x86/cpu: Convert printk(KERN_<LEVEL> ...) to pr_<level>(...)
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel_ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE 24
12
13 #define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE (PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE PAGE_SIZE
16
17 /*
18 * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21 u32 flags, ip;
22 u32 ax, bc, cx, dx;
23 u32 si, di, bp, sp;
24 };
25
26 */
27
28 union intel_x86_pebs_dse {
29 u64 val;
30 struct {
31 unsigned int ld_dse:4;
32 unsigned int ld_stlb_miss:1;
33 unsigned int ld_locked:1;
34 unsigned int ld_reserved:26;
35 };
36 struct {
37 unsigned int st_l1d_hit:1;
38 unsigned int st_reserved1:3;
39 unsigned int st_stlb_miss:1;
40 unsigned int st_locked:1;
41 unsigned int st_reserved2:26;
42 };
43 };
44
45
46 /*
47 * Map PEBS Load Latency Data Source encodings to generic
48 * memory data source information
49 */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 static const u64 pebs_data_source[] = {
55 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
56 OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */
57 OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
58 OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
59 OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
60 OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
61 OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
62 OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
63 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
64 OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
65 OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
66 OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
67 OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
68 OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
69 OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */
70 OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
71 };
72
73 static u64 precise_store_data(u64 status)
74 {
75 union intel_x86_pebs_dse dse;
76 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
77
78 dse.val = status;
79
80 /*
81 * bit 4: TLB access
82 * 1 = stored missed 2nd level TLB
83 *
84 * so it either hit the walker or the OS
85 * otherwise hit 2nd level TLB
86 */
87 if (dse.st_stlb_miss)
88 val |= P(TLB, MISS);
89 else
90 val |= P(TLB, HIT);
91
92 /*
93 * bit 0: hit L1 data cache
94 * if not set, then all we know is that
95 * it missed L1D
96 */
97 if (dse.st_l1d_hit)
98 val |= P(LVL, HIT);
99 else
100 val |= P(LVL, MISS);
101
102 /*
103 * bit 5: Locked prefix
104 */
105 if (dse.st_locked)
106 val |= P(LOCK, LOCKED);
107
108 return val;
109 }
110
111 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
112 {
113 union perf_mem_data_src dse;
114
115 dse.val = PERF_MEM_NA;
116
117 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
118 dse.mem_op = PERF_MEM_OP_STORE;
119 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
120 dse.mem_op = PERF_MEM_OP_LOAD;
121
122 /*
123 * L1 info only valid for following events:
124 *
125 * MEM_UOPS_RETIRED.STLB_MISS_STORES
126 * MEM_UOPS_RETIRED.LOCK_STORES
127 * MEM_UOPS_RETIRED.SPLIT_STORES
128 * MEM_UOPS_RETIRED.ALL_STORES
129 */
130 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
131 if (status & 1)
132 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
133 else
134 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
135 }
136 return dse.val;
137 }
138
139 static u64 load_latency_data(u64 status)
140 {
141 union intel_x86_pebs_dse dse;
142 u64 val;
143 int model = boot_cpu_data.x86_model;
144 int fam = boot_cpu_data.x86;
145
146 dse.val = status;
147
148 /*
149 * use the mapping table for bit 0-3
150 */
151 val = pebs_data_source[dse.ld_dse];
152
153 /*
154 * Nehalem models do not support TLB, Lock infos
155 */
156 if (fam == 0x6 && (model == 26 || model == 30
157 || model == 31 || model == 46)) {
158 val |= P(TLB, NA) | P(LOCK, NA);
159 return val;
160 }
161 /*
162 * bit 4: TLB access
163 * 0 = did not miss 2nd level TLB
164 * 1 = missed 2nd level TLB
165 */
166 if (dse.ld_stlb_miss)
167 val |= P(TLB, MISS) | P(TLB, L2);
168 else
169 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
170
171 /*
172 * bit 5: locked prefix
173 */
174 if (dse.ld_locked)
175 val |= P(LOCK, LOCKED);
176
177 return val;
178 }
179
180 struct pebs_record_core {
181 u64 flags, ip;
182 u64 ax, bx, cx, dx;
183 u64 si, di, bp, sp;
184 u64 r8, r9, r10, r11;
185 u64 r12, r13, r14, r15;
186 };
187
188 struct pebs_record_nhm {
189 u64 flags, ip;
190 u64 ax, bx, cx, dx;
191 u64 si, di, bp, sp;
192 u64 r8, r9, r10, r11;
193 u64 r12, r13, r14, r15;
194 u64 status, dla, dse, lat;
195 };
196
197 /*
198 * Same as pebs_record_nhm, with two additional fields.
