : 32,
213 hle_abort : 1,
214 rtm_abort : 1,
215 instruction_abort : 1,
216 non_instruction_abort : 1,
217 retry : 1,
218 data_conflict : 1,
219 capacity_writes : 1,
220 capacity_reads : 1;
221 };
222 u64 value;
223 };
224
225 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
226
227 void init_debug_store_on_cpu(int cpu)
228 {
229 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
230
231 if (!ds)
232 return;
233
234 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
235 (u32)((u64)(unsigned long)ds),
236 (u32)((u64)(unsigned long)ds >> 32));
237 }
238
239 void fini_debug_store_on_cpu(int cpu)
240 {
241 if (!per_cpu(cpu_hw_events, cpu).ds)
242 return;
243
244 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
245 }
246
247 static DEFINE_PER_CPU(void *, insn_buffer);
248
249 static int alloc_pebs_buffer(int cpu)
250 {
251 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
252 int node = cpu_to_node(cpu);
253 int max, thresh = 1; /* always use a single PEBS record */
254 void *buffer, *ibuffer;
255
256 if (!x86_pmu.pebs)
257 return 0;
258
259 buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
260 if (unlikely(!buffer))
261 return -ENOMEM;
262
263 /*
264 * HSW+ already provides us the eventing ip; no need to allocate this
265 * buffer then.
266 */
267 if (x86_pmu.intel_cap.pebs_format < 2) {
268 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
269 if (!ibuffer) {
270 kfree(buffer);
271 return -ENOMEM;
272 }
273 per_cpu(insn_buffer, cpu) = ibuffer;
274 }
275
276 max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
277
278 ds->pebs_buffer_base = (u64)(unsigned long)buffer;
279 ds->pebs_index = ds->pebs_buffer_base;
280 ds->pebs_absolute_maximum = ds->pebs_buffer_base +
281 max * x86_pmu.pebs_record_size;
282
283 ds->pebs_interrupt_threshold = ds->pebs_buffer_base +
284 thresh * x86_pmu.pebs_record_size;
285
286 return 0;
287 }
288
289 static void release_pebs_buffer(int cpu)
290 {
291 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
292
293 if (!ds || !x86_pmu.pebs)
294 return;
295
296 kfree(per_cpu(insn_buffer, cpu));
297 per_cpu(insn_buffer, cpu) = NULL;
298
299 kfree((void *)(unsigned long)ds->pebs_buffer_base);
300 ds->pebs_buffer_base = 0;
301 }
302
303 static int alloc_bts_buffer(int cpu)
304 {
305 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
306 int node = cpu_to_node(cpu);
307 int max, thresh;
308 void *buffer;
309
310 if (!x86_pmu.bts)
311 return 0;
312
313 buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
314 if (unlikely(!buffer)) {
315 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
316 return -ENOMEM;
317 }
318
319 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
320 thresh = max / 16;
321
322 ds->bts_buffer_base = (u64)(unsigned long)buffer;
323 ds->bts_index = ds->bts_buffer_base;
324 ds->bts_absolute_maximum = ds->bts_buffer_base +
325 max * BTS_RECORD_SIZE;
326 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
327 thresh * BTS_RECORD_SIZE;
328
329 return 0;
330 }
331
332 static void release_bts_buffer(int cpu)
333 {
334 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
335
336 if (!ds || !x86_pmu.bts)
337 return;
338
339 kfree((void *)(unsigned long)ds->bts_buffer_base);
340 ds->bts_buffer_base = 0;
341 }
342
343 static int alloc_ds_buffer(int cpu)
344 {
345 int node = cpu_to_node(cpu);
346 struct debug_store *ds;
347
348 ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
349 if (unlikely(!ds))
350 return -ENOMEM;
351
352 per_cpu(cpu_hw_events, cpu).ds = ds;
353
354 return 0;
355 }
356
357 static void release_ds_buffer(int cpu)
358 {
359 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
360
361 if (!ds)
362 return;
