Merge branch 'master' into for-4.4-fixes
[deliverable/linux.git] / arch / x86 / kernel / cpu / perf_event_intel_lbr.c
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7
8 #include "perf_event.h"
9
10 enum {
11 LBR_FORMAT_32 = 0x00,
12 LBR_FORMAT_LIP = 0x01,
13 LBR_FORMAT_EIP = 0x02,
14 LBR_FORMAT_EIP_FLAGS = 0x03,
15 LBR_FORMAT_EIP_FLAGS2 = 0x04,
16 LBR_FORMAT_INFO = 0x05,
17 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_INFO,
18 };
19
20 static enum {
21 LBR_EIP_FLAGS = 1,
22 LBR_TSX = 2,
23 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
24 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
25 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
26 };
27
28 /*
29 * Intel LBR_SELECT bits
30 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
31 *
32 * Hardware branch filter (not available on all CPUs)
33 */
34 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
35 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
36 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
37 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
38 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
39 #define LBR_RETURN_BIT 5 /* do not capture near returns */
40 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
41 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
42 #define LBR_FAR_BIT 8 /* do not capture far branches */
43 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
44
45 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
46 #define LBR_USER (1 << LBR_USER_BIT)
47 #define LBR_JCC (1 << LBR_JCC_BIT)
48 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
49 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
50 #define LBR_RETURN (1 << LBR_RETURN_BIT)
51 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
52 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
53 #define LBR_FAR (1 << LBR_FAR_BIT)
54 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
55
56 #define LBR_PLM (LBR_KERNEL | LBR_USER)
57
58 #define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */
59 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
60 #define LBR_IGN 0 /* ignored */
61
62 #define LBR_ANY \
63 (LBR_JCC |\
64 LBR_REL_CALL |\
65 LBR_IND_CALL |\
66 LBR_RETURN |\
67 LBR_REL_JMP |\
68 LBR_IND_JMP |\
69 LBR_FAR)
70
71 #define LBR_FROM_FLAG_MISPRED (1ULL << 63)
72 #define LBR_FROM_FLAG_IN_TX (1ULL << 62)
73 #define LBR_FROM_FLAG_ABORT (1ULL << 61)
74
75 /*
76 * x86control flow change classification
77 * x86control flow changes include branches, interrupts, traps, faults
78 */
79 enum {
80 X86_BR_NONE = 0, /* unknown */
81
82 X86_BR_USER = 1 << 0, /* branch target is user */
83 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
84
85 X86_BR_CALL = 1 << 2, /* call */
86 X86_BR_RET = 1 << 3, /* return */
87 X86_BR_SYSCALL = 1 << 4, /* syscall */
88 X86_BR_SYSRET = 1 << 5, /* syscall return */
89 X86_BR_INT = 1 << 6, /* sw interrupt */
90 X86_BR_IRET = 1 << 7, /* return from interrupt */
91 X86_BR_JCC = 1 << 8, /* conditional */
92 X86_BR_JMP = 1 << 9, /* jump */
93 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
94 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
95 X86_BR_ABORT = 1 << 12,/* transaction abort */
96 X86_BR_IN_TX = 1 << 13,/* in transaction */
97 X86_BR_NO_TX = 1 << 14,/* not in transaction */
98 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
99 X86_BR_CALL_STACK = 1 << 16,/* call stack */
100 X86_BR_IND_JMP = 1 << 17,/* indirect jump */
101 };
102
103 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
104 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
105
106 #define X86_BR_ANY \
107 (X86_BR_CALL |\
108 X86_BR_RET |\
109 X86_BR_SYSCALL |\
110 X86_BR_SYSRET |\
111 X86_BR_INT |\
112 X86_BR_IRET |\
113 X86_BR_JCC |\
114 X86_BR_JMP |\
115 X86_BR_IRQ |\
116 X86_BR_ABORT |\
117 X86_BR_IND_CALL |\
118 X86_BR_IND_JMP |\
119 X86_BR_ZERO_CALL)
120
121 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
122
123 #define X86_BR_ANY_CALL \
124 (X86_BR_CALL |\
125 X86_BR_IND_CALL |\
126 X86_BR_ZERO_CALL |\
127 X86_BR_SYSCALL |\
128 X86_BR_IRQ |\
129 X86_BR_INT)
130
131 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
132
133 /*
134 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
135 * otherwise it becomes near impossible to get a reliable stack.
