x86: remove irqbalance in kernel for 32 bit
[deliverable/linux.git] / arch / x86 / kernel / ds.c
1 /*
2 * Debug Store support
3 *
4 * This provides a low-level interface to the hardware's Debug Store
5 * feature that is used for branch trace store (BTS) and
6 * precise-event based sampling (PEBS).
7 *
8 * It manages:
9 * - per-thread and per-cpu allocation of BTS and PEBS
10 * - buffer memory allocation (optional)
11 * - buffer overflow handling
12 * - buffer access
13 *
14 * It assumes:
15 * - get_task_struct on all parameter tasks
16 * - current is allowed to trace parameter tasks
17 *
18 *
19 * Copyright (C) 2007-2008 Intel Corporation.
20 * Markus Metzger <markus.t.metzger@intel.com>, 2007-2008
21 */
22
23
24 #ifdef CONFIG_X86_DS
25
26 #include <asm/ds.h>
27
28 #include <linux/errno.h>
29 #include <linux/string.h>
30 #include <linux/slab.h>
31 #include <linux/sched.h>
32 #include <linux/mm.h>
33
34
35 /*
36 * The configuration for a particular DS hardware implementation.
37 */
38 struct ds_configuration {
39 /* the size of the DS structure in bytes */
40 unsigned char sizeof_ds;
41 /* the size of one pointer-typed field in the DS structure in bytes;
42 this covers the first 8 fields related to buffer management. */
43 unsigned char sizeof_field;
44 /* the size of a BTS/PEBS record in bytes */
45 unsigned char sizeof_rec[2];
46 };
47 static struct ds_configuration ds_cfg;
48
49
50 /*
51 * Debug Store (DS) save area configuration (see Intel64 and IA32
52 * Architectures Software Developer's Manual, section 18.5)
53 *
54 * The DS configuration consists of the following fields; different
55 * architetures vary in the size of those fields.
56 * - double-word aligned base linear address of the BTS buffer
57 * - write pointer into the BTS buffer
58 * - end linear address of the BTS buffer (one byte beyond the end of
59 * the buffer)
60 * - interrupt pointer into BTS buffer
61 * (interrupt occurs when write pointer passes interrupt pointer)
62 * - double-word aligned base linear address of the PEBS buffer
63 * - write pointer into the PEBS buffer
64 * - end linear address of the PEBS buffer (one byte beyond the end of
65 * the buffer)
66 * - interrupt pointer into PEBS buffer
67 * (interrupt occurs when write pointer passes interrupt pointer)
68 * - value to which counter is reset following counter overflow
69 *
70 * Later architectures use 64bit pointers throughout, whereas earlier
71 * architectures use 32bit pointers in 32bit mode.
72 *
73 *
74 * We compute the base address for the first 8 fields based on:
75 * - the field size stored in the DS configuration
76 * - the relative field position
77 * - an offset giving the start of the respective region
78 *
79 * This offset is further used to index various arrays holding
80 * information for BTS and PEBS at the respective index.
81 *
82 * On later 32bit processors, we only access the lower 32bit of the
83 * 64bit pointer fields. The upper halves will be zeroed out.
84 */
85
86 enum ds_field {
87 ds_buffer_base = 0,
88 ds_index,
89 ds_absolute_maximum,
90 ds_interrupt_threshold,
91 };
92
93 enum ds_qualifier {
94 ds_bts = 0,
95 ds_pebs
96 };
97
98 static inline unsigned long ds_get(const unsigned char *base,
99 enum ds_qualifier qual, enum ds_field field)
100 {
101 base += (ds_cfg.sizeof_field * (field + (4 * qual)));
102 return *(unsigned long *)base;
103 }
104
105 static inline void ds_set(unsigned char *base, enum ds_qualifier qual,
106 enum ds_field field, unsigned long value)
107 {
108 base += (ds_cfg.sizeof_field * (field + (4 * qual)));
109 (*(unsigned long *)base) = value;
110 }
111
112
113 /*
114 * Locking is done only for allocating BTS or PEBS resources and for
115 * guarding context and buffer memory allocation.
116 *
117 * Most functions require the current task to own the ds context part
118 * they are going to access. All the locking is done when validating
119 * access to the context.
