x86/fpu: Simplify print_xstate_features()
[deliverable/linux.git] / arch / x86 / kernel / fpu / xstate.c
1 /*
2 * xsave/xrstor support.
3 *
4 * Author: Suresh Siddha <suresh.b.siddha@intel.com>
5 */
6 #include <linux/compat.h>
7 #include <linux/cpu.h>
8 #include <asm/fpu/api.h>
9 #include <asm/fpu/internal.h>
10 #include <asm/sigframe.h>
11 #include <asm/tlbflush.h>
12 #include <asm/xcr.h>
13
14 static const char *xfeature_names[] =
15 {
16 "x87 floating point registers" ,
17 "SSE registers" ,
18 "AVX registers" ,
19 "MPX bounds registers" ,
20 "MPX CSR" ,
21 "AVX-512 opmask" ,
22 "AVX-512 Hi256" ,
23 "AVX-512 ZMM_Hi256" ,
24 "unknown xstate feature" ,
25 };
26
27 /*
28 * Mask of xstate features supported by the CPU and the kernel:
29 */
30 u64 xfeatures_mask __read_mostly;
31
32 /*
33 * Represents init state for the supported extended state.
34 */
35 struct xsave_struct init_xstate_ctx;
36
37 static struct _fpx_sw_bytes fx_sw_reserved, fx_sw_reserved_ia32;
38 static unsigned int xstate_offsets[XFEATURES_NR_MAX], xstate_sizes[XFEATURES_NR_MAX];
39 static unsigned int xstate_comp_offsets[sizeof(xfeatures_mask)*8];
40
41 /* The number of supported xfeatures in xfeatures_mask: */
42 static unsigned int xfeatures_nr;
43
44 /*
45 * Return whether the system supports a given xfeature.
46 *
47 * Also return the name of the (most advanced) feature that the caller requested:
48 */
49 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
50 {
51 u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask;
52
53 if (unlikely(feature_name)) {
54 long xfeature_idx, max_idx;
55 u64 xfeatures_print;
56 /*
57 * So we use FLS here to be able to print the most advanced
58 * feature that was requested but is missing. So if a driver
59 * asks about "XSTATE_SSE | XSTATE_YMM" we'll print the
60 * missing AVX feature - this is the most informative message
61 * to users:
62 */
63 if (xfeatures_missing)
64 xfeatures_print = xfeatures_missing;
65 else
66 xfeatures_print = xfeatures_needed;
67
68 xfeature_idx = fls64(xfeatures_print)-1;
69 max_idx = ARRAY_SIZE(xfeature_names)-1;
70 xfeature_idx = min(xfeature_idx, max_idx);
71
72 *feature_name = xfeature_names[xfeature_idx];
73 }
74
75 if (xfeatures_missing)
76 return 0;
77
78 return 1;
79 }
80 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
81
82 /*
83 * When executing XSAVEOPT (optimized XSAVE), if a processor implementation
84 * detects that an FPU state component is still (or is again) in its
85 * initialized state, it may clear the corresponding bit in the header.xfeatures
86 * field, and can skip the writeout of registers to the corresponding memory layout.
87 *
88 * This means that when the bit is zero, the state component might still contain
89 * some previous - non-initialized register state.
90 *
91 * Before writing xstate information to user-space we sanitize those components,
92 * to always ensure that the memory layout of a feature will be in the init state
93 * if the corresponding header bit is zero. This is to ensure that user-space doesn't
94 * see some stale state in the memory layout during signal handling, debugging etc.
95 */
96 void __sanitize_i387_state(struct task_struct *tsk)
97 {
98 struct i387_fxsave_struct *fx = &tsk->thread.fpu.state.fxsave;
99 int feature_bit;
100 u64 xfeatures;
101
102 if (!fx)
103 return;
104
105 xfeatures = tsk->thread.fpu.state.xsave.header.xfeatures;
106
107 /*
108 * None of the feature bits are in init state. So nothing else
109 * to do for us, as the memory layout is up to date.