363
364 per_cpu(cpu_hw_events, cpu).ds = NULL;
365 kfree(ds);
366 }
367
368 void release_ds_buffers(void)
369 {
370 int cpu;
371
372 if (!x86_pmu.bts && !x86_pmu.pebs)
373 return;
374
375 get_online_cpus();
376 for_each_online_cpu(cpu)
377 fini_debug_store_on_cpu(cpu);
378
379 for_each_possible_cpu(cpu) {
380 release_pebs_buffer(cpu);
381 release_bts_buffer(cpu);
382 release_ds_buffer(cpu);
383 }
384 put_online_cpus();
385 }
386
387 void reserve_ds_buffers(void)
388 {
389 int bts_err = 0, pebs_err = 0;
390 int cpu;
391
392 x86_pmu.bts_active = 0;
393 x86_pmu.pebs_active = 0;
394
395 if (!x86_pmu.bts && !x86_pmu.pebs)
396 return;
397
398 if (!x86_pmu.bts)
399 bts_err = 1;
400
401 if (!x86_pmu.pebs)
402 pebs_err = 1;
403
404 get_online_cpus();
405
406 for_each_possible_cpu(cpu) {
407 if (alloc_ds_buffer(cpu)) {
408 bts_err = 1;
409 pebs_err = 1;
410 }
411
412 if (!bts_err && alloc_bts_buffer(cpu))
413 bts_err = 1;
414
415 if (!pebs_err && alloc_pebs_buffer(cpu))
416 pebs_err = 1;
417
418 if (bts_err && pebs_err)
419 break;
420 }
421
422 if (bts_err) {
423 for_each_possible_cpu(cpu)
424 release_bts_buffer(cpu);
425 }
426
427 if (pebs_err) {
428 for_each_possible_cpu(cpu)
429 release_pebs_buffer(cpu);
430 }
431
432 if (bts_err && pebs_err) {
433 for_each_possible_cpu(cpu)
434 release_ds_buffer(cpu);
435 } else {
436 if (x86_pmu.bts && !bts_err)
437 x86_pmu.bts_active = 1;
438
439 if (x86_pmu.pebs && !pebs_err)
440 x86_pmu.pebs_active = 1;
441
442 for_each_online_cpu(cpu)
443 init_debug_store_on_cpu(cpu);
444 }
445
446 put_online_cpus();
447 }
448
449 /*
450 * BTS
451 */
452
453 struct event_constraint bts_constraint =
454 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
455
456 void intel_pmu_enable_bts(u64 config)
457 {
458 unsigned long debugctlmsr;
459
460 debugctlmsr = get_debugctlmsr();
461
462 debugctlmsr |= DEBUGCTLMSR_TR;
463 debugctlmsr |= DEBUGCTLMSR_BTS;
464 if (config & ARCH_PERFMON_EVENTSEL_INT)
465 debugctlmsr |= DEBUGCTLMSR_BTINT;
466
467 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
468 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
469
470 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
471 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
472
473 update_debugctlmsr(debugctlmsr);
474 }
475
476 void intel_pmu_disable_bts(void)
477 {
478 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
479 unsigned long debugctlmsr;
480
481 if (!cpuc->ds)
482 return;
483
484 debugctlmsr = get_debugctlmsr();
485
486 debugctlmsr &=
487 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
488 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
489
490 update_debugctlmsr(debugctlmsr);
491 }
492
493 int intel_pmu_drain_bts_buffer(void)
494 {
495 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
496 struct debug_store *ds = cpuc->ds;
497 struct bts_record {
498 u64 from;
499 u64 to;
500 u64 flags;
501 };
502 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
503 struct bts_record *at, *top;
504 struct perf_output_handle handle;
505 struct perf_event_header header;
506 struct perf_sample_data data;
507 struct pt_regs regs;
508
509 if (!event)
510 return 0;
511
512 if (!x86_pmu.bts_active)
513 return 0;
514
515 at = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
516 top = (struct bts_record *)(unsigned long)ds->bts_index;
517
518 if (top <= at)
519 return 0;
520
521 memset(&regs, 0, sizeof(regs));
522
523 ds->bts_index = ds->bts_buffer_base;
524
525 perf_sample_data_init(&data, 0, event->hw.last_period);
526
527 /*
528 * Prepare a generic sample, i.e. fill in the invariant fields.
529 * We will overwrite the from and to address before we output
530 * the sample.