136 */
137
138 static void __intel_pmu_lbr_enable(bool pmi)
139 {
140 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
141 u64 debugctl, lbr_select = 0, orig_debugctl;
142
143 /*
144 * No need to unfreeze manually, as v4 can do that as part
145 * of the GLOBAL_STATUS ack.
146 */
147 if (pmi && x86_pmu.version >= 4)
148 return;
149
150 /*
151 * No need to reprogram LBR_SELECT in a PMI, as it
152 * did not change.
153 */
154 if (cpuc->lbr_sel)
155 lbr_select = cpuc->lbr_sel->config;
156 if (!pmi)
157 wrmsrl(MSR_LBR_SELECT, lbr_select);
158
159 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
160 orig_debugctl = debugctl;
161 debugctl |= DEBUGCTLMSR_LBR;
162 /*
163 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
164 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
165 * may cause superfluous increase/decrease of LBR_TOS.
166 */
167 if (!(lbr_select & LBR_CALL_STACK))
168 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
169 if (orig_debugctl != debugctl)
170 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
171 }
172
173 static void __intel_pmu_lbr_disable(void)
174 {
175 u64 debugctl;
176
177 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
178 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
179 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
180 }
181
182 static void intel_pmu_lbr_reset_32(void)
183 {
184 int i;
185
186 for (i = 0; i < x86_pmu.lbr_nr; i++)
187 wrmsrl(x86_pmu.lbr_from + i, 0);
188 }
189
190 static void intel_pmu_lbr_reset_64(void)
191 {
192 int i;
193
194 for (i = 0; i < x86_pmu.lbr_nr; i++) {
195 wrmsrl(x86_pmu.lbr_from + i, 0);
196 wrmsrl(x86_pmu.lbr_to + i, 0);
197 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
198 wrmsrl(MSR_LBR_INFO_0 + i, 0);
199 }
200 }
201
202 void intel_pmu_lbr_reset(void)
203 {
204 if (!x86_pmu.lbr_nr)
205 return;
206
207 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
208 intel_pmu_lbr_reset_32();
209 else
210 intel_pmu_lbr_reset_64();
211 }
212
213 /*
214 * TOS = most recently recorded branch
215 */
216 static inline u64 intel_pmu_lbr_tos(void)
217 {
218 u64 tos;
219
220 rdmsrl(x86_pmu.lbr_tos, tos);
221 return tos;
222 }
223
224 enum {
225 LBR_NONE,
226 LBR_VALID,
227 };
228
229 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
230 {
231 int i;
232 unsigned lbr_idx, mask;
233 u64 tos;
234
235 if (task_ctx->lbr_callstack_users == 0 ||
236 task_ctx->lbr_stack_state == LBR_NONE) {
237 intel_pmu_lbr_reset();
238 return;
239 }
240
241 mask = x86_pmu.lbr_nr - 1;
242 tos = intel_pmu_lbr_tos();
243 for (i = 0; i < tos; i++) {
244 lbr_idx = (tos - i) & mask;
245 wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
246 wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
247 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
248 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
249 }
250 task_ctx->lbr_stack_state = LBR_NONE;
251 }
252
253 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
254 {
255 int i;
256 unsigned lbr_idx, mask;
257 u64 tos;
258
259 if (task_ctx->lbr_callstack_users == 0) {
260 task_ctx->lbr_stack_state = LBR_NONE;
261 return;
262 }
263
264 mask = x86_pmu.lbr_nr - 1;
265 tos = intel_pmu_lbr_tos();
266 for (i = 0; i < tos; i++) {
267 lbr_idx = (tos - i) & mask;
268 rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
269 rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
270 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
271 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
272 }
273 task_ctx->lbr_stack_state = LBR_VALID;
274 }
275
276 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
277 {
278 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
279 struct x86_perf_task_context *task_ctx;
280
281 /*
282 * If LBR callstack feature is enabled and the stack was saved when
283 * the task was scheduled out, restore the stack. Otherwise flush
284 * the LBR stack.