199 */
200 struct pebs_record_hsw {
201 u64 flags, ip;
202 u64 ax, bx, cx, dx;
203 u64 si, di, bp, sp;
204 u64 r8, r9, r10, r11;
205 u64 r12, r13, r14, r15;
206 u64 status, dla, dse, lat;
207 u64 real_ip, tsx_tuning;
208 };
209
210 union hsw_tsx_tuning {
211 struct {
212 u32 cycles_last_block : 32,
213 hle_abort : 1,
214 rtm_abort : 1,
215 instruction_abort : 1,
216 non_instruction_abort : 1,
217 retry : 1,
218 data_conflict : 1,
219 capacity_writes : 1,
220 capacity_reads : 1;
221 };
222 u64 value;
223 };
224
225 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
226
227 /* Same as HSW, plus TSC */
228
229 struct pebs_record_skl {
230 u64 flags, ip;
231 u64 ax, bx, cx, dx;
232 u64 si, di, bp, sp;
233 u64 r8, r9, r10, r11;
234 u64 r12, r13, r14, r15;
235 u64 status, dla, dse, lat;
236 u64 real_ip, tsx_tuning;
237 u64 tsc;
238 };
239
240 void init_debug_store_on_cpu(int cpu)
241 {
242 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
243
244 if (!ds)
245 return;
246
247 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
248 (u32)((u64)(unsigned long)ds),
249 (u32)((u64)(unsigned long)ds >> 32));
250 }
251
252 void fini_debug_store_on_cpu(int cpu)
253 {
254 if (!per_cpu(cpu_hw_events, cpu).ds)
255 return;
256
257 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
258 }
259
260 static DEFINE_PER_CPU(void *, insn_buffer);
261
262 static int alloc_pebs_buffer(int cpu)
263 {
264 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
265 int node = cpu_to_node(cpu);
266 int max;
267 void *buffer, *ibuffer;
268
269 if (!x86_pmu.pebs)
270 return 0;
271
272 buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
273 if (unlikely(!buffer))
274 return -ENOMEM;
275
276 /*
277 * HSW+ already provides us the eventing ip; no need to allocate this
278 * buffer then.
279 */
280 if (x86_pmu.intel_cap.pebs_format < 2) {
281 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
282 if (!ibuffer) {
283 kfree(buffer);
284 return -ENOMEM;
285 }
286 per_cpu(insn_buffer, cpu) = ibuffer;
287 }
288
289 max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
290
291 ds->pebs_buffer_base = (u64)(unsigned long)buffer;
292 ds->pebs_index = ds->pebs_buffer_base;
293 ds->pebs_absolute_maximum = ds->pebs_buffer_base +
294 max * x86_pmu.pebs_record_size;
295
296 return 0;
297 }
298
299 static void release_pebs_buffer(int cpu)
300 {
301 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
302
303 if (!ds || !x86_pmu.pebs)
304 return;
305
306 kfree(per_cpu(insn_buffer, cpu));
307 per_cpu(insn_buffer, cpu) = NULL;
308
309 kfree((void *)(unsigned long)ds->pebs_buffer_base);
310 ds->pebs_buffer_base = 0;
311 }
312
313 static int alloc_bts_buffer(int cpu)
314 {
315 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
316 int node = cpu_to_node(cpu);
317 int max, thresh;
318 void *buffer;
319
320 if (!x86_pmu.bts)
321 return 0;
322
323 buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
324 if (unlikely(!buffer)) {
325 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
326 return -ENOMEM;
327 }
328
329 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
330 thresh = max / 16;
331
332 ds->bts_buffer_base = (u64)(unsigned long)buffer;
333 ds->bts_index = ds->bts_buffer_base;
334 ds->bts_absolute_maximum = ds->bts_buffer_base +
335 max * BTS_RECORD_SIZE;
336 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
337 thresh * BTS_RECORD_SIZE;
338
339 return 0;
340 }
341
342 static void release_bts_buffer(int cpu)
343 {
344 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
345
346 if (!ds || !x86_pmu.bts)
347 return;
348
349 kfree((void *)(unsigned long)ds->bts_buffer_base);
350 ds->bts_buffer_base = 0;
351 }
352
353 static int alloc_ds_buffer(int cpu)
354 {
355 int node = cpu_to_node(cpu);
356 struct debug_store *ds;
357
358 ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
359 if (unlikely(!ds))
360 return -ENOMEM;
361
362 per_cpu(cpu_hw_events, cpu).ds = ds;
363
364 return 0;
365 }
366
367 static void release_ds_buffer(int cpu)
368 {
369 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
370
371 if (!ds)