531 */
532 perf_prepare_sample(&header, &data, event, &regs);
533
534 if (perf_output_begin(&handle, event, header.size * (top - at)))
535 return 1;
536
537 for (; at < top; at++) {
538 data.ip = at->from;
539 data.addr = at->to;
540
541 perf_output_sample(&handle, &header, &data, event);
542 }
543
544 perf_output_end(&handle);
545
546 /* There's new data available. */
547 event->hw.interrupts++;
548 event->pending_kill = POLL_IN;
549 return 1;
550 }
551
552 /*
553 * PEBS
554 */
555 struct event_constraint intel_core2_pebs_event_constraints[] = {
556 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
557 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
558 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
559 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
560 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
561 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
562 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
563 EVENT_CONSTRAINT_END
564 };
565
566 struct event_constraint intel_atom_pebs_event_constraints[] = {
567 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
568 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
569 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
570 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
571 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
572 EVENT_CONSTRAINT_END
573 };
574
575 struct event_constraint intel_slm_pebs_event_constraints[] = {
576 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
577 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
578 /* Allow all events as PEBS with no flags */
579 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
580 EVENT_CONSTRAINT_END
581 };
582
583 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
584 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
585 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
586 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
587 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
588 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
589 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
590 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
591 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
592 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
593 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
594 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
595 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
596 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
597 EVENT_CONSTRAINT_END
598 };
599
600 struct event_constraint intel_westmere_pebs_event_constraints[] = {
601 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
602 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
603 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
604 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
605 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
606 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
607 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
608 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
609 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
610 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
611 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
612 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
613 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
614 EVENT_CONSTRAINT_END
615 };
616
617 struct event_constraint intel_snb_pebs_event_constraints[] = {
618 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
619 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
620 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
621 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
622 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
623 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
624 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
625 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
626 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
627 /* Allow all events as PEBS with no flags */
628 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
629 EVENT_CONSTRAINT_END
630 };
631
632 struct event_constraint intel_ivb_pebs_event_constraints[] = {
633 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
634 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
635 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
636 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
637 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
638 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
639 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
640 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
641 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
642 /* Allow all events as PEBS with no flags */
643 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
644 EVENT_CONSTRAINT_END
645 };
646
647 struct event_constraint intel_hsw_pebs_event_constraints[] = {
648 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
649 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
650 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
651 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
652 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
653 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
654 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
655 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
656 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
657 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
658 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
659 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
660 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
661 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
662 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
663 /* Allow all events as PEBS with no flags */
664 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
665 EVENT_CONSTRAINT_END
666 };
667
668 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
669 {
670 struct event_constraint *c;
671
672 if (!event->attr.precise_ip)
673 return NULL;
674
675 if (x86_pmu.pebs_constraints) {
676 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
677 if ((event->hw.config & c->cmask) == c->code) {
678 event->hw.flags |= c->flags;
679 return c;
680 }