285 */
286 task_ctx = ctx ? ctx->task_ctx_data : NULL;
287 if (task_ctx) {
288 if (sched_in) {
289 __intel_pmu_lbr_restore(task_ctx);
290 cpuc->lbr_context = ctx;
291 } else {
292 __intel_pmu_lbr_save(task_ctx);
293 }
294 return;
295 }
296
297 /*
298 * When sampling the branck stack in system-wide, it may be
299 * necessary to flush the stack on context switch. This happens
300 * when the branch stack does not tag its entries with the pid
301 * of the current task. Otherwise it becomes impossible to
302 * associate a branch entry with a task. This ambiguity is more
303 * likely to appear when the branch stack supports priv level
304 * filtering and the user sets it to monitor only at the user
305 * level (which could be a useful measurement in system-wide
306 * mode). In that case, the risk is high of having a branch
307 * stack with branch from multiple tasks.
308 */
309 if (sched_in) {
310 intel_pmu_lbr_reset();
311 cpuc->lbr_context = ctx;
312 }
313 }
314
315 static inline bool branch_user_callstack(unsigned br_sel)
316 {
317 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
318 }
319
320 void intel_pmu_lbr_enable(struct perf_event *event)
321 {
322 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
323 struct x86_perf_task_context *task_ctx;
324
325 if (!x86_pmu.lbr_nr)
326 return;
327
328 /*
329 * Reset the LBR stack if we changed task context to
330 * avoid data leaks.
331 */
332 if (event->ctx->task && cpuc->lbr_context != event->ctx) {
333 intel_pmu_lbr_reset();
334 cpuc->lbr_context = event->ctx;
335 }
336 cpuc->br_sel = event->hw.branch_reg.reg;
337
338 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
339 event->ctx->task_ctx_data) {
340 task_ctx = event->ctx->task_ctx_data;
341 task_ctx->lbr_callstack_users++;
342 }
343
344 cpuc->lbr_users++;
345 perf_sched_cb_inc(event->ctx->pmu);
346 }
347
348 void intel_pmu_lbr_disable(struct perf_event *event)
349 {
350 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
351 struct x86_perf_task_context *task_ctx;
352
353 if (!x86_pmu.lbr_nr)
354 return;
355
356 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
357 event->ctx->task_ctx_data) {
358 task_ctx = event->ctx->task_ctx_data;
359 task_ctx->lbr_callstack_users--;
360 }
361
362 cpuc->lbr_users--;
363 WARN_ON_ONCE(cpuc->lbr_users < 0);
364 perf_sched_cb_dec(event->ctx->pmu);
365
366 if (cpuc->enabled && !cpuc->lbr_users) {
367 __intel_pmu_lbr_disable();
368 /* avoid stale pointer */
369 cpuc->lbr_context = NULL;
370 }
371 }
372
373 void intel_pmu_lbr_enable_all(bool pmi)
374 {
375 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
376
377 if (cpuc->lbr_users)
378 __intel_pmu_lbr_enable(pmi);
379 }
380
381 void intel_pmu_lbr_disable_all(void)
382 {
383 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
384
385 if (cpuc->lbr_users)
386 __intel_pmu_lbr_disable();
387 }
388
389 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
390 {
391 unsigned long mask = x86_pmu.lbr_nr - 1;
392 u64 tos = intel_pmu_lbr_tos();
393 int i;
394
395 for (i = 0; i < x86_pmu.lbr_nr; i++) {
396 unsigned long lbr_idx = (tos - i) & mask;
397 union {
398 struct {
399 u32 from;
400 u32 to;
401 };
402 u64 lbr;
403 } msr_lastbranch;
404
405 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
406
407 cpuc->lbr_entries[i].from = msr_lastbranch.from;
408 cpuc->lbr_entries[i].to = msr_lastbranch.to;
409 cpuc->lbr_entries[i].mispred = 0;
410 cpuc->lbr_entries[i].predicted = 0;
411 cpuc->lbr_entries[i].reserved = 0;
412 }
413 cpuc->lbr_stack.nr = i;
414 }
415
416 /*
417 * Due to lack of segmentation in Linux the effective address (offset)
418 * is the same as the linear address, allowing us to merge the LIP and EIP
419 * LBR formats.