372 return;
373
374 per_cpu(cpu_hw_events, cpu).ds = NULL;
375 kfree(ds);
376 }
377
378 void release_ds_buffers(void)
379 {
380 int cpu;
381
382 if (!x86_pmu.bts && !x86_pmu.pebs)
383 return;
384
385 get_online_cpus();
386 for_each_online_cpu(cpu)
387 fini_debug_store_on_cpu(cpu);
388
389 for_each_possible_cpu(cpu) {
390 release_pebs_buffer(cpu);
391 release_bts_buffer(cpu);
392 release_ds_buffer(cpu);
393 }
394 put_online_cpus();
395 }
396
397 void reserve_ds_buffers(void)
398 {
399 int bts_err = 0, pebs_err = 0;
400 int cpu;
401
402 x86_pmu.bts_active = 0;
403 x86_pmu.pebs_active = 0;
404
405 if (!x86_pmu.bts && !x86_pmu.pebs)
406 return;
407
408 if (!x86_pmu.bts)
409 bts_err = 1;
410
411 if (!x86_pmu.pebs)
412 pebs_err = 1;
413
414 get_online_cpus();
415
416 for_each_possible_cpu(cpu) {
417 if (alloc_ds_buffer(cpu)) {
418 bts_err = 1;
419 pebs_err = 1;
420 }
421
422 if (!bts_err && alloc_bts_buffer(cpu))
423 bts_err = 1;
424
425 if (!pebs_err && alloc_pebs_buffer(cpu))
426 pebs_err = 1;
427
428 if (bts_err && pebs_err)
429 break;
430 }
431
432 if (bts_err) {
433 for_each_possible_cpu(cpu)
434 release_bts_buffer(cpu);
435 }
436
437 if (pebs_err) {
438 for_each_possible_cpu(cpu)
439 release_pebs_buffer(cpu);
440 }
441
442 if (bts_err && pebs_err) {
443 for_each_possible_cpu(cpu)
444 release_ds_buffer(cpu);
445 } else {
446 if (x86_pmu.bts && !bts_err)
447 x86_pmu.bts_active = 1;
448
449 if (x86_pmu.pebs && !pebs_err)
450 x86_pmu.pebs_active = 1;
451
452 for_each_online_cpu(cpu)
453 init_debug_store_on_cpu(cpu);
454 }
455
456 put_online_cpus();
457 }
458
459 /*
460 * BTS
461 */
462
463 struct event_constraint bts_constraint =
464 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
465
466 void intel_pmu_enable_bts(u64 config)
467 {
468 unsigned long debugctlmsr;
469
470 debugctlmsr = get_debugctlmsr();
471
472 debugctlmsr |= DEBUGCTLMSR_TR;
473 debugctlmsr |= DEBUGCTLMSR_BTS;
474 if (config & ARCH_PERFMON_EVENTSEL_INT)
475 debugctlmsr |= DEBUGCTLMSR_BTINT;
476
477 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
478 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
479
480 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
481 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
482
483 update_debugctlmsr(debugctlmsr);
484 }
485
486 void intel_pmu_disable_bts(void)
487 {
488 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
489 unsigned long debugctlmsr;
490
491 if (!cpuc->ds)
492 return;
493
494 debugctlmsr = get_debugctlmsr();
495
496 debugctlmsr &=
497 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
498 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
499
500 update_debugctlmsr(debugctlmsr);
501 }
502
503 int intel_pmu_drain_bts_buffer(void)
504 {
505 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
506 struct debug_store *ds = cpuc->ds;
507 struct bts_record {
508 u64 from;
509 u64 to;
510 u64 flags;
511 };
512 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
513 struct bts_record *at, *base, *top;
514 struct perf_output_handle handle;
515 struct perf_event_header header;
516 struct perf_sample_data data;
517 unsigned long skip = 0;
518 struct pt_regs regs;
519
520 if (!event)
521 return 0;
522
523 if (!x86_pmu.bts_active)
524 return 0;
525
526 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
527 top = (struct bts_record *)(unsigned long)ds->bts_index;
528
529 if (top <= base)
530 return 0;
531
532 memset(&regs, 0, sizeof(regs));
533
534 ds->bts_index = ds->bts_buffer_base;
535
536 perf_sample_data_init(&data, 0, event->hw.last_period);
537
538 /*
539 * BTS leaks kernel addresses in branches across the cpl boundary,
540 * such as traps or system calls, so unless the user is asking for
541 * kernel tracing (and right now it's not possible), we'd need to
542 * filter them out. But first we need to count how many of those we
543 * have in the current batch. This is an extra O(n) pass, however,
544 * it's much faster than the other one especially considering that
545 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
546 * alloc_bts_buffer()).