681 }
682 }
683
684 return &emptyconstraint;
685 }
686
687 void intel_pmu_pebs_enable(struct perf_event *event)
688 {
689 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
690 struct hw_perf_event *hwc = &event->hw;
691 struct debug_store *ds = cpuc->ds;
692
693 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
694
695 cpuc->pebs_enabled |= 1ULL << hwc->idx;
696
697 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
698 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
699 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
700 cpuc->pebs_enabled |= 1ULL << 63;
701
702 /* Use auto-reload if possible to save a MSR write in the PMI */
703 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
704 ds->pebs_event_reset[hwc->idx] =
705 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
706 }
707 }
708
709 void intel_pmu_pebs_disable(struct perf_event *event)
710 {
711 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
712 struct hw_perf_event *hwc = &event->hw;
713
714 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
715
716 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
717 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
718 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
719 cpuc->pebs_enabled &= ~(1ULL << 63);
720
721 if (cpuc->enabled)
722 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
723
724 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
725 }
726
727 void intel_pmu_pebs_enable_all(void)
728 {
729 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
730
731 if (cpuc->pebs_enabled)
732 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
733 }
734
735 void intel_pmu_pebs_disable_all(void)
736 {
737 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
738
739 if (cpuc->pebs_enabled)
740 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
741 }
742
743 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
744 {
745 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
746 unsigned long from = cpuc->lbr_entries[0].from;
747 unsigned long old_to, to = cpuc->lbr_entries[0].to;
748 unsigned long ip = regs->ip;
749 int is_64bit = 0;
750 void *kaddr;
751 int size;
752
753 /*
754 * We don't need to fixup if the PEBS assist is fault like
755 */
756 if (!x86_pmu.intel_cap.pebs_trap)
757 return 1;
758
759 /*
760 * No LBR entry, no basic block, no rewinding
761 */
762 if (!cpuc->lbr_stack.nr || !from || !to)
763 return 0;
764
765 /*
766 * Basic blocks should never cross user/kernel boundaries
767 */
768 if (kernel_ip(ip) != kernel_ip(to))
769 return 0;
770
771 /*
772 * unsigned math, either ip is before the start (impossible) or
773 * the basic block is larger than 1 page (sanity)
774 */
775 if ((ip - to) > PEBS_FIXUP_SIZE)
776 return 0;
777
778 /*
779 * We sampled a branch insn, rewind using the LBR stack
780 */
781 if (ip == to) {
782 set_linear_ip(regs, from);
783 return 1;
784 }
785
786 size = ip - to;
787 if (!kernel_ip(ip)) {
788 int bytes;
789 u8 *buf = this_cpu_read(insn_buffer);
790
791 /* 'size' must fit our buffer, see above */
792 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
793 if (bytes != 0)
794 return 0;
795
796 kaddr = buf;
797 } else {
798 kaddr = (void *)to;
799 }
800
801 do {
802 struct insn insn;
803
804 old_to = to;
805
806 #ifdef CONFIG_X86_64
807 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
808 #endif
809 insn_init(&insn, kaddr, size, is_64bit);
810 insn_get_length(&insn);
811 /*
812 * Make sure there was not a problem decoding the
813 * instruction and getting the length. This is
814 * doubly important because we have an infinite
815 * loop if insn.length=0.
816 */
817 if (!insn.length)
818 break;
819
820 to += insn.length;
821 kaddr += insn.length;
822 size -= insn.length;
823 } while (to < ip);
824
825 if (to == ip) {
826 set_linear_ip(regs, old_to);
827 return 1;
828 }
829
830 /*
831 * Even though we decoded the basic block, the instruction stream
832 * never matched the given IP, either the TO or the IP got corrupted.
833 */
834 return 0;
835 }
836
837 static inline u64 intel_hsw_weight(struct pebs_record_hsw *pebs)
838 {
839 if (pebs->tsx_tuning) {
840 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
841 return tsx.cycles_last_block;
842 }
843 return 0;
844 }
845
846 static inline u64 intel_hsw_transaction(struct pebs_record_hsw *pebs)
847 {
848 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
849
850 /* For RTM XABORTs also log the abort code from AX */
851 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
852 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
853 return txn;
854 }
855
856 static void setup_pebs_sample_data(struct perf_event *event,
857 struct pt_regs *iregs, void *__pebs,
858 struct perf_sample_data *data,
859 struct pt_regs *regs)
860 {
861 #define PERF_X86_EVENT_PEBS_HSW_PREC \
862 (PERF_X86_EVENT_PEBS_ST_HSW | \
863 PERF_X86_EVENT_PEBS_LD_HSW | \
864 PERF_X86_EVENT_PEBS_NA_HSW)
865 /*
866 * We cast to the biggest pebs_record but are careful not to
867 * unconditionally access the 'extra' entries.
868 */
869 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
870 struct pebs_record_hsw *pebs = __pebs;
871 u64 sample_type;
872 int fll, fst, dsrc;
873 int fl = event->hw.flags;
874
875 if (pebs == NULL)
876 return;
877
878 sample_type = event->attr.sample_type;
879 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
880
881 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
882 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
883
884 perf_sample_data_init(data, 0, event->hw.last_period);
885
886 data->period = event->hw.last_period;
887
888 /*
889 * Use latency for weight (only avail with PEBS-LL)
890 */
891 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
892 data->weight = pebs->lat;
893
894 /*
895 * data.data_src encodes the data source
896 */
897 if (dsrc) {
898 u64 val = PERF_MEM_NA;
899 if (fll)
900 val = load_latency_data(pebs->dse);
901 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
902 val = precise_datala_hsw(event, pebs->dse);
903 else if (fst)
904 val = precise_store_data(pebs->dse);
905 data->data_src.val = val;
906 }
907
908 /*
909 * We use the interrupt regs as a base because the PEBS record
910 * does not contain a full regs set, specifically it seems to
911 * lack segment descriptors, which get used by things like
912 * user_mode().