420 */
421 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
422 {
423 unsigned long mask = x86_pmu.lbr_nr - 1;
424 int lbr_format = x86_pmu.intel_cap.lbr_format;
425 u64 tos = intel_pmu_lbr_tos();
426 int i;
427 int out = 0;
428 int num = x86_pmu.lbr_nr;
429
430 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
431 num = tos;
432
433 for (i = 0; i < num; i++) {
434 unsigned long lbr_idx = (tos - i) & mask;
435 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
436 int skip = 0;
437 u16 cycles = 0;
438 int lbr_flags = lbr_desc[lbr_format];
439
440 rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
441 rdmsrl(x86_pmu.lbr_to + lbr_idx, to);
442
443 if (lbr_format == LBR_FORMAT_INFO) {
444 u64 info;
445
446 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
447 mis = !!(info & LBR_INFO_MISPRED);
448 pred = !mis;
449 in_tx = !!(info & LBR_INFO_IN_TX);
450 abort = !!(info & LBR_INFO_ABORT);
451 cycles = (info & LBR_INFO_CYCLES);
452 }
453 if (lbr_flags & LBR_EIP_FLAGS) {
454 mis = !!(from & LBR_FROM_FLAG_MISPRED);
455 pred = !mis;
456 skip = 1;
457 }
458 if (lbr_flags & LBR_TSX) {
459 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
460 abort = !!(from & LBR_FROM_FLAG_ABORT);
461 skip = 3;
462 }
463 from = (u64)((((s64)from) << skip) >> skip);
464
465 /*
466 * Some CPUs report duplicated abort records,
467 * with the second entry not having an abort bit set.
468 * Skip them here. This loop runs backwards,
469 * so we need to undo the previous record.
470 * If the abort just happened outside the window
471 * the extra entry cannot be removed.
472 */
473 if (abort && x86_pmu.lbr_double_abort && out > 0)
474 out--;
475
476 cpuc->lbr_entries[out].from = from;
477 cpuc->lbr_entries[out].to = to;
478 cpuc->lbr_entries[out].mispred = mis;
479 cpuc->lbr_entries[out].predicted = pred;
480 cpuc->lbr_entries[out].in_tx = in_tx;
481 cpuc->lbr_entries[out].abort = abort;
482 cpuc->lbr_entries[out].cycles = cycles;
483 cpuc->lbr_entries[out].reserved = 0;
484 out++;
485 }
486 cpuc->lbr_stack.nr = out;
487 }
488
489 void intel_pmu_lbr_read(void)
490 {
491 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
492
493 if (!cpuc->lbr_users)
494 return;
495
496 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
497 intel_pmu_lbr_read_32(cpuc);
498 else
499 intel_pmu_lbr_read_64(cpuc);
500
501 intel_pmu_lbr_filter(cpuc);
502 }
503
504 /*
505 * SW filter is used:
506 * - in case there is no HW filter
507 * - in case the HW filter has errata or limitations
508 */
509 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
510 {
511 u64 br_type = event->attr.branch_sample_type;
512 int mask = 0;
513
514 if (br_type & PERF_SAMPLE_BRANCH_USER)
515 mask |= X86_BR_USER;
516
517 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
518 mask |= X86_BR_KERNEL;
519
520 /* we ignore BRANCH_HV here */
521
522 if (br_type & PERF_SAMPLE_BRANCH_ANY)
523 mask |= X86_BR_ANY;
524
525 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
526 mask |= X86_BR_ANY_CALL;
527
528 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
529 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
530
531 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
532 mask |= X86_BR_IND_CALL;
533
534 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
535 mask |= X86_BR_ABORT;
536
537 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
538 mask |= X86_BR_IN_TX;
539
540 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
541 mask |= X86_BR_NO_TX;
542
543 if (br_type & PERF_SAMPLE_BRANCH_COND)
544 mask |= X86_BR_JCC;
545
546 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
547 if (!x86_pmu_has_lbr_callstack())
548 return -EOPNOTSUPP;
549 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
550 return -EINVAL;
551 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
