x86: remove irqbalance in kernel for 32 bit
[deliverable/linux.git] / arch / x86 / kernel / efi.c
1 /*
2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 *
16 * Copied from efi_32.c to eliminate the duplicated code between EFI
17 * 32/64 support code. --ying 2007-10-26
18 *
19 * All EFI Runtime Services are not implemented yet as EFI only
20 * supports physical mode addressing on SoftSDV. This is to be fixed
21 * in a future version. --drummond 1999-07-20
22 *
23 * Implemented EFI runtime services and virtual mode calls. --davidm
24 *
25 * Goutham Rao: <goutham.rao@intel.com>
26 * Skip non-WB memory and ignore empty memory ranges.
27 */
28
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/spinlock.h>
34 #include <linux/uaccess.h>
35 #include <linux/time.h>
36 #include <linux/io.h>
37 #include <linux/reboot.h>
38 #include <linux/bcd.h>
39
40 #include <asm/setup.h>
41 #include <asm/efi.h>
42 #include <asm/time.h>
43 #include <asm/cacheflush.h>
44 #include <asm/tlbflush.h>
45
46 #define EFI_DEBUG 1
47 #define PFX "EFI: "
48
49 int efi_enabled;
50 EXPORT_SYMBOL(efi_enabled);
51
52 struct efi efi;
53 EXPORT_SYMBOL(efi);
54
55 struct efi_memory_map memmap;
56
57 static struct efi efi_phys __initdata;
58 static efi_system_table_t efi_systab __initdata;
59
60 static int __init setup_noefi(char *arg)
61 {
62 efi_enabled = 0;
63 return 0;
64 }
65 early_param("noefi", setup_noefi);
66
67 int add_efi_memmap;
68 EXPORT_SYMBOL(add_efi_memmap);
69
70 static int __init setup_add_efi_memmap(char *arg)
71 {
72 add_efi_memmap = 1;
73 return 0;
74 }
75 early_param("add_efi_memmap", setup_add_efi_memmap);
76
77
78 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
79 {
80 return efi_call_virt2(get_time, tm, tc);
81 }
82
83 static efi_status_t virt_efi_set_time(efi_time_t *tm)
84 {
85 return efi_call_virt1(set_time, tm);
86 }
87
88 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
89 efi_bool_t *pending,
90 efi_time_t *tm)
91 {
92 return efi_call_virt3(get_wakeup_time,
93 enabled, pending, tm);
94 }
95
96 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
97 {
98 return efi_call_virt2(set_wakeup_time,
99 enabled, tm);
100 }
101
102 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
103 efi_guid_t *vendor,
104 u32 *attr,
105 unsigned long *data_size,
106 void *data)
107 {
108 return efi_call_virt5(get_variable,
109 name, vendor, attr,
110 data_size, data);
111 }
112
113 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
114 efi_char16_t *name,
115 efi_guid_t *vendor)
116 {
117 return efi_call_virt3(get_next_variable,
118 name_size, name, vendor);
119 }
120
121 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
122 efi_guid_t *vendor,
123 unsigned long attr,
124 unsigned long data_size,
125 void *data)
126 {
127 return efi_call_virt5(set_variable,
128 name, vendor, attr,
129 data_size, data);
130 }
131
132 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
133 {
134 return efi_call_virt1(get_next_high_mono_count, count);
135 }
136
137 static void virt_efi_reset_system(int reset_type,
138 efi_status_t status,
139 unsigned long data_size,
140 efi_char16_t *data)
141 {
142 efi_call_virt4(reset_system, reset_type, status,
143 data_size, data);
144 }
145
146 static efi_status_t virt_efi_set_virtual_address_map(
147 unsigned long memory_map_size,
148 unsigned long descriptor_size,
149 u32 descriptor_version,
150 efi_memory_desc_t *virtual_map)
151 {
152 return efi_call_virt4(set_virtual_address_map,
153 memory_map_size, descriptor_size,
154 descriptor_version, virtual_map);
155 }
156
157 static efi_status_t __init phys_efi_set_virtual_address_map(
158 unsigned long memory_map_size,
159 unsigned long descriptor_size,
160 u32 descriptor_version,
161 efi_memory_desc_t *virtual_map)
162 {
163 efi_status_t status;
164
165 efi_call_phys_prelog();
166 status = efi_call_phys4(efi_phys.set_virtual_address_map,
167 memory_map_size, descriptor_size,
168 descriptor_version, virtual_map);
169 efi_call_phys_epilog();
170 return status;
171 }
172
173 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
174 efi_time_cap_t *tc)
175 {
176 efi_status_t status;
177
178 efi_call_phys_prelog();
179 status = efi_call_phys2(efi_phys.get_time, tm, tc);
180 efi_call_phys_epilog();
181 return status;
182 }
183
184 int efi_set_rtc_mmss(unsigned long nowtime)
185 {
186 int real_seconds, real_minutes;
187 efi_status_t status;
188 efi_time_t eft;
189 efi_time_cap_t cap;
190
191 status = efi.get_time(&eft, &cap);