547 */
548 for (at = base; at < top; at++) {
549 /*
550 * Note that right now *this* BTS code only works if
551 * attr::exclude_kernel is set, but let's keep this extra
552 * check here in case that changes.
553 */
554 if (event->attr.exclude_kernel &&
555 (kernel_ip(at->from) || kernel_ip(at->to)))
556 skip++;
557 }
558
559 /*
560 * Prepare a generic sample, i.e. fill in the invariant fields.
561 * We will overwrite the from and to address before we output
562 * the sample.
563 */
564 perf_prepare_sample(&header, &data, event, &regs);
565
566 if (perf_output_begin(&handle, event, header.size *
567 (top - base - skip)))
568 return 1;
569
570 for (at = base; at < top; at++) {
571 /* Filter out any records that contain kernel addresses. */
572 if (event->attr.exclude_kernel &&
573 (kernel_ip(at->from) || kernel_ip(at->to)))
574 continue;
575
576 data.ip = at->from;
577 data.addr = at->to;
578
579 perf_output_sample(&handle, &header, &data, event);
580 }
581
582 perf_output_end(&handle);
583
584 /* There's new data available. */
585 event->hw.interrupts++;
586 event->pending_kill = POLL_IN;
587 return 1;
588 }
589
590 static inline void intel_pmu_drain_pebs_buffer(void)
591 {
592 struct pt_regs regs;
593
594 x86_pmu.drain_pebs(&regs);
595 }
596
597 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
598 {
599 if (!sched_in)
600 intel_pmu_drain_pebs_buffer();
601 }
602
603 /*
604 * PEBS
605 */
606 struct event_constraint intel_core2_pebs_event_constraints[] = {
607 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
608 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
609 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
610 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
611 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
612 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
613 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
614 EVENT_CONSTRAINT_END
615 };
616
617 struct event_constraint intel_atom_pebs_event_constraints[] = {
618 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
619 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
620 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
621 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
622 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
623 /* Allow all events as PEBS with no flags */
624 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
625 EVENT_CONSTRAINT_END
626 };
627
628 struct event_constraint intel_slm_pebs_event_constraints[] = {
629 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
630 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
631 /* Allow all events as PEBS with no flags */
632 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
633 EVENT_CONSTRAINT_END
634 };
635
636 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
637 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
638 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
639 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
640 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
641 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
642 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
643 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
644 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
645 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
646 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
647 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
648 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
649 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
650 EVENT_CONSTRAINT_END
651 };
652
653 struct event_constraint intel_westmere_pebs_event_constraints[] = {
654 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
655 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
656 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
657 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
658 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
659 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
660 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
661 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
662 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
663 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
664 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
665 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
666 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
667 EVENT_CONSTRAINT_END
668 };
669
670 struct event_constraint intel_snb_pebs_event_constraints[] = {
671 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
672 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
673 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
674 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
675 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
676 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
677 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
678 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
679 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
680 /* Allow all events as PEBS with no flags */
681 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
682 EVENT_CONSTRAINT_END
683 };
684
685 struct event_constraint intel_ivb_pebs_event_constraints[] = {
686 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
687 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
688 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
689 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
690 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
691 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
692 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
693 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
694 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
695 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
696 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
697 /* Allow all events as PEBS with no flags */
698 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
699 EVENT_CONSTRAINT_END
700 };
701
702 struct event_constraint intel_hsw_pebs_event_constraints[] = {
703 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
704 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
705 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
706 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
707 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
708 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
709 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
710 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
711 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
712 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
713 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
714 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
715 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