110 */
111 if ((xfeatures & xfeatures_mask) == xfeatures_mask)
112 return;
113
114 /*
115 * FP is in init state
116 */
117 if (!(xfeatures & XSTATE_FP)) {
118 fx->cwd = 0x37f;
119 fx->swd = 0;
120 fx->twd = 0;
121 fx->fop = 0;
122 fx->rip = 0;
123 fx->rdp = 0;
124 memset(&fx->st_space[0], 0, 128);
125 }
126
127 /*
128 * SSE is in init state
129 */
130 if (!(xfeatures & XSTATE_SSE))
131 memset(&fx->xmm_space[0], 0, 256);
132
133 /*
134 * First two features are FPU and SSE, which above we handled
135 * in a special way already:
136 */
137 feature_bit = 0x2;
138 xfeatures = (xfeatures_mask & ~xfeatures) >> 2;
139
140 /*
141 * Update all the remaining memory layouts according to their
142 * standard xstate layout, if their header bit is in the init
143 * state:
144 */
145 while (xfeatures) {
146 if (xfeatures & 0x1) {
147 int offset = xstate_offsets[feature_bit];
148 int size = xstate_sizes[feature_bit];
149
150 memcpy((void *)fx + offset,
151 (void *)&init_xstate_ctx + offset,
152 size);
153 }
154
155 xfeatures >>= 1;
156 feature_bit++;
157 }
158 }
159
160 /*
161 * Check for the presence of extended state information in the
162 * user fpstate pointer in the sigcontext.
163 */
164 static inline int check_for_xstate(struct i387_fxsave_struct __user *buf,
165 void __user *fpstate,
166 struct _fpx_sw_bytes *fx_sw)
167 {
168 int min_xstate_size = sizeof(struct i387_fxsave_struct) +
169 sizeof(struct xstate_header);
170 unsigned int magic2;
171
172 if (__copy_from_user(fx_sw, &buf->sw_reserved[0], sizeof(*fx_sw)))
173 return -1;
174
175 /* Check for the first magic field and other error scenarios. */
176 if (fx_sw->magic1 != FP_XSTATE_MAGIC1 ||
177 fx_sw->xstate_size < min_xstate_size ||
178 fx_sw->xstate_size > xstate_size ||
179 fx_sw->xstate_size > fx_sw->extended_size)
180 return -1;
181
182 /*
183 * Check for the presence of second magic word at the end of memory
184 * layout. This detects the case where the user just copied the legacy
185 * fpstate layout with out copying the extended state information
186 * in the memory layout.
187 */
188 if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size))
189 || magic2 != FP_XSTATE_MAGIC2)
190 return -1;
191
192 return 0;
193 }
194
195 /*
196 * Signal frame handlers.
197 */
198 static inline int save_fsave_header(struct task_struct *tsk, void __user *buf)
199 {
200 if (use_fxsr()) {
201 struct xsave_struct *xsave = &tsk->thread.fpu.state.xsave;
202 struct user_i387_ia32_struct env;
203 struct _fpstate_ia32 __user *fp = buf;
204
205 convert_from_fxsr(&env, tsk);
206
207 if (__copy_to_user(buf, &env, sizeof(env)) ||
208 __put_user(xsave->i387.swd, &fp->status) ||
209 __put_user(X86_FXSR_MAGIC, &fp->magic))
210 return -1;
211 } else {
212 struct i387_fsave_struct __user *fp = buf;
213 u32 swd;
214 if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status))
215 return -1;
216 }
217
218 return 0;
219 }
220
221 static inline int save_xstate_epilog(void __user *buf, int ia32_frame)
222 {
223 struct xsave_struct __user *x = buf;
224 struct _fpx_sw_bytes *sw_bytes;
225 u32 xfeatures;
226 int err;
227
228 /* Setup the bytes not touched by the [f]xsave and reserved for SW. */
229 sw_bytes = ia32_frame ? &fx_sw_reserved_ia32 : &fx_sw_reserved;
230 err = __copy_to_user(&x->i387.sw_reserved, sw_bytes, sizeof(*sw_bytes));
231
232 if (!use_xsave())
233 return err;
234
235 err |= __put_user(FP_XSTATE_MAGIC2, (__u32 *)(buf + xstate_size));
236
237 /*
238 * Read the xfeatures which we copied (directly from the cpu or
239 * from the state in task struct) to the user buffers.
240 */
241 err |= __get_user(xfeatures, (__u32 *)&x->header.xfeatures);
242
243 /*
244 * For legacy compatible, we always set FP/SSE bits in the bit
245 * vector while saving the state to the user context. This will
246 * enable us capturing any changes(during sigreturn) to
247 * the FP/SSE bits by the legacy applications which don't touch
248 * xfeatures in the xsave header.