552 X86_BR_CALL_STACK;
553 }
554
555 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
556 mask |= X86_BR_IND_JMP;
557
558 if (br_type & PERF_SAMPLE_BRANCH_CALL)
559 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
560 /*
561 * stash actual user request into reg, it may
562 * be used by fixup code for some CPU
563 */
564 event->hw.branch_reg.reg = mask;
565 return 0;
566 }
567
568 /*
569 * setup the HW LBR filter
570 * Used only when available, may not be enough to disambiguate
571 * all branches, may need the help of the SW filter
572 */
573 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
574 {
575 struct hw_perf_event_extra *reg;
576 u64 br_type = event->attr.branch_sample_type;
577 u64 mask = 0, v;
578 int i;
579
580 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
581 if (!(br_type & (1ULL << i)))
582 continue;
583
584 v = x86_pmu.lbr_sel_map[i];
585 if (v == LBR_NOT_SUPP)
586 return -EOPNOTSUPP;
587
588 if (v != LBR_IGN)
589 mask |= v;
590 }
591 reg = &event->hw.branch_reg;
592 reg->idx = EXTRA_REG_LBR;
593
594 /*
595 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
596 * in suppress mode. So LBR_SELECT should be set to
597 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
598 */
599 reg->config = mask ^ x86_pmu.lbr_sel_mask;
600
601 return 0;
602 }
603
604 int intel_pmu_setup_lbr_filter(struct perf_event *event)
605 {
606 int ret = 0;
607
608 /*
609 * no LBR on this PMU
610 */
611 if (!x86_pmu.lbr_nr)
612 return -EOPNOTSUPP;
613
614 /*
615 * setup SW LBR filter
616 */
617 ret = intel_pmu_setup_sw_lbr_filter(event);
618 if (ret)
619 return ret;
620
621 /*
622 * setup HW LBR filter, if any
623 */
624 if (x86_pmu.lbr_sel_map)
625 ret = intel_pmu_setup_hw_lbr_filter(event);
626
627 return ret;
628 }
629
630 /*
631 * return the type of control flow change at address "from"
632 * intruction is not necessarily a branch (in case of interrupt).
633 *
634 * The branch type returned also includes the priv level of the
635 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
636 *
637 * If a branch type is unknown OR the instruction cannot be
638 * decoded (e.g., text page not present), then X86_BR_NONE is
639 * returned.
640 */
641 static int branch_type(unsigned long from, unsigned long to, int abort)
642 {
643 struct insn insn;
644 void *addr;
645 int bytes_read, bytes_left;
646 int ret = X86_BR_NONE;
647 int ext, to_plm, from_plm;
648 u8 buf[MAX_INSN_SIZE];
649 int is64 = 0;
650
651 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
652 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
653
654 /*
655 * maybe zero if lbr did not fill up after a reset by the time
656 * we get a PMU interrupt
657 */
658 if (from == 0 || to == 0)
659 return X86_BR_NONE;
660
661 if (abort)
662 return X86_BR_ABORT | to_plm;
663
664 if (from_plm == X86_BR_USER) {
665 /*
666 * can happen if measuring at the user level only
667 * and we interrupt in a kernel thread, e.g., idle.
668 */
669 if (!current->mm)
670 return X86_BR_NONE;
671
672 /* may fail if text not present */
673 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
674 MAX_INSN_SIZE);
675 bytes_read = MAX_INSN_SIZE - bytes_left;
676 if (!bytes_read)
677 return X86_BR_NONE;
678
679 addr = buf;
680 } else {
681 /*
682 * The LBR logs any address in the IP, even if the IP just
683 * faulted. This means userspace can control the from address.
684 * Ensure we don't blindy read any address by validating it is
685 * a known text address.
686 */
687 if (kernel_text_address(from)) {
688 addr = (void *)from;
689 /*
690 * Assume we can get the maximum possible size
691 * when grabbing kernel data. This is not
692 * _strictly_ true since we could possibly be
693 * executing up next to a memory hole, but
694 * it is very unlikely to be a problem.