716 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
717 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
718 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
719 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
720 /* Allow all events as PEBS with no flags */
721 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
722 EVENT_CONSTRAINT_END
723 };
724
725 struct event_constraint intel_skl_pebs_event_constraints[] = {
726 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
727 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
728 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
729 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
730 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
731 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
732 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
733 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
734 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
735 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
736 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
737 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
738 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
739 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
740 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
741 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
742 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
743 /* Allow all events as PEBS with no flags */
744 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
745 EVENT_CONSTRAINT_END
746 };
747
748 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
749 {
750 struct event_constraint *c;
751
752 if (!event->attr.precise_ip)
753 return NULL;
754
755 if (x86_pmu.pebs_constraints) {
756 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
757 if ((event->hw.config & c->cmask) == c->code) {
758 event->hw.flags |= c->flags;
759 return c;
760 }
761 }
762 }
763
764 return &emptyconstraint;
765 }
766
767 static inline bool pebs_is_enabled(struct cpu_hw_events *cpuc)
768 {
769 return (cpuc->pebs_enabled & ((1ULL << MAX_PEBS_EVENTS) - 1));
770 }
771
772 void intel_pmu_pebs_enable(struct perf_event *event)
773 {
774 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
775 struct hw_perf_event *hwc = &event->hw;
776 struct debug_store *ds = cpuc->ds;
777 bool first_pebs;
778 u64 threshold;
779
780 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
781
782 first_pebs = !pebs_is_enabled(cpuc);
783 cpuc->pebs_enabled |= 1ULL << hwc->idx;
784
785 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
786 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
787 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
788 cpuc->pebs_enabled |= 1ULL << 63;
789
790 /*
791 * When the event is constrained enough we can use a larger
792 * threshold and run the event with less frequent PMI.
793 */
794 if (hwc->flags & PERF_X86_EVENT_FREERUNNING) {
795 threshold = ds->pebs_absolute_maximum -
796 x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
797
798 if (first_pebs)
799 perf_sched_cb_inc(event->ctx->pmu);
800 } else {
801 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
802
803 /*
804 * If not all events can use larger buffer,
805 * roll back to threshold = 1
806 */
807 if (!first_pebs &&
808 (ds->pebs_interrupt_threshold > threshold))
809 perf_sched_cb_dec(event->ctx->pmu);
810 }
811
812 /* Use auto-reload if possible to save a MSR write in the PMI */
813 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
814 ds->pebs_event_reset[hwc->idx] =
815 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
816 }
817
818 if (first_pebs || ds->pebs_interrupt_threshold > threshold)
819 ds->pebs_interrupt_threshold = threshold;
820 }
821
822 void intel_pmu_pebs_disable(struct perf_event *event)
823 {
824 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
825 struct hw_perf_event *hwc = &event->hw;
826 struct debug_store *ds = cpuc->ds;
827 bool large_pebs = ds->pebs_interrupt_threshold >
828 ds->pebs_buffer_base + x86_pmu.pebs_record_size;
829
830 if (large_pebs)
831 intel_pmu_drain_pebs_buffer();
832
833 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
834
835 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
836 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
837 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
838 cpuc->pebs_enabled &= ~(1ULL << 63);
839
840 if (large_pebs && !pebs_is_enabled(cpuc))
841 perf_sched_cb_dec(event->ctx->pmu);
842
843 if (cpuc->enabled)
844 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
845
846 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
847 }
848
849 void intel_pmu_pebs_enable_all(void)
850 {
851 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
852
853 if (cpuc->pebs_enabled)
854 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
855 }
856
857 void intel_pmu_pebs_disable_all(void)
858 {
859 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
860
861 if (cpuc->pebs_enabled)
862 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
863 }
864
865 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
866 {
867 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
868 unsigned long from = cpuc->lbr_entries[0].from;
869 unsigned long old_to, to = cpuc->lbr_entries[0].to;
870 unsigned long ip = regs->ip;
871 int is_64bit = 0;
872 void *kaddr;
873 int size;
874
875 /*
876 * We don't need to fixup if the PEBS assist is fault like
877 */
878 if (!x86_pmu.intel_cap.pebs_trap)
879 return 1;
880
881 /*
882 * No LBR entry, no basic block, no rewinding
883 */
884 if (!cpuc->lbr_stack.nr || !from || !to)
885 return 0;
886
887 /*
888 * Basic blocks should never cross user/kernel boundaries
889 */
890 if (kernel_ip(ip) != kernel_ip(to))
891 return 0;
892
893 /*
894 * unsigned math, either ip is before the start (impossible) or
895 * the basic block is larger than 1 page (sanity)
896 */
897 if ((ip - to) > PEBS_FIXUP_SIZE)
898 return 0;
899
900 /*
901 * We sampled a branch insn, rewind using the LBR stack
902 */
903 if (ip == to) {
904 set_linear_ip(regs, from);
905 return 1;
906 }
907
908 size = ip - to;
909 if (!kernel_ip(ip)) {
910 int bytes;
911 u8 *buf = this_cpu_read(insn_buffer);
912
913 /* 'size' must fit our buffer, see above */
914 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
915 if (bytes != 0)
916 return 0;
917
918 kaddr = buf;
919 } else {
920 kaddr = (void *)to;
921 }
922
923 do {
924 struct insn insn;
925
926 old_to = to;
927
928 #ifdef CONFIG_X86_64
929 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
930 #endif
931 insn_init(&insn, kaddr, size, is_64bit);
932 insn_get_length(&insn);
933 /*
934 * Make sure there was not a problem decoding the
935 * instruction and getting the length. This is
936 * doubly important because we have an infinite
937 * loop if insn.length=0.