249 *
250 * xsave aware apps can change the xfeatures in the xsave
251 * header as well as change any contents in the memory layout.
252 * xrestore as part of sigreturn will capture all the changes.
253 */
254 xfeatures |= XSTATE_FPSSE;
255
256 err |= __put_user(xfeatures, (__u32 *)&x->header.xfeatures);
257
258 return err;
259 }
260
261 static inline int save_user_xstate(struct xsave_struct __user *buf)
262 {
263 int err;
264
265 if (use_xsave())
266 err = xsave_user(buf);
267 else if (use_fxsr())
268 err = fxsave_user((struct i387_fxsave_struct __user *) buf);
269 else
270 err = fsave_user((struct i387_fsave_struct __user *) buf);
271
272 if (unlikely(err) && __clear_user(buf, xstate_size))
273 err = -EFAULT;
274 return err;
275 }
276
277 /*
278 * Save the fpu, extended register state to the user signal frame.
279 *
280 * 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save
281 * state is copied.
282 * 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'.
283 *
284 * buf == buf_fx for 64-bit frames and 32-bit fsave frame.
285 * buf != buf_fx for 32-bit frames with fxstate.
286 *
287 * If the fpu, extended register state is live, save the state directly
288 * to the user frame pointed by the aligned pointer 'buf_fx'. Otherwise,
289 * copy the thread's fpu state to the user frame starting at 'buf_fx'.
290 *
291 * If this is a 32-bit frame with fxstate, put a fsave header before
292 * the aligned state at 'buf_fx'.
293 *
294 * For [f]xsave state, update the SW reserved fields in the [f]xsave frame
295 * indicating the absence/presence of the extended state to the user.
296 */
297 int save_xstate_sig(void __user *buf, void __user *buf_fx, int size)
298 {
299 struct xsave_struct *xsave = &current->thread.fpu.state.xsave;
300 struct task_struct *tsk = current;
301 int ia32_fxstate = (buf != buf_fx);
302
303 ia32_fxstate &= (config_enabled(CONFIG_X86_32) ||
304 config_enabled(CONFIG_IA32_EMULATION));
305
306 if (!access_ok(VERIFY_WRITE, buf, size))
307 return -EACCES;
308
309 if (!static_cpu_has(X86_FEATURE_FPU))
310 return fpregs_soft_get(current, NULL, 0,
311 sizeof(struct user_i387_ia32_struct), NULL,
312 (struct _fpstate_ia32 __user *) buf) ? -1 : 1;
313
314 if (user_has_fpu()) {
315 /* Save the live register state to the user directly. */
316 if (save_user_xstate(buf_fx))
317 return -1;
318 /* Update the thread's fxstate to save the fsave header. */
319 if (ia32_fxstate)
320 fpu_fxsave(&tsk->thread.fpu);
321 } else {
322 sanitize_i387_state(tsk);
323 if (__copy_to_user(buf_fx, xsave, xstate_size))
324 return -1;
325 }
326
327 /* Save the fsave header for the 32-bit frames. */
328 if ((ia32_fxstate || !use_fxsr()) && save_fsave_header(tsk, buf))
329 return -1;
330
331 if (use_fxsr() && save_xstate_epilog(buf_fx, ia32_fxstate))
332 return -1;
333
334 return 0;
335 }
336
337 static inline void
338 sanitize_restored_xstate(struct task_struct *tsk,
339 struct user_i387_ia32_struct *ia32_env,
340 u64 xfeatures, int fx_only)
341 {
342 struct xsave_struct *xsave = &tsk->thread.fpu.state.xsave;
343 struct xstate_header *header = &xsave->header;
344
345 if (use_xsave()) {
346 /* These bits must be zero. */
347 memset(header->reserved, 0, 48);
348
349 /*
350 * Init the state that is not present in the memory
351 * layout and not enabled by the OS.
352 */
353 if (fx_only)
354 header->xfeatures = XSTATE_FPSSE;
355 else
356 header->xfeatures &= (xfeatures_mask & xfeatures);
357 }
358
359 if (use_fxsr()) {
360 /*
361 * mscsr reserved bits must be masked to zero for security
362 * reasons.
363 */
364 xsave->i387.mxcsr &= mxcsr_feature_mask;
365
366 convert_to_fxsr(tsk, ia32_env);
367 }
368 }
369
370 /*
371 * Restore the extended state if present. Otherwise, restore the FP/SSE state.