120 */
121 static spinlock_t ds_lock = __SPIN_LOCK_UNLOCKED(ds_lock);
122
123 /*
124 * Validate that the current task is allowed to access the BTS/PEBS
125 * buffer of the parameter task.
126 *
127 * Returns 0, if access is granted; -Eerrno, otherwise.
128 */
129 static inline int ds_validate_access(struct ds_context *context,
130 enum ds_qualifier qual)
131 {
132 if (!context)
133 return -EPERM;
134
135 if (context->owner[qual] == current)
136 return 0;
137
138 return -EPERM;
139 }
140
141
142 /*
143 * We either support (system-wide) per-cpu or per-thread allocation.
144 * We distinguish the two based on the task_struct pointer, where a
145 * NULL pointer indicates per-cpu allocation for the current cpu.
146 *
147 * Allocations are use-counted. As soon as resources are allocated,
148 * further allocations must be of the same type (per-cpu or
149 * per-thread). We model this by counting allocations (i.e. the number
150 * of tracers of a certain type) for one type negatively:
151 * =0 no tracers
152 * >0 number of per-thread tracers
153 * <0 number of per-cpu tracers
154 *
155 * The below functions to get and put tracers and to check the
156 * allocation type require the ds_lock to be held by the caller.
157 *
158 * Tracers essentially gives the number of ds contexts for a certain
159 * type of allocation.
160 */
161 static long tracers;
162
163 static inline void get_tracer(struct task_struct *task)
164 {
165 tracers += (task ? 1 : -1);
166 }
167
168 static inline void put_tracer(struct task_struct *task)
169 {
170 tracers -= (task ? 1 : -1);
171 }
172
173 static inline int check_tracer(struct task_struct *task)
174 {
175 return (task ? (tracers >= 0) : (tracers <= 0));
176 }
177
178
179 /*
180 * The DS context is either attached to a thread or to a cpu:
181 * - in the former case, the thread_struct contains a pointer to the
182 * attached context.
183 * - in the latter case, we use a static array of per-cpu context
184 * pointers.
185 *
186 * Contexts are use-counted. They are allocated on first access and
187 * deallocated when the last user puts the context.
188 *
189 * We distinguish between an allocating and a non-allocating get of a
190 * context:
191 * - the allocating get is used for requesting BTS/PEBS resources. It
192 * requires the caller to hold the global ds_lock.
193 * - the non-allocating get is used for all other cases. A
194 * non-existing context indicates an error. It acquires and releases
195 * the ds_lock itself for obtaining the context.
196 *
197 * A context and its DS configuration are allocated and deallocated
198 * together. A context always has a DS configuration of the
199 * appropriate size.
200 */
201 static DEFINE_PER_CPU(struct ds_context *, system_context);
202
203 #define this_system_context per_cpu(system_context, smp_processor_id())
204
205 /*
206 * Returns the pointer to the parameter task's context or to the
207 * system-wide context, if task is NULL.
208 *
209 * Increases the use count of the returned context, if not NULL.
210 */
211 static inline struct ds_context *ds_get_context(struct task_struct *task)
212 {
213 struct ds_context *context;
214
215 spin_lock(&ds_lock);
216
217 context = (task ? task->thread.ds_ctx : this_system_context);
218 if (context)
219 context->count++;
220
221 spin_unlock(&ds_lock);
222
223 return context;
224 }
225
226 /*
227 * Same as ds_get_context, but allocates the context and it's DS
228 * structure, if necessary; returns NULL; if out of memory.
229 *
230 * pre: requires ds_lock to be held
231 */
232 static inline struct ds_context *ds_alloc_context(struct task_struct *task)
233 {
234 struct ds_context **p_context =
235 (task ? &task->thread.ds_ctx : &this_system_context);
236 struct ds_context *context = *p_context;
237
238 if (!context) {
239 context = kzalloc(sizeof(*context), GFP_KERNEL);
240
241 if (!context)
242 return NULL;
243
244 context->ds = kzalloc(ds_cfg.sizeof_ds, GFP_KERNEL);
245 if (!context->ds) {
246 kfree(context);
247 return NULL;
248 }
249
250 *p_context = context;
251
252 context->this = p_context;
253 context->task = task;
254
255 if (task)
256 set_tsk_thread_flag(task, TIF_DS_AREA_MSR);
257
258 if (!task || (task == current))
259 wrmsr(MSR_IA32_DS_AREA, (unsigned long)context->ds, 0);
260
261 get_tracer(task);
262 }
263
264 context->count++;
265
266 return context;
267 }
268
269 /*
270 * Decreases the use count of the parameter context, if not NULL.