938 */
939 if (!insn.length)
940 break;
941
942 to += insn.length;
943 kaddr += insn.length;
944 size -= insn.length;
945 } while (to < ip);
946
947 if (to == ip) {
948 set_linear_ip(regs, old_to);
949 return 1;
950 }
951
952 /*
953 * Even though we decoded the basic block, the instruction stream
954 * never matched the given IP, either the TO or the IP got corrupted.
955 */
956 return 0;
957 }
958
959 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
960 {
961 if (pebs->tsx_tuning) {
962 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
963 return tsx.cycles_last_block;
964 }
965 return 0;
966 }
967
968 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
969 {
970 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
971
972 /* For RTM XABORTs also log the abort code from AX */
973 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
974 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
975 return txn;
976 }
977
978 static void setup_pebs_sample_data(struct perf_event *event,
979 struct pt_regs *iregs, void *__pebs,
980 struct perf_sample_data *data,
981 struct pt_regs *regs)
982 {
983 #define PERF_X86_EVENT_PEBS_HSW_PREC \
984 (PERF_X86_EVENT_PEBS_ST_HSW | \
985 PERF_X86_EVENT_PEBS_LD_HSW | \
986 PERF_X86_EVENT_PEBS_NA_HSW)
987 /*
988 * We cast to the biggest pebs_record but are careful not to
989 * unconditionally access the 'extra' entries.
990 */
991 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
992 struct pebs_record_skl *pebs = __pebs;
993 u64 sample_type;
994 int fll, fst, dsrc;
995 int fl = event->hw.flags;
996
997 if (pebs == NULL)
998 return;
999
1000 sample_type = event->attr.sample_type;
1001 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1002
1003 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1004 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1005
1006 perf_sample_data_init(data, 0, event->hw.last_period);
1007
1008 data->period = event->hw.last_period;
1009
1010 /*
1011 * Use latency for weight (only avail with PEBS-LL)
1012 */
1013 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1014 data->weight = pebs->lat;
1015
1016 /*
1017 * data.data_src encodes the data source
1018 */
1019 if (dsrc) {
1020 u64 val = PERF_MEM_NA;
1021 if (fll)
1022 val = load_latency_data(pebs->dse);
1023 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1024 val = precise_datala_hsw(event, pebs->dse);
1025 else if (fst)
1026 val = precise_store_data(pebs->dse);
1027 data->data_src.val = val;
1028 }
1029
1030 /*
1031 * We use the interrupt regs as a base because the PEBS record
1032 * does not contain a full regs set, specifically it seems to
1033 * lack segment descriptors, which get used by things like
1034 * user_mode().
1035 *
1036 * In the simple case fix up only the IP and BP,SP regs, for
1037 * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
1038 * A possible PERF_SAMPLE_REGS will have to transfer all regs.