192 if (status != EFI_SUCCESS) {
193 printk(KERN_ERR "Oops: efitime: can't read time!\n");
194 return -1;
195 }
196
197 real_seconds = nowtime % 60;
198 real_minutes = nowtime / 60;
199 if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
200 real_minutes += 30;
201 real_minutes %= 60;
202 eft.minute = real_minutes;
203 eft.second = real_seconds;
204
205 status = efi.set_time(&eft);
206 if (status != EFI_SUCCESS) {
207 printk(KERN_ERR "Oops: efitime: can't write time!\n");
208 return -1;
209 }
210 return 0;
211 }
212
213 unsigned long efi_get_time(void)
214 {
215 efi_status_t status;
216 efi_time_t eft;
217 efi_time_cap_t cap;
218
219 status = efi.get_time(&eft, &cap);
220 if (status != EFI_SUCCESS)
221 printk(KERN_ERR "Oops: efitime: can't read time!\n");
222
223 return mktime(eft.year, eft.month, eft.day, eft.hour,
224 eft.minute, eft.second);
225 }
226
227 /*
228 * Tell the kernel about the EFI memory map. This might include
229 * more than the max 128 entries that can fit in the e820 legacy
230 * (zeropage) memory map.
231 */
232
233 static void __init do_add_efi_memmap(void)
234 {
235 void *p;
236
237 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
238 efi_memory_desc_t *md = p;
239 unsigned long long start = md->phys_addr;
240 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
241 int e820_type;
242
243 if (md->attribute & EFI_MEMORY_WB)
244 e820_type = E820_RAM;
245 else
246 e820_type = E820_RESERVED;
247 e820_add_region(start, size, e820_type);
248 }
249 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
250 }
251
252 void __init efi_reserve_early(void)
253 {
254 unsigned long pmap;
255
256 #ifdef CONFIG_X86_32
257 pmap = boot_params.efi_info.efi_memmap;
258 #else
259 pmap = (boot_params.efi_info.efi_memmap |
260 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
261 #endif
262 memmap.phys_map = (void *)pmap;
263 memmap.nr_map = boot_params.efi_info.efi_memmap_size /
264 boot_params.efi_info.efi_memdesc_size;
265 memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
266 memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
267 reserve_early(pmap, pmap + memmap.nr_map * memmap.desc_size,
268 "EFI memmap");
269 }
270
271 #if EFI_DEBUG
272 static void __init print_efi_memmap(void)
273 {
274 efi_memory_desc_t *md;
275 void *p;
276 int i;
277
278 for (p = memmap.map, i = 0;
279 p < memmap.map_end;
280 p += memmap.desc_size, i++) {
281 md = p;
282 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
283 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
284 i, md->type, md->attribute, md->phys_addr,
285 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
286 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
287 }
288 }
289 #endif /* EFI_DEBUG */
290
291 void __init efi_init(void)
292 {
293 efi_config_table_t *config_tables;
294 efi_runtime_services_t *runtime;
295 efi_char16_t *c16;
296 char vendor[100] = "unknown";
297 int i = 0;
298 void *tmp;
299
300 #ifdef CONFIG_X86_32
301 efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
302 #else
303 efi_phys.systab = (efi_system_table_t *)
304 (boot_params.efi_info.efi_systab |
305 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
306 #endif
307
308 efi.systab = early_ioremap((unsigned long)efi_phys.systab,
309 sizeof(efi_system_table_t));
310 if (efi.systab == NULL)
311 printk(KERN_ERR "Couldn't map the EFI system table!\n");
312 memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
313 early_iounmap(efi.systab, sizeof(efi_system_table_t));
314 efi.systab = &efi_systab;
315
316 /*
317 * Verify the EFI Table
318 */
319 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
320 printk(KERN_ERR "EFI system table signature incorrect!\n");
321 if ((efi.systab->hdr.revision >> 16) == 0)
322 printk(KERN_ERR "Warning: EFI system table version "
323 "%d.%02d, expected 1.00 or greater!\n",
324 efi.systab->hdr.revision >> 16,
325 efi.systab->hdr.revision & 0xffff);
326
327 /*
328 * Show what we know for posterity
329 */
330 c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
331 if (c16) {
332 for (i = 0; i < sizeof(vendor) && *c16; ++i)
333 vendor[i] = *c16++;
334 vendor[i] = '\0';
335 } else
336 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
337 early_iounmap(tmp, 2);
338
339 printk(KERN_INFO "EFI v%u.%.02u by %s \n",
340 efi.systab->hdr.revision >> 16,
341 efi.systab->hdr.revision & 0xffff, vendor);
342
343 /*
344 * Let's see what config tables the firmware passed to us.