372 */
373 static inline int restore_user_xstate(void __user *buf, u64 xbv, int fx_only)
374 {
375 if (use_xsave()) {
376 if ((unsigned long)buf % 64 || fx_only) {
377 u64 init_bv = xfeatures_mask & ~XSTATE_FPSSE;
378 xrstor_state(&init_xstate_ctx, init_bv);
379 return fxrstor_user(buf);
380 } else {
381 u64 init_bv = xfeatures_mask & ~xbv;
382 if (unlikely(init_bv))
383 xrstor_state(&init_xstate_ctx, init_bv);
384 return xrestore_user(buf, xbv);
385 }
386 } else if (use_fxsr()) {
387 return fxrstor_user(buf);
388 } else
389 return frstor_user(buf);
390 }
391
392 int __restore_xstate_sig(void __user *buf, void __user *buf_fx, int size)
393 {
394 int ia32_fxstate = (buf != buf_fx);
395 struct task_struct *tsk = current;
396 struct fpu *fpu = &tsk->thread.fpu;
397 int state_size = xstate_size;
398 u64 xfeatures = 0;
399 int fx_only = 0;
400
401 ia32_fxstate &= (config_enabled(CONFIG_X86_32) ||
402 config_enabled(CONFIG_IA32_EMULATION));
403
404 if (!buf) {
405 fpu_reset_state(fpu);
406 return 0;
407 }
408
409 if (!access_ok(VERIFY_READ, buf, size))
410 return -EACCES;
411
412 fpu__activate_curr(fpu);
413
414 if (!static_cpu_has(X86_FEATURE_FPU))
415 return fpregs_soft_set(current, NULL,
416 0, sizeof(struct user_i387_ia32_struct),
417 NULL, buf) != 0;
418
419 if (use_xsave()) {
420 struct _fpx_sw_bytes fx_sw_user;
421 if (unlikely(check_for_xstate(buf_fx, buf_fx, &fx_sw_user))) {
422 /*
423 * Couldn't find the extended state information in the
424 * memory layout. Restore just the FP/SSE and init all
425 * the other extended state.
426 */
427 state_size = sizeof(struct i387_fxsave_struct);
428 fx_only = 1;
429 } else {
430 state_size = fx_sw_user.xstate_size;
431 xfeatures = fx_sw_user.xfeatures;
432 }
433 }
434
435 if (ia32_fxstate) {
436 /*
437 * For 32-bit frames with fxstate, copy the user state to the
438 * thread's fpu state, reconstruct fxstate from the fsave
439 * header. Sanitize the copied state etc.
440 */
441 struct fpu *fpu = &tsk->thread.fpu;
442 struct user_i387_ia32_struct env;
443 int err = 0;
444
445 /*
446 * Drop the current fpu which clears fpu->fpstate_active. This ensures
447 * that any context-switch during the copy of the new state,
448 * avoids the intermediate state from getting restored/saved.
449 * Thus avoiding the new restored state from getting corrupted.
450 * We will be ready to restore/save the state only after
451 * fpu->fpstate_active is again set.
452 */
453 drop_fpu(fpu);
454
455 if (__copy_from_user(&fpu->state.xsave, buf_fx, state_size) ||
456 __copy_from_user(&env, buf, sizeof(env))) {
457 fpstate_init(fpu);
458 err = -1;
459 } else {
460 sanitize_restored_xstate(tsk, &env, xfeatures, fx_only);
461 }
462
463 fpu->fpstate_active = 1;
464 if (use_eager_fpu()) {
465 preempt_disable();
466 fpu__restore();
467 preempt_enable();
468 }
469
470 return err;
471 } else {
472 /*
473 * For 64-bit frames and 32-bit fsave frames, restore the user
474 * state to the registers directly (with exceptions handled).
475 */
476 user_fpu_begin();
477 if (restore_user_xstate(buf_fx, xfeatures, fx_only)) {
478 fpu_reset_state(fpu);
479 return -1;
480 }
481 }
482
483 return 0;
484 }
485
486 /*
487 * Prepare the SW reserved portion of the fxsave memory layout, indicating
488 * the presence of the extended state information in the memory layout
489 * pointed by the fpstate pointer in the sigcontext.
490 * This will be saved when ever the FP and extended state context is
491 * saved on the user stack during the signal handler delivery to the user.