271 * Deallocates the context, if the use count reaches zero.
272 */
273 static inline void ds_put_context(struct ds_context *context)
274 {
275 if (!context)
276 return;
277
278 spin_lock(&ds_lock);
279
280 if (--context->count)
281 goto out;
282
283 *(context->this) = NULL;
284
285 if (context->task)
286 clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR);
287
288 if (!context->task || (context->task == current))
289 wrmsrl(MSR_IA32_DS_AREA, 0);
290
291 put_tracer(context->task);
292
293 /* free any leftover buffers from tracers that did not
294 * deallocate them properly. */
295 kfree(context->buffer[ds_bts]);
296 kfree(context->buffer[ds_pebs]);
297 kfree(context->ds);
298 kfree(context);
299 out:
300 spin_unlock(&ds_lock);
301 }
302
303
304 /*
305 * Handle a buffer overflow
306 *
307 * task: the task whose buffers are overflowing;
308 * NULL for a buffer overflow on the current cpu
309 * context: the ds context
310 * qual: the buffer type
311 */
312 static void ds_overflow(struct task_struct *task, struct ds_context *context,
313 enum ds_qualifier qual)
314 {
315 if (!context)
316 return;
317
318 if (context->callback[qual])
319 (*context->callback[qual])(task);
320
321 /* todo: do some more overflow handling */
322 }
323
324
325 /*
326 * Allocate a non-pageable buffer of the parameter size.
327 * Checks the memory and the locked memory rlimit.
328 *
329 * Returns the buffer, if successful;
330 * NULL, if out of memory or rlimit exceeded.
331 *
332 * size: the requested buffer size in bytes
333 * pages (out): if not NULL, contains the number of pages reserved
334 */
335 static inline void *ds_allocate_buffer(size_t size, unsigned int *pages)
336 {
337 unsigned long rlim, vm, pgsz;
338 void *buffer;
339
340 pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
341
342 rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
343 vm = current->mm->total_vm + pgsz;
344 if (rlim < vm)
345 return NULL;
346
347 rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
348 vm = current->mm->locked_vm + pgsz;
349 if (rlim < vm)
350 return NULL;
351
352 buffer = kzalloc(size, GFP_KERNEL);
353 if (!buffer)
354 return NULL;
355
356 current->mm->total_vm += pgsz;
357 current->mm->locked_vm += pgsz;
358
359 if (pages)
360 *pages = pgsz;
361
362 return buffer;
363 }
364
365 static int ds_request(struct task_struct *task, void *base, size_t size,
366 ds_ovfl_callback_t ovfl, enum ds_qualifier qual)
367 {
368 struct ds_context *context;
369 unsigned long buffer, adj;
370 const unsigned long alignment = (1 << 3);
371 int error = 0;
372
373 if (!ds_cfg.sizeof_ds)
374 return -EOPNOTSUPP;
375
376 /* we require some space to do alignment adjustments below */
377 if (size < (alignment + ds_cfg.sizeof_rec[qual]))
378 return -EINVAL;
379
380 /* buffer overflow notification is not yet implemented */
381 if (ovfl)
382 return -EOPNOTSUPP;
383
384
385 spin_lock(&ds_lock);
386
387 if (!check_tracer(task))
388 return -EPERM;
389
390 error = -ENOMEM;
391 context = ds_alloc_context(task);
392 if (!context)
393 goto out_unlock;
394
395 error = -EALREADY;
396 if (context->owner[qual] == current)
397 goto out_unlock;
398 error = -EPERM;
399 if (context->owner[qual] != NULL)
400 goto out_unlock;
401 context->owner[qual] = current;
402
403 spin_unlock(&ds_lock);
404
405
406 error = -ENOMEM;
407 if (!base) {
408 base = ds_allocate_buffer(size, &context->pages[qual]);
409 if (!base)
410 goto out_release;
411
412 context->buffer[qual] = base;
413 }
414 error = 0;
415
416 context->callback[qual] = ovfl;
417
418 /* adjust the buffer address and size to meet alignment
419 * constraints:
420 * - buffer is double-word aligned
421 * - size is multiple of record size
422 *
423 * We checked the size at the very beginning; we have enough
424 * space to do the adjustment.