695 */
696 bytes_read = MAX_INSN_SIZE;
697 } else {
698 return X86_BR_NONE;
699 }
700 }
701
702 /*
703 * decoder needs to know the ABI especially
704 * on 64-bit systems running 32-bit apps
705 */
706 #ifdef CONFIG_X86_64
707 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
708 #endif
709 insn_init(&insn, addr, bytes_read, is64);
710 insn_get_opcode(&insn);
711 if (!insn.opcode.got)
712 return X86_BR_ABORT;
713
714 switch (insn.opcode.bytes[0]) {
715 case 0xf:
716 switch (insn.opcode.bytes[1]) {
717 case 0x05: /* syscall */
718 case 0x34: /* sysenter */
719 ret = X86_BR_SYSCALL;
720 break;
721 case 0x07: /* sysret */
722 case 0x35: /* sysexit */
723 ret = X86_BR_SYSRET;
724 break;
725 case 0x80 ... 0x8f: /* conditional */
726 ret = X86_BR_JCC;
727 break;
728 default:
729 ret = X86_BR_NONE;
730 }
731 break;
732 case 0x70 ... 0x7f: /* conditional */
733 ret = X86_BR_JCC;
734 break;
735 case 0xc2: /* near ret */
736 case 0xc3: /* near ret */
737 case 0xca: /* far ret */
738 case 0xcb: /* far ret */
739 ret = X86_BR_RET;
740 break;
741 case 0xcf: /* iret */
742 ret = X86_BR_IRET;
743 break;
744 case 0xcc ... 0xce: /* int */
745 ret = X86_BR_INT;
746 break;
747 case 0xe8: /* call near rel */
748 insn_get_immediate(&insn);
749 if (insn.immediate1.value == 0) {
750 /* zero length call */
751 ret = X86_BR_ZERO_CALL;
752 break;
753 }
754 case 0x9a: /* call far absolute */
755 ret = X86_BR_CALL;
756 break;
757 case 0xe0 ... 0xe3: /* loop jmp */
758 ret = X86_BR_JCC;
759 break;
760 case 0xe9 ... 0xeb: /* jmp */
761 ret = X86_BR_JMP;
762 break;
763 case 0xff: /* call near absolute, call far absolute ind */
764 insn_get_modrm(&insn);
765 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
766 switch (ext) {
767 case 2: /* near ind call */
768 case 3: /* far ind call */
769 ret = X86_BR_IND_CALL;
770 break;
771 case 4:
772 case 5:
773 ret = X86_BR_IND_JMP;
774 break;
775 }
776 break;
777 default:
778 ret = X86_BR_NONE;
779 }
780 /*
781 * interrupts, traps, faults (and thus ring transition) may
782 * occur on any instructions. Thus, to classify them correctly,
783 * we need to first look at the from and to priv levels. If they
784 * are different and to is in the kernel, then it indicates
785 * a ring transition. If the from instruction is not a ring
786 * transition instr (syscall, systenter, int), then it means
787 * it was a irq, trap or fault.
788 *
789 * we have no way of detecting kernel to kernel faults.
790 */
791 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
792 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
793 ret = X86_BR_IRQ;
794
795 /*
796 * branch priv level determined by target as
797 * is done by HW when LBR_SELECT is implemented
798 */
799 if (ret != X86_BR_NONE)
800 ret |= to_plm;
801
802 return ret;
803 }
804
805 /*
806 * implement actual branch filter based on user demand.