345 */
346 config_tables = early_ioremap(
347 efi.systab->tables,
348 efi.systab->nr_tables * sizeof(efi_config_table_t));
349 if (config_tables == NULL)
350 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
351
352 printk(KERN_INFO);
353 for (i = 0; i < efi.systab->nr_tables; i++) {
354 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
355 efi.mps = config_tables[i].table;
356 printk(" MPS=0x%lx ", config_tables[i].table);
357 } else if (!efi_guidcmp(config_tables[i].guid,
358 ACPI_20_TABLE_GUID)) {
359 efi.acpi20 = config_tables[i].table;
360 printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
361 } else if (!efi_guidcmp(config_tables[i].guid,
362 ACPI_TABLE_GUID)) {
363 efi.acpi = config_tables[i].table;
364 printk(" ACPI=0x%lx ", config_tables[i].table);
365 } else if (!efi_guidcmp(config_tables[i].guid,
366 SMBIOS_TABLE_GUID)) {
367 efi.smbios = config_tables[i].table;
368 printk(" SMBIOS=0x%lx ", config_tables[i].table);
369 } else if (!efi_guidcmp(config_tables[i].guid,
370 HCDP_TABLE_GUID)) {
371 efi.hcdp = config_tables[i].table;
372 printk(" HCDP=0x%lx ", config_tables[i].table);
373 } else if (!efi_guidcmp(config_tables[i].guid,
374 UGA_IO_PROTOCOL_GUID)) {
375 efi.uga = config_tables[i].table;
376 printk(" UGA=0x%lx ", config_tables[i].table);
377 }
378 }
379 printk("\n");
380 early_iounmap(config_tables,
381 efi.systab->nr_tables * sizeof(efi_config_table_t));
382
383 /*
384 * Check out the runtime services table. We need to map
385 * the runtime services table so that we can grab the physical
386 * address of several of the EFI runtime functions, needed to
387 * set the firmware into virtual mode.
388 */
389 runtime = early_ioremap((unsigned long)efi.systab->runtime,
390 sizeof(efi_runtime_services_t));
391 if (runtime != NULL) {
392 /*
393 * We will only need *early* access to the following
394 * two EFI runtime services before set_virtual_address_map
395 * is invoked.
396 */
397 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
398 efi_phys.set_virtual_address_map =
399 (efi_set_virtual_address_map_t *)
400 runtime->set_virtual_address_map;
401 /*
402 * Make efi_get_time can be called before entering
403 * virtual mode.
404 */
405 efi.get_time = phys_efi_get_time;
406 } else
407 printk(KERN_ERR "Could not map the EFI runtime service "
408 "table!\n");
409 early_iounmap(runtime, sizeof(efi_runtime_services_t));
410
411 /* Map the EFI memory map */
412 memmap.map = early_ioremap((unsigned long)memmap.phys_map,
413 memmap.nr_map * memmap.desc_size);
414 if (memmap.map == NULL)
415 printk(KERN_ERR "Could not map the EFI memory map!\n");
416 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
417
418 if (memmap.desc_size != sizeof(efi_memory_desc_t))
419 printk(KERN_WARNING
420 "Kernel-defined memdesc doesn't match the one from EFI!\n");
421
422 if (add_efi_memmap)
423 do_add_efi_memmap();
424
425 /* Setup for EFI runtime service */
426 reboot_type = BOOT_EFI;
427
428 #if EFI_DEBUG
429 print_efi_memmap();
430 #endif
431 }
432
433 static void __init runtime_code_page_mkexec(void)
434 {
435 efi_memory_desc_t *md;
436 void *p;
437 u64 addr, npages;
438
439 /* Make EFI runtime service code area executable */
440 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
441 md = p;
442
443 if (md->type != EFI_RUNTIME_SERVICES_CODE)
444 continue;
445
446 addr = md->virt_addr;
447 npages = md->num_pages;
448 memrange_efi_to_native(&addr, &npages);
449 set_memory_x(addr, npages);
450 }
451 }
452
453 /*
454 * This function will switch the EFI runtime services to virtual mode.