425 */
426 buffer = (unsigned long)base;
427
428 adj = ALIGN(buffer, alignment) - buffer;
429 buffer += adj;
430 size -= adj;
431
432 size /= ds_cfg.sizeof_rec[qual];
433 size *= ds_cfg.sizeof_rec[qual];
434
435 ds_set(context->ds, qual, ds_buffer_base, buffer);
436 ds_set(context->ds, qual, ds_index, buffer);
437 ds_set(context->ds, qual, ds_absolute_maximum, buffer + size);
438
439 if (ovfl) {
440 /* todo: select a suitable interrupt threshold */
441 } else
442 ds_set(context->ds, qual,
443 ds_interrupt_threshold, buffer + size + 1);
444
445 /* we keep the context until ds_release */
446 return error;
447
448 out_release:
449 context->owner[qual] = NULL;
450 ds_put_context(context);
451 return error;
452
453 out_unlock:
454 spin_unlock(&ds_lock);
455 ds_put_context(context);
456 return error;
457 }
458
459 int ds_request_bts(struct task_struct *task, void *base, size_t size,
460 ds_ovfl_callback_t ovfl)
461 {
462 return ds_request(task, base, size, ovfl, ds_bts);
463 }
464
465 int ds_request_pebs(struct task_struct *task, void *base, size_t size,
466 ds_ovfl_callback_t ovfl)
467 {
468 return ds_request(task, base, size, ovfl, ds_pebs);
469 }
470
471 static int ds_release(struct task_struct *task, enum ds_qualifier qual)
472 {
473 struct ds_context *context;
474 int error;
475
476 context = ds_get_context(task);
477 error = ds_validate_access(context, qual);
478 if (error < 0)
479 goto out;
480
481 kfree(context->buffer[qual]);
482 context->buffer[qual] = NULL;
483
484 current->mm->total_vm -= context->pages[qual];
485 current->mm->locked_vm -= context->pages[qual];
486 context->pages[qual] = 0;
487 context->owner[qual] = NULL;
488
489 /*
490 * we put the context twice:
491 * once for the ds_get_context
492 * once for the corresponding ds_request
493 */
494 ds_put_context(context);
495 out:
496 ds_put_context(context);
497 return error;
498 }
499
500 int ds_release_bts(struct task_struct *task)
501 {
502 return ds_release(task, ds_bts);
503 }
504
505 int ds_release_pebs(struct task_struct *task)
506 {
507 return ds_release(task, ds_pebs);
508 }
509
510 static int ds_get_index(struct task_struct *task, size_t *pos,
511 enum ds_qualifier qual)
512 {
513 struct ds_context *context;
514 unsigned long base, index;
515 int error;
516
517 context = ds_get_context(task);
518 error = ds_validate_access(context, qual);
519 if (error < 0)
520 goto out;
521
522 base = ds_get(context->ds, qual, ds_buffer_base);
523 index = ds_get(context->ds, qual, ds_index);
524
525 error = ((index - base) / ds_cfg.sizeof_rec[qual]);
526 if (pos)
527 *pos = error;
528 out:
529 ds_put_context(context);
530 return error;
531 }
532
533 int ds_get_bts_index(struct task_struct *task, size_t *pos)
534 {
535 return ds_get_index(task, pos, ds_bts);
536 }
537
538 int ds_get_pebs_index(struct task_struct *task, size_t *pos)
539 {
540 return ds_get_index(task, pos, ds_pebs);
541 }
542
543 static int ds_get_end(struct task_struct *task, size_t *pos,
544 enum ds_qualifier qual)
545 {
546 struct ds_context *context;
547 unsigned long base, end;
548 int error;
549
550 context = ds_get_context(task);
551 error = ds_validate_access(context, qual);
552 if (error < 0)
553 goto out;
554
555 base = ds_get(context->ds, qual, ds_buffer_base);
556 end = ds_get(context->ds, qual, ds_absolute_maximum);
557
558 error = ((end - base) / ds_cfg.sizeof_rec[qual]);
559 if (pos)
560 *pos = error;
561 out:
562 ds_put_context(context);
563 return error;
564 }
565
566 int ds_get_bts_end(struct task_struct *task, size_t *pos)
567 {
568 return ds_get_end(task, pos, ds_bts);
569 }
570
571 int ds_get_pebs_end(struct task_struct *task, size_t *pos)
572 {