913 *
914 * In the simple case fix up only the IP and BP,SP regs, for
915 * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
916 * A possible PERF_SAMPLE_REGS will have to transfer all regs.
917 */
918 *regs = *iregs;
919 regs->flags = pebs->flags;
920 set_linear_ip(regs, pebs->ip);
921 regs->bp = pebs->bp;
922 regs->sp = pebs->sp;
923
924 if (sample_type & PERF_SAMPLE_REGS_INTR) {
925 regs->ax = pebs->ax;
926 regs->bx = pebs->bx;
927 regs->cx = pebs->cx;
928 regs->dx = pebs->dx;
929 regs->si = pebs->si;
930 regs->di = pebs->di;
931 regs->bp = pebs->bp;
932 regs->sp = pebs->sp;
933
934 regs->flags = pebs->flags;
935 #ifndef CONFIG_X86_32
936 regs->r8 = pebs->r8;
937 regs->r9 = pebs->r9;
938 regs->r10 = pebs->r10;
939 regs->r11 = pebs->r11;
940 regs->r12 = pebs->r12;
941 regs->r13 = pebs->r13;
942 regs->r14 = pebs->r14;
943 regs->r15 = pebs->r15;
944 #endif
945 }
946
947 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
948 regs->ip = pebs->real_ip;
949 regs->flags |= PERF_EFLAGS_EXACT;
950 } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
951 regs->flags |= PERF_EFLAGS_EXACT;
952 else
953 regs->flags &= ~PERF_EFLAGS_EXACT;
954
955 if ((sample_type & PERF_SAMPLE_ADDR) &&
956 x86_pmu.intel_cap.pebs_format >= 1)
957 data->addr = pebs->dla;
958
959 if (x86_pmu.intel_cap.pebs_format >= 2) {
960 /* Only set the TSX weight when no memory weight. */
961 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
962 data->weight = intel_hsw_weight(pebs);
963
964 if (sample_type & PERF_SAMPLE_TRANSACTION)
965 data->txn = intel_hsw_transaction(pebs);
966 }
967
968 if (has_branch_stack(event))
969 data->br_stack = &cpuc->lbr_stack;
970 }
971
972 static inline void *
973 get_next_pebs_record_by_bit(void *base, void *top, int bit)
974 {
975 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
976 void *at;
977 u64 pebs_status;
978
979 if (base == NULL)
980 return NULL;
981
982 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
983 struct pebs_record_nhm *p = at;
984
985 if (test_bit(bit, (unsigned long *)&p->status)) {
986
987 if (p->status == (1 << bit))
988 return at;
989
990 /* clear non-PEBS bit and re-check */
991 pebs_status = p->status & cpuc->pebs_enabled;
992 pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
993 if (pebs_status == (1 << bit))
994 return at;
995 }
996 }
997 return NULL;
998 }
999
1000 static void __intel_pmu_pebs_event(struct perf_event *event,
1001 struct pt_regs *iregs,
1002 void *base, void *top,
1003 int bit, int count)
1004 {
1005 struct perf_sample_data data;
1006 struct pt_regs regs;
1007 int i;
1008 void *at = get_next_pebs_record_by_bit(base, top, bit);
1009
1010 if (!intel_pmu_save_and_restart(event) &&
1011 !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1012 return;
1013
1014 if (count > 1) {
1015 for (i = 0; i < count - 1; i++) {
1016 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1017 perf_event_output(event, &data, &regs);
1018 at += x86_pmu.pebs_record_size;
1019 at = get_next_pebs_record_by_bit(at, top, bit);
1020 }
1021 }
1022
1023 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1024
1025 /*
1026 * All but the last records are processed.
1027 * The last one is left to be able to call the overflow handler.