492 */
493 static void prepare_fx_sw_frame(void)
494 {
495 int fsave_header_size = sizeof(struct i387_fsave_struct);
496 int size = xstate_size + FP_XSTATE_MAGIC2_SIZE;
497
498 if (config_enabled(CONFIG_X86_32))
499 size += fsave_header_size;
500
501 fx_sw_reserved.magic1 = FP_XSTATE_MAGIC1;
502 fx_sw_reserved.extended_size = size;
503 fx_sw_reserved.xfeatures = xfeatures_mask;
504 fx_sw_reserved.xstate_size = xstate_size;
505
506 if (config_enabled(CONFIG_IA32_EMULATION)) {
507 fx_sw_reserved_ia32 = fx_sw_reserved;
508 fx_sw_reserved_ia32.extended_size += fsave_header_size;
509 }
510 }
511
512 /*
513 * Enable the extended processor state save/restore feature.
514 * Called once per CPU onlining.
515 */
516 void fpu__init_cpu_xstate(void)
517 {
518 if (!cpu_has_xsave || !xfeatures_mask)
519 return;
520
521 cr4_set_bits(X86_CR4_OSXSAVE);
522 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
523 }
524
525 /*
526 * Record the offsets and sizes of different state managed by the xsave
527 * memory layout.
528 */
529 static void __init setup_xstate_features(void)
530 {
531 int eax, ebx, ecx, edx, leaf = 0x2;
532
533 xfeatures_nr = fls64(xfeatures_mask);
534
535 do {
536 cpuid_count(XSTATE_CPUID, leaf, &eax, &ebx, &ecx, &edx);
537
538 if (eax == 0)
539 break;
540
541 xstate_offsets[leaf] = ebx;
542 xstate_sizes[leaf] = eax;
543
544 leaf++;
545 } while (1);
546 }
547
548 static void print_xstate_feature(u64 xstate_mask)
549 {
550 const char *feature_name;
551
552 if (cpu_has_xfeatures(xstate_mask, &feature_name))
553 pr_info("x86/fpu: Supporting XSAVE feature 0x%02Lx: '%s'\n", xstate_mask, feature_name);
554 }
555
556 /*
557 * Print out all the supported xstate features:
558 */
559 static void print_xstate_features(void)
560 {
561 print_xstate_feature(XSTATE_FP);
562 print_xstate_feature(XSTATE_SSE);
563 print_xstate_feature(XSTATE_YMM);
564 print_xstate_feature(XSTATE_BNDREGS);
565 print_xstate_feature(XSTATE_BNDCSR);
566 print_xstate_feature(XSTATE_OPMASK);
567 print_xstate_feature(XSTATE_ZMM_Hi256);
568 print_xstate_feature(XSTATE_Hi16_ZMM);
569 }
570
571 /*
572 * This function sets up offsets and sizes of all extended states in
573 * xsave area. This supports both standard format and compacted format
574 * of the xsave aread.
575 *
576 * Input: void
577 * Output: void
578 */
579 void setup_xstate_comp(void)
580 {
581 unsigned int xstate_comp_sizes[sizeof(xfeatures_mask)*8];
582 int i;
583
584 /*
585 * The FP xstates and SSE xstates are legacy states. They are always
586 * in the fixed offsets in the xsave area in either compacted form
587 * or standard form.
588 */
589 xstate_comp_offsets[0] = 0;
590 xstate_comp_offsets[1] = offsetof(struct i387_fxsave_struct, xmm_space);
591
592 if (!cpu_has_xsaves) {
593 for (i = 2; i < xfeatures_nr; i++) {
594 if (test_bit(i, (unsigned long *)&xfeatures_mask)) {
595 xstate_comp_offsets[i] = xstate_offsets[i];
596 xstate_comp_sizes[i] = xstate_sizes[i];
597 }
598 }
599 return;
600 }
601
602 xstate_comp_offsets[2] = FXSAVE_SIZE + XSAVE_HDR_SIZE;
603
604 for (i = 2; i < xfeatures_nr; i++) {
605 if (test_bit(i, (unsigned long *)&xfeatures_mask))
606 xstate_comp_sizes[i] = xstate_sizes[i];
607 else
608 xstate_comp_sizes[i] = 0;
609
610 if (i > 2)
611 xstate_comp_offsets[i] = xstate_comp_offsets[i-1]
612 + xstate_comp_sizes[i-1];
613
614 }
615 }
616
617 /*
618 * setup the xstate image representing the init state
619 */
620 static void setup_init_fpu_buf(void)
621 {
622 static int on_boot_cpu = 1;
623
624 if (!on_boot_cpu)
625 return;
626 on_boot_cpu = 0;
627
628 if (!cpu_has_xsave)
629 return;
630
631 setup_xstate_features();
632 print_xstate_features();
633
634 if (cpu_has_xsaves) {
635 init_xstate_ctx.header.xcomp_bv = (u64)1 << 63 | xfeatures_mask;
636 init_xstate_ctx.header.xfeatures = xfeatures_mask;
637 }
638
639 /*
640 * Init all the features state with header_bv being 0x0
641 */
642 xrstor_state_booting(&init_xstate_ctx, -1);
643
644 /*
645 * Dump the init state again. This is to identify the init state
646 * of any feature which is not represented by all zero's.