573 return ds_get_end(task, pos, ds_pebs);
574 }
575
576 static int ds_access(struct task_struct *task, size_t index,
577 const void **record, enum ds_qualifier qual)
578 {
579 struct ds_context *context;
580 unsigned long base, idx;
581 int error;
582
583 if (!record)
584 return -EINVAL;
585
586 context = ds_get_context(task);
587 error = ds_validate_access(context, qual);
588 if (error < 0)
589 goto out;
590
591 base = ds_get(context->ds, qual, ds_buffer_base);
592 idx = base + (index * ds_cfg.sizeof_rec[qual]);
593
594 error = -EINVAL;
595 if (idx > ds_get(context->ds, qual, ds_absolute_maximum))
596 goto out;
597
598 *record = (const void *)idx;
599 error = ds_cfg.sizeof_rec[qual];
600 out:
601 ds_put_context(context);
602 return error;
603 }
604
605 int ds_access_bts(struct task_struct *task, size_t index, const void **record)
606 {
607 return ds_access(task, index, record, ds_bts);
608 }
609
610 int ds_access_pebs(struct task_struct *task, size_t index, const void **record)
611 {
612 return ds_access(task, index, record, ds_pebs);
613 }
614
615 static int ds_write(struct task_struct *task, const void *record, size_t size,
616 enum ds_qualifier qual, int force)
617 {
618 struct ds_context *context;
619 int error;
620
621 if (!record)
622 return -EINVAL;
623
624 error = -EPERM;
625 context = ds_get_context(task);
626 if (!context)
627 goto out;
628
629 if (!force) {
630 error = ds_validate_access(context, qual);
631 if (error < 0)
632 goto out;
633 }
634
635 error = 0;
636 while (size) {
637 unsigned long base, index, end, write_end, int_th;
638 unsigned long write_size, adj_write_size;
639
640 /*
641 * write as much as possible without producing an
642 * overflow interrupt.
643 *
644 * interrupt_threshold must either be
645 * - bigger than absolute_maximum or
646 * - point to a record between buffer_base and absolute_maximum
647 *
648 * index points to a valid record.
649 */
650 base = ds_get(context->ds, qual, ds_buffer_base);
651 index = ds_get(context->ds, qual, ds_index);
652 end = ds_get(context->ds, qual, ds_absolute_maximum);
653 int_th = ds_get(context->ds, qual, ds_interrupt_threshold);
654
655 write_end = min(end, int_th);
656
657 /* if we are already beyond the interrupt threshold,
658 * we fill the entire buffer */
659 if (write_end <= index)
660 write_end = end;
661
662 if (write_end <= index)
663 goto out;
664
665 write_size = min((unsigned long) size, write_end - index);
666 memcpy((void *)index, record, write_size);
667
668 record = (const char *)record + write_size;
669 size -= write_size;
670 error += write_size;
671
672 adj_write_size = write_size / ds_cfg.sizeof_rec[qual];
673 adj_write_size *= ds_cfg.sizeof_rec[qual];
674
675 /* zero out trailing bytes */
676 memset((char *)index + write_size, 0,
677 adj_write_size - write_size);
678 index += adj_write_size;
679
680 if (index >= end)
681 index = base;
682 ds_set(context->ds, qual, ds_index, index);
683
684 if (index >= int_th)
685 ds_overflow(task, context, qual);
686 }
687
688 out:
689 ds_put_context(context);
690 return error;
691 }
692
693 int ds_write_bts(struct task_struct *task, const void *record, size_t size)
694 {
695 return ds_write(task, record, size, ds_bts, /* force = */ 0);
696 }
697
698 int ds_write_pebs(struct task_struct *task, const void *record, size_t size)
699 {
700 return ds_write(task, record, size, ds_pebs, /* force = */ 0);
701 }
702
703 int ds_unchecked_write_bts(struct task_struct *task,
704 const void *record, size_t size)
705 {
706 return ds_write(task, record, size, ds_bts, /* force = */ 1);
707 }
708
709 int ds_unchecked_write_pebs(struct task_struct *task,
710 const void *record, size_t size)