1028 */
1029 if (perf_event_overflow(event, &data, &regs)) {
1030 x86_pmu_stop(event, 0);
1031 return;
1032 }
1033
1034 }
1035
1036 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1037 {
1038 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1039 struct debug_store *ds = cpuc->ds;
1040 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1041 struct pebs_record_core *at, *top;
1042 int n;
1043
1044 if (!x86_pmu.pebs_active)
1045 return;
1046
1047 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1048 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1049
1050 /*
1051 * Whatever else happens, drain the thing
1052 */
1053 ds->pebs_index = ds->pebs_buffer_base;
1054
1055 if (!test_bit(0, cpuc->active_mask))
1056 return;
1057
1058 WARN_ON_ONCE(!event);
1059
1060 if (!event->attr.precise_ip)
1061 return;
1062
1063 n = (top - at) / x86_pmu.pebs_record_size;
1064 if (n <= 0)
1065 return;
1066
1067 __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1068 }
1069
1070 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1071 {
1072 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1073 struct debug_store *ds = cpuc->ds;
1074 struct perf_event *event;
1075 void *base, *at, *top;
1076 int bit;
1077 short counts[MAX_PEBS_EVENTS] = {};
1078
1079 if (!x86_pmu.pebs_active)
1080 return;
1081
1082 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1083 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1084
1085 ds->pebs_index = ds->pebs_buffer_base;
1086
1087 if (unlikely(base >= top))
1088 return;
1089
1090 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1091 struct pebs_record_nhm *p = at;
1092
1093 bit = find_first_bit((unsigned long *)&p->status,
1094 x86_pmu.max_pebs_events);
1095 if (bit >= x86_pmu.max_pebs_events)
1096 continue;
1097 if (!test_bit(bit, cpuc->active_mask))
1098 continue;
1099 /*
1100 * The PEBS hardware does not deal well with the situation
1101 * when events happen near to each other and multiple bits
1102 * are set. But it should happen rarely.
1103 *
1104 * If these events include one PEBS and multiple non-PEBS
1105 * events, it doesn't impact PEBS record. The record will
1106 * be handled normally. (slow path)
1107 *
1108 * If these events include two or more PEBS events, the
1109 * records for the events can be collapsed into a single
1110 * one, and it's not possible to reconstruct all events
1111 * that caused the PEBS record. It's called collision.
1112 * If collision happened, the record will be dropped.
1113 *
1114 */
1115 if (p->status != (1 << bit)) {
1116 u64 pebs_status;
1117
1118 /* slow path */
1119 pebs_status = p->status & cpuc->pebs_enabled;
1120 pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1121 if (pebs_status != (1 << bit))
1122 continue;
1123 }
1124 counts[bit]++;
1125 }
1126
1127 for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1128 if (counts[bit] == 0)
1129 continue;
1130 event = cpuc->events[bit];
1131 WARN_ON_ONCE(!event);
1132 WARN_ON_ONCE(!event->attr.precise_ip);
1133
1134 __intel_pmu_pebs_event(event, iregs, base, top, bit, counts[bit]);
1135 }
1136 }
1137
1138 /*
1139 * BTS, PEBS probe and setup
1140 */
1141
1142 void __init intel_ds_init(void)
1143 {
1144 /*
1145 * No support for 32bit formats
1146 */
1147 if (!boot_cpu_has(X86_FEATURE_DTES64))
1148 return;
1149
1150 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1151 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1152 if (x86_pmu.pebs) {
1153 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1154 int format = x86_pmu.intel_cap.pebs_format;
1155
1156 switch (format) {
1157 case 0:
1158 printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
1159 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1160 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1161 break;
1162
1163 case 1:
1164 printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
1165 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1166 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1167 break;
1168
1169 case 2:
1170 pr_cont("PEBS fmt2%c, ", pebs_type);
1171 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1172 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1173 break;
1174
1175 default:
1176 printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
1177 x86_pmu.pebs = 0;
1178 }
1179 }
1180 }
1181
1182 void perf_restore_debug_store(void)
1183 {
1184 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1185
1186 if (!x86_pmu.bts && !x86_pmu.pebs)
1187 return;
1188
1189 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1190 }
This page took 0.098608 seconds and 4 git commands to generate.