647 */
648 xsave_state_booting(&init_xstate_ctx);
649 }
650
651 /*
652 * Calculate total size of enabled xstates in XCR0/xfeatures_mask.
653 */
654 static void __init init_xstate_size(void)
655 {
656 unsigned int eax, ebx, ecx, edx;
657 int i;
658
659 if (!cpu_has_xsaves) {
660 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
661 xstate_size = ebx;
662 return;
663 }
664
665 xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
666 for (i = 2; i < 64; i++) {
667 if (test_bit(i, (unsigned long *)&xfeatures_mask)) {
668 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
669 xstate_size += eax;
670 }
671 }
672 }
673
674 /*
675 * Enable and initialize the xsave feature.
676 * Called once per system bootup.
677 *
678 * ( Not marked __init because of false positive section warnings. )
679 */
680 void fpu__init_system_xstate(void)
681 {
682 unsigned int eax, ebx, ecx, edx;
683 static bool on_boot_cpu = 1;
684
685 if (!on_boot_cpu)
686 return;
687 on_boot_cpu = 0;
688
689 if (!cpu_has_xsave) {
690 pr_info("x86/fpu: Legacy x87 FPU detected.\n");
691 return;
692 }
693
694 if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
695 WARN(1, "x86/fpu: XSTATE_CPUID missing!\n");
696 return;
697 }
698
699 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
700 xfeatures_mask = eax + ((u64)edx << 32);
701
702 if ((xfeatures_mask & XSTATE_FPSSE) != XSTATE_FPSSE) {
703 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask);
704 BUG();
705 }
706
707 /*
708 * Support only the state known to OS.
709 */
710 xfeatures_mask = xfeatures_mask & XCNTXT_MASK;
711
712 /* Enable xstate instructions to be able to continue with initialization: */
713 fpu__init_cpu_xstate();
714
715 /*
716 * Recompute the context size for enabled features
717 */
718 init_xstate_size();
719
720 update_regset_xstate_info(xstate_size, xfeatures_mask);
721 prepare_fx_sw_frame();
722 setup_init_fpu_buf();
723
724 pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is 0x%x bytes, using '%s' format.\n",
725 xfeatures_mask,
726 xstate_size,
727 cpu_has_xsaves ? "compacted" : "standard");
728 }
729
730 /*
731 * Restore minimal FPU state after suspend:
732 */
733 void fpu__resume_cpu(void)
734 {
735 /*
736 * Restore XCR0 on xsave capable CPUs:
737 */
738 if (cpu_has_xsave)
739 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
740 }
741
742 /*
743 * Given the xsave area and a state inside, this function returns the
744 * address of the state.
745 *
746 * This is the API that is called to get xstate address in either
747 * standard format or compacted format of xsave area.
748 *
749 * Inputs:
750 * xsave: base address of the xsave area;
751 * xstate: state which is defined in xsave.h (e.g. XSTATE_FP, XSTATE_SSE,
752 * etc.)
753 * Output:
754 * address of the state in the xsave area.
755 */
756 void *get_xsave_addr(struct xsave_struct *xsave, int xstate)
757 {
758 int feature = fls64(xstate) - 1;
759 if (!test_bit(feature, (unsigned long *)&xfeatures_mask))
760 return NULL;
761
762 return (void *)xsave + xstate_comp_offsets[feature];
763 }
764 EXPORT_SYMBOL_GPL(get_xsave_addr);
This page took 0.060599 seconds and 5 git commands to generate.