711 {
712 return ds_write(task, record, size, ds_pebs, /* force = */ 1);
713 }
714
715 static int ds_reset_or_clear(struct task_struct *task,
716 enum ds_qualifier qual, int clear)
717 {
718 struct ds_context *context;
719 unsigned long base, end;
720 int error;
721
722 context = ds_get_context(task);
723 error = ds_validate_access(context, qual);
724 if (error < 0)
725 goto out;
726
727 base = ds_get(context->ds, qual, ds_buffer_base);
728 end = ds_get(context->ds, qual, ds_absolute_maximum);
729
730 if (clear)
731 memset((void *)base, 0, end - base);
732
733 ds_set(context->ds, qual, ds_index, base);
734
735 error = 0;
736 out:
737 ds_put_context(context);
738 return error;
739 }
740
741 int ds_reset_bts(struct task_struct *task)
742 {
743 return ds_reset_or_clear(task, ds_bts, /* clear = */ 0);
744 }
745
746 int ds_reset_pebs(struct task_struct *task)
747 {
748 return ds_reset_or_clear(task, ds_pebs, /* clear = */ 0);
749 }
750
751 int ds_clear_bts(struct task_struct *task)
752 {
753 return ds_reset_or_clear(task, ds_bts, /* clear = */ 1);
754 }
755
756 int ds_clear_pebs(struct task_struct *task)
757 {
758 return ds_reset_or_clear(task, ds_pebs, /* clear = */ 1);
759 }
760
761 int ds_get_pebs_reset(struct task_struct *task, u64 *value)
762 {
763 struct ds_context *context;
764 int error;
765
766 if (!value)
767 return -EINVAL;
768
769 context = ds_get_context(task);
770 error = ds_validate_access(context, ds_pebs);
771 if (error < 0)
772 goto out;
773
774 *value = *(u64 *)(context->ds + (ds_cfg.sizeof_field * 8));
775
776 error = 0;
777 out:
778 ds_put_context(context);
779 return error;
780 }
781
782 int ds_set_pebs_reset(struct task_struct *task, u64 value)
783 {
784 struct ds_context *context;
785 int error;
786
787 context = ds_get_context(task);
788 error = ds_validate_access(context, ds_pebs);
789 if (error < 0)
790 goto out;
791
792 *(u64 *)(context->ds + (ds_cfg.sizeof_field * 8)) = value;
793
794 error = 0;
795 out:
796 ds_put_context(context);
797 return error;
798 }
799
800 static const struct ds_configuration ds_cfg_var = {
801 .sizeof_ds = sizeof(long) * 12,
802 .sizeof_field = sizeof(long),
803 .sizeof_rec[ds_bts] = sizeof(long) * 3,
804 .sizeof_rec[ds_pebs] = sizeof(long) * 10
805 };
806 static const struct ds_configuration ds_cfg_64 = {
807 .sizeof_ds = 8 * 12,
808 .sizeof_field = 8,
809 .sizeof_rec[ds_bts] = 8 * 3,
810 .sizeof_rec[ds_pebs] = 8 * 10
811 };
812
813 static inline void
814 ds_configure(const struct ds_configuration *cfg)
815 {
816 ds_cfg = *cfg;
817 }
818
819 void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
820 {
821 switch (c->x86) {
822 case 0x6:
823 switch (c->x86_model) {
824 case 0xD:
825 case 0xE: /* Pentium M */
826 ds_configure(&ds_cfg_var);
827 break;
828 case 0xF: /* Core2 */
829 case 0x1C: /* Atom */
830 ds_configure(&ds_cfg_64);
831 break;
832 default:
833 /* sorry, don't know about them */
834 break;
835 }
836 break;
837 case 0xF:
838 switch (c->x86_model) {
839 case 0x0:
840 case 0x1:
841 case 0x2: /* Netburst */
842 ds_configure(&ds_cfg_var);
843 break;
844 default:
845 /* sorry, don't know about them */
846 break;
847 }
848 break;
849 default:
850 /* sorry, don't know about them */
851 break;
852 }
853 }
854
855 void ds_free(struct ds_context *context)
856 {
857 /* This is called when the task owning the parameter context
858 * is dying. There should not be any user of that context left
859 * to disturb us, anymore. */
860 unsigned long leftovers = context->count;
861 while (leftovers--)
862 ds_put_context(context);
863 }
864 #endif /* CONFIG_X86_DS */
This page took 0.16772 seconds and 5 git commands to generate.