1039 */
1040 *regs = *iregs;
1041 regs->flags = pebs->flags;
1042 set_linear_ip(regs, pebs->ip);
1043 regs->bp = pebs->bp;
1044 regs->sp = pebs->sp;
1045
1046 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1047 regs->ax = pebs->ax;
1048 regs->bx = pebs->bx;
1049 regs->cx = pebs->cx;
1050 regs->dx = pebs->dx;
1051 regs->si = pebs->si;
1052 regs->di = pebs->di;
1053 regs->bp = pebs->bp;
1054 regs->sp = pebs->sp;
1055
1056 regs->flags = pebs->flags;
1057 #ifndef CONFIG_X86_32
1058 regs->r8 = pebs->r8;
1059 regs->r9 = pebs->r9;
1060 regs->r10 = pebs->r10;
1061 regs->r11 = pebs->r11;
1062 regs->r12 = pebs->r12;
1063 regs->r13 = pebs->r13;
1064 regs->r14 = pebs->r14;
1065 regs->r15 = pebs->r15;
1066 #endif
1067 }
1068
1069 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1070 regs->ip = pebs->real_ip;
1071 regs->flags |= PERF_EFLAGS_EXACT;
1072 } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1073 regs->flags |= PERF_EFLAGS_EXACT;
1074 else
1075 regs->flags &= ~PERF_EFLAGS_EXACT;
1076
1077 if ((sample_type & PERF_SAMPLE_ADDR) &&
1078 x86_pmu.intel_cap.pebs_format >= 1)
1079 data->addr = pebs->dla;
1080
1081 if (x86_pmu.intel_cap.pebs_format >= 2) {
1082 /* Only set the TSX weight when no memory weight. */
1083 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1084 data->weight = intel_hsw_weight(pebs);
1085
1086 if (sample_type & PERF_SAMPLE_TRANSACTION)
1087 data->txn = intel_hsw_transaction(pebs);
1088 }
1089
1090 /*
1091 * v3 supplies an accurate time stamp, so we use that
1092 * for the time stamp.
1093 *
1094 * We can only do this for the default trace clock.
1095 */
1096 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1097 event->attr.use_clockid == 0)
1098 data->time = native_sched_clock_from_tsc(pebs->tsc);
1099
1100 if (has_branch_stack(event))
1101 data->br_stack = &cpuc->lbr_stack;
1102 }
1103
1104 static inline void *
1105 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1106 {
1107 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1108 void *at;
1109 u64 pebs_status;
1110
1111 /*
1112 * fmt0 does not have a status bitfield (does not use
1113 * perf_record_nhm format)
1114 */
1115 if (x86_pmu.intel_cap.pebs_format < 1)
1116 return base;
1117
1118 if (base == NULL)
1119 return NULL;
1120
1121 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1122 struct pebs_record_nhm *p = at;
1123
1124 if (test_bit(bit, (unsigned long *)&p->status)) {
1125 /* PEBS v3 has accurate status bits */
1126 if (x86_pmu.intel_cap.pebs_format >= 3)
1127 return at;
1128
1129 if (p->status == (1 << bit))
1130 return at;
1131
1132 /* clear non-PEBS bit and re-check */
1133 pebs_status = p->status & cpuc->pebs_enabled;
1134 pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1135 if (pebs_status == (1 << bit))
1136 return at;
1137 }
1138 }
1139 return NULL;
1140 }
1141
1142 static void __intel_pmu_pebs_event(struct perf_event *event,
1143 struct pt_regs *iregs,
1144 void *base, void *top,
1145 int bit, int count)
1146 {
1147 struct perf_sample_data data;
1148 struct pt_regs regs;
1149 void *at = get_next_pebs_record_by_bit(base, top, bit);
1150
1151 if (!intel_pmu_save_and_restart(event) &&
1152 !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1153 return;
1154
1155 while (count > 1) {
1156 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1157 perf_event_output(event, &data, &regs);
1158 at += x86_pmu.pebs_record_size;
1159 at = get_next_pebs_record_by_bit(at, top, bit);
1160 count--;
1161 }
1162
1163 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1164
1165 /*
1166 * All but the last records are processed.
1167 * The last one is left to be able to call the overflow handler.
1168 */
1169 if (perf_event_overflow(event, &data, &regs)) {
1170 x86_pmu_stop(event, 0);
1171 return;
1172 }
1173
1174 }
1175
1176 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1177 {
1178 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1179 struct debug_store *ds = cpuc->ds;
1180 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1181 struct pebs_record_core *at, *top;
1182 int n;
1183
1184 if (!x86_pmu.pebs_active)
1185 return;
1186
1187 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1188 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1189
1190 /*
1191 * Whatever else happens, drain the thing
1192 */
1193 ds->pebs_index = ds->pebs_buffer_base;
1194
1195 if (!test_bit(0, cpuc->active_mask))
1196 return;
1197
1198 WARN_ON_ONCE(!event);
1199
1200 if (!event->attr.precise_ip)
1201 return;
1202
1203 n = top - at;
1204 if (n <= 0)
1205 return;
1206
1207 __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1208 }
1209
1210 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1211 {
1212 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1213 struct debug_store *ds = cpuc->ds;
1214 struct perf_event *event;
1215 void *base, *at, *top;
1216 short counts[MAX_PEBS_EVENTS] = {};
1217 short error[MAX_PEBS_EVENTS] = {};
1218 int bit, i;
1219
1220 if (!x86_pmu.pebs_active)
1221 return;
1222
1223 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1224 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1225
1226 ds->pebs_index = ds->pebs_buffer_base;
1227
1228 if (unlikely(base >= top))
1229 return;
1230
1231 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1232 struct pebs_record_nhm *p = at;
1233 u64 pebs_status;
1234
1235 /* PEBS v3 has accurate status bits */
1236 if (x86_pmu.intel_cap.pebs_format >= 3) {
1237 for_each_set_bit(bit, (unsigned long *)&p->status,
1238 MAX_PEBS_EVENTS)
1239 counts[bit]++;
1240
1241 continue;
1242 }
1243
1244 pebs_status = p->status & cpuc->pebs_enabled;
1245 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1246
1247 /*
1248 * On some CPUs the PEBS status can be zero when PEBS is
1249 * racing with clearing of GLOBAL_STATUS.