807 * Hardware may not exactly satisfy that request, thus
808 * we need to inspect opcodes. Mismatched branches are
809 * discarded. Therefore, the number of branches returned
810 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
811 */
812 static void
813 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
814 {
815 u64 from, to;
816 int br_sel = cpuc->br_sel;
817 int i, j, type;
818 bool compress = false;
819
820 /* if sampling all branches, then nothing to filter */
821 if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
822 return;
823
824 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
825
826 from = cpuc->lbr_entries[i].from;
827 to = cpuc->lbr_entries[i].to;
828
829 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
830 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
831 if (cpuc->lbr_entries[i].in_tx)
832 type |= X86_BR_IN_TX;
833 else
834 type |= X86_BR_NO_TX;
835 }
836
837 /* if type does not correspond, then discard */
838 if (type == X86_BR_NONE || (br_sel & type) != type) {
839 cpuc->lbr_entries[i].from = 0;
840 compress = true;
841 }
842 }
843
844 if (!compress)
845 return;
846
847 /* remove all entries with from=0 */
848 for (i = 0; i < cpuc->lbr_stack.nr; ) {
849 if (!cpuc->lbr_entries[i].from) {
850 j = i;
851 while (++j < cpuc->lbr_stack.nr)
852 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
853 cpuc->lbr_stack.nr--;
854 if (!cpuc->lbr_entries[i].from)
855 continue;
856 }
857 i++;
858 }
859 }
860
861 /*
862 * Map interface branch filters onto LBR filters
863 */
864 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
865 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
866 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
867 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
868 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
869 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
870 | LBR_IND_JMP | LBR_FAR,
871 /*
872 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
873 */
874 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
875 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
876 /*
877 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
878 */
879 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
880 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
881 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
882 };
883
884 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
885 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
886 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
887 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
888 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
889 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
890 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
891 | LBR_FAR,
892 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
893 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
894 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
895 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
896 };
897
898 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
899 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
900 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
901 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
902 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
903 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
904 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
905 | LBR_FAR,
906 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
907 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
908 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
909 | LBR_RETURN | LBR_CALL_STACK,
910 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
911 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
912 };
913
914 /* core */
915 void __init intel_pmu_lbr_init_core(void)
916 {
917 x86_pmu.lbr_nr = 4;
918 x86_pmu.lbr_tos = MSR_LBR_TOS;
919 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
920 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
921
922 /*
923 * SW branch filter usage:
924 * - compensate for lack of HW filter
925 */
926 pr_cont("4-deep LBR, ");
927 }
928
929 /* nehalem/westmere */
930 void __init intel_pmu_lbr_init_nhm(void)
931 {
932 x86_pmu.lbr_nr = 16;
933 x86_pmu.lbr_tos = MSR_LBR_TOS;
934 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
935 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
936
937 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
938 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
939
940 /*
941 * SW branch filter usage:
942 * - workaround LBR_SEL errata (see above)
943 * - support syscall, sysret capture.
944 * That requires LBR_FAR but that means far
945 * jmp need to be filtered out
946 */
947 pr_cont("16-deep LBR, ");
948 }
949
950 /* sandy bridge */
951 void __init intel_pmu_lbr_init_snb(void)
952 {
953 x86_pmu.lbr_nr = 16;
954 x86_pmu.lbr_tos = MSR_LBR_TOS;
955 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
956 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
957
958 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
959 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
960
961 /*
962 * SW branch filter usage:
963 * - support syscall, sysret capture.
964 * That requires LBR_FAR but that means far
965 * jmp need to be filtered out
966 */
967 pr_cont("16-deep LBR, ");
968 }
969
970 /* haswell */
971 void intel_pmu_lbr_init_hsw(void)
972 {
973 x86_pmu.lbr_nr = 16;
974 x86_pmu.lbr_tos = MSR_LBR_TOS;
975 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
976 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
977
978 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
979 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
980
981 pr_cont("16-deep LBR, ");
982 }
983
984 /* skylake */
985 __init void intel_pmu_lbr_init_skl(void)
986 {
987 x86_pmu.lbr_nr = 32;
988 x86_pmu.lbr_tos = MSR_LBR_TOS;
989 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
990 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
991
992 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
993 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
994
995 /*
996 * SW branch filter usage:
997 * - support syscall, sysret capture.
998 * That requires LBR_FAR but that means far
999 * jmp need to be filtered out
1000 */
1001 pr_cont("32-deep LBR, ");
1002 }
1003
1004 /* atom */
1005 void __init intel_pmu_lbr_init_atom(void)
1006 {
1007 /*
1008 * only models starting at stepping 10 seems
1009 * to have an operational LBR which can freeze
1010 * on PMU interrupt
1011 */
1012 if (boot_cpu_data.x86_model == 28
1013 && boot_cpu_data.x86_mask < 10) {
1014 pr_cont("LBR disabled due to erratum");
1015 return;
1016 }
1017
1018 x86_pmu.lbr_nr = 8;
1019 x86_pmu.lbr_tos = MSR_LBR_TOS;
1020 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1021 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1022
1023 /*
1024 * SW branch filter usage:
1025 * - compensate for lack of HW filter
1026 */
1027 pr_cont("8-deep LBR, ");
1028 }
This page took 0.054229 seconds and 5 git commands to generate.