455 * Essentially, look through the EFI memmap and map every region that
456 * has the runtime attribute bit set in its memory descriptor and update
457 * that memory descriptor with the virtual address obtained from ioremap().
458 * This enables the runtime services to be called without having to
459 * thunk back into physical mode for every invocation.
460 */
461 void __init efi_enter_virtual_mode(void)
462 {
463 efi_memory_desc_t *md;
464 efi_status_t status;
465 unsigned long size;
466 u64 end, systab, addr, npages;
467 void *p, *va;
468
469 efi.systab = NULL;
470 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
471 md = p;
472 if (!(md->attribute & EFI_MEMORY_RUNTIME))
473 continue;
474
475 size = md->num_pages << EFI_PAGE_SHIFT;
476 end = md->phys_addr + size;
477
478 if (PFN_UP(end) <= max_low_pfn_mapped)
479 va = __va(md->phys_addr);
480 else
481 va = efi_ioremap(md->phys_addr, size);
482
483 md->virt_addr = (u64) (unsigned long) va;
484
485 if (!va) {
486 printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
487 (unsigned long long)md->phys_addr);
488 continue;
489 }
490
491 if (!(md->attribute & EFI_MEMORY_WB)) {
492 addr = md->virt_addr;
493 npages = md->num_pages;
494 memrange_efi_to_native(&addr, &npages);
495 set_memory_uc(addr, npages);
496 }
497
498 systab = (u64) (unsigned long) efi_phys.systab;
499 if (md->phys_addr <= systab && systab < end) {
500 systab += md->virt_addr - md->phys_addr;
501 efi.systab = (efi_system_table_t *) (unsigned long) systab;
502 }
503 }
504
505 BUG_ON(!efi.systab);
506
507 status = phys_efi_set_virtual_address_map(
508 memmap.desc_size * memmap.nr_map,
509 memmap.desc_size,
510 memmap.desc_version,
511 memmap.phys_map);
512
513 if (status != EFI_SUCCESS) {
514 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
515 "(status=%lx)!\n", status);
516 panic("EFI call to SetVirtualAddressMap() failed!");
517 }
518
519 /*
520 * Now that EFI is in virtual mode, update the function
521 * pointers in the runtime service table to the new virtual addresses.
522 *
523 * Call EFI services through wrapper functions.
524 */
525 efi.get_time = virt_efi_get_time;
526 efi.set_time = virt_efi_set_time;
527 efi.get_wakeup_time = virt_efi_get_wakeup_time;
528 efi.set_wakeup_time = virt_efi_set_wakeup_time;
529 efi.get_variable = virt_efi_get_variable;
530 efi.get_next_variable = virt_efi_get_next_variable;
531 efi.set_variable = virt_efi_set_variable;
532 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
533 efi.reset_system = virt_efi_reset_system;
534 efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
535 if (__supported_pte_mask & _PAGE_NX)
536 runtime_code_page_mkexec();
537 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
538 memmap.map = NULL;
539 }
540
541 /*
542 * Convenience functions to obtain memory types and attributes
543 */
544 u32 efi_mem_type(unsigned long phys_addr)
545 {
546 efi_memory_desc_t *md;
547 void *p;
548
549 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
550 md = p;
551 if ((md->phys_addr <= phys_addr) &&
552 (phys_addr < (md->phys_addr +
553 (md->num_pages << EFI_PAGE_SHIFT))))
554 return md->type;
555 }
556 return 0;
557 }
558
559 u64 efi_mem_attributes(unsigned long phys_addr)
560 {
561 efi_memory_desc_t *md;
562 void *p;
563
564 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
565 md = p;
566 if ((md->phys_addr <= phys_addr) &&
567 (phys_addr < (md->phys_addr +
568 (md->num_pages << EFI_PAGE_SHIFT))))
569 return md->attribute;
570 }
571 return 0;
572 }
This page took 0.042971 seconds and 5 git commands to generate.