1250 *
1251 * Normally we would drop that record, but in the
1252 * case when there is only a single active PEBS event
1253 * we can assume it's for that event.
1254 */
1255 if (!pebs_status && cpuc->pebs_enabled &&
1256 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1257 pebs_status = cpuc->pebs_enabled;
1258
1259 bit = find_first_bit((unsigned long *)&pebs_status,
1260 x86_pmu.max_pebs_events);
1261 if (bit >= x86_pmu.max_pebs_events)
1262 continue;
1263
1264 /*
1265 * The PEBS hardware does not deal well with the situation
1266 * when events happen near to each other and multiple bits
1267 * are set. But it should happen rarely.
1268 *
1269 * If these events include one PEBS and multiple non-PEBS
1270 * events, it doesn't impact PEBS record. The record will
1271 * be handled normally. (slow path)
1272 *
1273 * If these events include two or more PEBS events, the
1274 * records for the events can be collapsed into a single
1275 * one, and it's not possible to reconstruct all events
1276 * that caused the PEBS record. It's called collision.
1277 * If collision happened, the record will be dropped.
1278 */
1279 if (p->status != (1ULL << bit)) {
1280 for_each_set_bit(i, (unsigned long *)&pebs_status,
1281 x86_pmu.max_pebs_events)
1282 error[i]++;
1283 continue;
1284 }
1285
1286 counts[bit]++;
1287 }
1288
1289 for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1290 if ((counts[bit] == 0) && (error[bit] == 0))
1291 continue;
1292
1293 event = cpuc->events[bit];
1294 WARN_ON_ONCE(!event);
1295 WARN_ON_ONCE(!event->attr.precise_ip);
1296
1297 /* log dropped samples number */
1298 if (error[bit])
1299 perf_log_lost_samples(event, error[bit]);
1300
1301 if (counts[bit]) {
1302 __intel_pmu_pebs_event(event, iregs, base,
1303 top, bit, counts[bit]);
1304 }
1305 }
1306 }
1307
1308 /*
1309 * BTS, PEBS probe and setup
1310 */
1311
1312 void __init intel_ds_init(void)
1313 {
1314 /*
1315 * No support for 32bit formats
1316 */
1317 if (!boot_cpu_has(X86_FEATURE_DTES64))
1318 return;
1319
1320 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1321 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1322 if (x86_pmu.pebs) {
1323 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1324 int format = x86_pmu.intel_cap.pebs_format;
1325
1326 switch (format) {
1327 case 0:
1328 pr_cont("PEBS fmt0%c, ", pebs_type);
1329 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1330 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1331 break;
1332
1333 case 1:
1334 pr_cont("PEBS fmt1%c, ", pebs_type);
1335 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1336 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1337 break;
1338
1339 case 2:
1340 pr_cont("PEBS fmt2%c, ", pebs_type);
1341 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1342 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1343 break;
1344
1345 case 3:
1346 pr_cont("PEBS fmt3%c, ", pebs_type);
1347 x86_pmu.pebs_record_size =
1348 sizeof(struct pebs_record_skl);
1349 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1350 x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1351 break;
1352
1353 default:
1354 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1355 x86_pmu.pebs = 0;
1356 }
1357 }
1358 }
1359
1360 void perf_restore_debug_store(void)
1361 {
1362 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1363
1364 if (!x86_pmu.bts && !x86_pmu.pebs)
1365 return;
1366
1367 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1368 }
This page took 0.078839 seconds and 5 git commands to generate.